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Motivation — inclusion of A in the 4D spinfoam model

“Spinfoam model is a covariant formalism of quantum gravity”
f Dgw/ e OEH
A good formalism is such that

Semi-classically consistent

with the Einstein gravity Finite Computable
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Motivation — inclusion of A in the 4D spinfoam model

“Spinfoam model is a covariant formalism of quantum gravity”

f Dgw/ e OEH
A good formalism is such that
Sen.u-class[calIy.con5|s.tent Finite Computable
with the Einstein gravity
4D: EPRL 4D: quantum group deform. of 4D EPRL
EPRL (A ?é 09) [r.f. Pietro’s, Dongxue’s & Cong’s talk]
3D: Ponzano—Regge [Han; Fairbairn, Meusburger] 3D: Ponzano—Regge
Turaev-Viro (A #£ 0) 3D: Turaev-Viro (A # 0) Turaev-Viro (A # 0)

[Ponzano, Regge, Turaev, Viro, Smolin, Major, Lewandowski, Okotdéw, Engle, Pereira, Rovelli, Livine, Freidel, Krasnov, Barrett, Dowdall, Fairbairn,
Hellmann, Meusburger, Nouri, Roche, Haggard, Han, Kaminski, Riello, Girelli, Dupuis, Dona, Dittrich, Asante, Steinhaus, Qu, Liu, Zhang, et al.]

The focus of this talk:
A Lorentzian 4D spinfoam model (SF) with A # O that has all these features Han 21

o _
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Plan of this talk

¢ Overview of the amplitude construction in the 4D SF with A #= 0O

o Concrete testimonies
» Finiteness — melonic SF amplitude
» Consistent with GR — critical point geometry
» Computable — critical point reconstruction program

¢ Future explorations
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Plan of this talk

¢ Overview of the amplitude construction in the 4D SF with A #= 0O

@
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Overview | — Towards 4D SF with A

e Starting point — Plebanski-Holst formulation of 4D gravity: BF theory + simplicity constraint

Ser = =% [, Tr | (xB+2B) AF(A)| =14 [, Tr[(+B+ 1B) A B

B :sl(2,C) 2-form; A : sl(2,C) connection; v € R : Barbero-Immirzi parameter; *: Hodge operator

simplicity constraint: B =sgn(A)eAe
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Overview | — Towards 4D SF with A

e Starting point — Plebanski-Holst formulation of 4D gravity: BF theory + simplicity constraint

— _1 1 A 1
Ser = —1 M4Tr[(*B+7B) AF(A)] —ﬁfM4Tr[(*B+;B) AB]
B :sl(2,C) 2-form; A :sl(2,C) connection; ~ € R : Barbero-Immirzi parameter; *: Hodge operator

simplicity constraint: B =sgn(A)eAe

Gaussian integra}l .F[ .A] _ 1] B

© Construct the Lorentzian path integral: integrating out B field 3

fdAde eiSBF — fdAG% fM4 Tr[(*+%)]—“/\}“]

. M, trivial topo. ] ] ]
- > SL(2, C) Chern-Simons theory with complex coupling constant on the boundary

e Jorn, T(ANAA+ ZANANA) + & [0, TT(ANDA+ ZANANA)

t=k(1+1iy), k= % € Z, = gauge invariant
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Overview | — Towards 4D SF with A — cont.

o CS theory on oM,: siwfaM4Tr(A/\dA+ %A/\A/\A) + S%faM4Tr(Z/\dZ+ %Z/\Z/\Z)
o Vertex amplitude: M, = B* 0M, = S3
l triangulation
A
_ Al
@@@ dual F =g . ¢
(B=sgn(A)eANe)
A
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Overview | — Towards 4D SF with A — cont.

o CS theory on oM,: S%faM4Tr(A/\dA—I-%A/\A/\A) —I—S%faM4Tr(Z/\dZ—I—§Z/\Z/\Z)

o Vertex amplitude: My = B* 0M, = S°

l triangulation

TA
_ A
AR e, FolE . o
(B=sgn(A)eANe)
A

I's

o Curvatures are line defects on S° — consider CS theory on the graph complement

CS theory on S?\I's — solution space: moduli space Mt (S*\I's,SL(2,C)) of SL(2,C) flat connections

S3\ T
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Overview | — Towards 4D SF with A — cont.

o CS theory on oM,: S%faM4Tr(A/\dA+%A/\A/\A) —I—S%faM4Tr(Z/\dZ—I—§Z/\Z/\Z)

o Vertex amplitude: My = B* 0M, = S°

l triangulation

TA
_ A
AR e, FolE . o
(B=sgn(A)eANe)
A

I's

o Curvatures are line defects on S° — consider CS theory on the graph complement

CS theory on S?\I's — solution space: moduli space Mt (S*\I's,SL(2,C)) of SL(2,C) flat connections

- )
4D quantum gravity with A # O SS\FS

= complex CS theory on boundary\graph

+ simplicity constraints on the graph F = %e N e
N\ _J
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Overview Il — CS partition function on $°\I's

e Step 1: CS partition function on S3\I'5

= Discretization of S°\I'; is composed of 20 ideal tetrahedra A’s

ideal tetrahedron
(vertices truncated)

[Faddeev ’95, Kashaev '96, Dimofte, Gaiotto, Gukov '14-15]
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Overview Il — CS partition function on $°\I's

e Step 1: CS partition function on S3\I'5

= Discretization of S°\I'; is composed of 20 ideal tetrahedra A’s

z Z//
m CS partition function on one A: quantum dilogarithm function
S 1—g—dz—1 q = exp (?)
~ L _q z .
Ua(z,2) = H —.—.—t (meromorphic) = p
7=0 q = exp (T) ?
ideal tetrahedron
CS phase space coordinates on A : (vertices truncated)
Z(:uaj) = exp [%(_Zbu - 2])} b — 1—iy __ _12x
— \/ 1+ivy INE

2w, j) = exp [ (—ib~ u+2j))

(,uE]R, spinjEZ/Q)

[Faddeev ’95, Kashaev '96, Dimofte, Gaiotto, Gukov '14-15]
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Overview Il — CS partition function on $°\I's

e Step 1: CS partition function on S3\I'5

= Discretization of S°\I'; is composed of 20 ideal tetrahedra A’s

s CS partition function on one A: quantum dilogarithm function

47
iz . TEEP T
——— (meromorphic)

—_ Z .
j=0 i—exp (7

t

CS phase space coordinates on A :

(1) = xp [22 ity — 2)) =T
—\ T+iy a

2w, j) = exp [ (—ib~ u+2j))

(,uE]R, spinjEZ/Q)

z

ideal tetrahedron
(vertices truncated)

The coordinates are periodic in j:  z(j) =2(j + Zk/2), Z2(j) = 2(j + Zk/2)

( Truncation in spin by construction, implied by A

J

[Faddeev ’95, Kashaev '96, Dimofte, Gaiotto, Gukov '14-15]
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Overview || — CS partition function on S3\I's — cont.

o

Result:

z Z//
CS partition function Zgs\r,
20 o -
= Unitary transformations - gluing constraints - H Ua(a)
a=1 ideal tetrahedron
— finite sum of convergent state integral (vertices truncated)
[Bounded!J

. 20

S 47 S :

Zgars (] J) = 15 § /d157/ e H‘I’A(z)
i=1

20€(Z/kZ)15 ¢
So = % [—2 (/j—zgf) -ﬁ+8§-f—ﬁ-ABT-ﬁ+4(k+1)f~ABT-li
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Overview lll — simplicity constraints and vertex amplitude

4-holed sphere

annulus

—

Zga\r, ([ | 7) = (ii, 7) are localized coordinates of Maat(0(S*\I's), SL(2, C))

[Han 21, Han, QP ’23] 8/23



Overview llI — simplicity constraints and vertex amplitude

4-holed sphere

annulus

—

Zga\r, ([ | 7) = (ii, 7) are localized coordinates of Maat(0(S*\I's), SL(2, C))

o Step 2 towards vertex amplitude: impose the simplicity constraints on I s

Linear constraint: 3 N/ ¢ R suchthat N! B;; =0, Vtetra

F=Ulp
*  N!F;; =0, V4-holed sphere 20,4

simplicity constraint

[ Mflat(ZOAa SL(Q, (C)) ? /\/lﬂat(ZOA, SU(Q)) j

[Han ’21, Han, QP 723] 8/23



Overview llI — simplicity constraints and vertex amplitude

2nd-class constraint
on 4-holed sphere

simplicity constraint

Miiat (30,4, SL(2, C))

> Miat (20,4, SU(2))

First-class constraints Second-class constraints
Impose strongly Impose weakly
D) ()]
Zonrs = Zonvrs (Pavtacoi ) Couple with JL
Aap = exp (Zij,) = exp (%Alaab) e U(1) coherent state ¥,
P™
Fix the triangle area by spin Restrict P to label the tetrahedron shape

[Han 21, Han, QP ’23] 9/23



Overview Il — simplicity constraints and vertex amplitude — cont.

e The vertex amplitude is defined by the inner product of the CS patrtition function with 5 coherent states
Av(jv IO) — <\IJP ‘ Z‘%S\F5>
= Finite by construction
= Large k-limit: oscillatory action A, e f[d)f] ekS(X) k = A2y

= Stationary phase analysis = reproduce 4D Regge action with constant curvature

Av _ (N+6iSRegge,A _|_N_e—iSRegge,A) [1 + O(l/k)]

[Haggard, Han, Kaminski, Riello °14-15; Han '21]
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Plan of this talk

o Concrete testimonies

» Finiteness — melonic SF amplitude
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SF amplitude for a melon graph
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SF amplitude for a melon graph

My
Integrals over
finite sums compact space bounded amplitudes
' (k-1)/2 6
Amelon ({]b}a/057)\6) G 2}: fH 2]]‘ + 1 qf dpe v+ ({]f} {]b} {pe} :05 v — {]f} {Jb} {pe} )‘6)
Jf 0 1 1
T ini |
quantum dimension with q = e k= ‘K‘% ( Finite! )
p

o Face amplitude — consistent with EPRL face amplitude [2;; + 1]q —— 2jj; + 1

e The finiteness can be generalized to any spinfoam graph using similar mechanism

[Han, QP ’23]
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SF amplitude for a melon graph — cont.

o We fix the boundary data ({5}, ps, A¢) and consider the A — 0 (k — oo) for the melonic amplitude |k — \/\1\%
p
o« Oscillatory action Amejon =~ ° [[dX] ehS(X) —  Stationary phase analysis
= Scaling behaviour (lower bound): Ameion ~ k2! ( Finite! )
[Han, QP ’23]
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SF amplitude for a melon graph — cont.

e We fix the boundary data ({j,}, ps, A\¢) and consider the A — 0 (k — oo) for the melonic amplitude % — \/&1\267;7
p
o« Oscillatory action Amejon =~ ° [[dX] ehS(X) —  Stationary phase analysis
= Scaling behaviour (lower bound): Ameion ~ k2! ( Finite! )

o Comparison with the melonic radiative correction in the EPRL model

o jmax
= Introduce a cut-off for representation label by hand ) — ) and consider large jmax (Infinite}
j=0 =0

s Divergent behaviour (numerical result): Ameion ~ Jmax [Frisoni, Gozzini, Vidotto 22]

[Han, QP ’23]
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Plan of this talk

o Concrete testimonies

» Consistent with GR — critical point geometry
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Critical point geometry

e Critical point geometry:

4 )

Vertex amplitude: constantly curved 4-simplex geometry

gluing 4-simplices by identifying boundary constantly curved tetrahedra

\_ J

What if internal triangles form?

A5 three-manifold

Han, QP *24
[Han, QP "24] 16/23



Critical point geometry

e Critical point geometry:

4 )

Vertex amplitude: constantly curved 4-simplex geometry

gluing 4-simplices by identifying boundary constantly curved tetrahedra

. _/

What if internal triangles form?

Stationary phase analysis for internal spin j:

— critical deficit angle — similar to the flatness in EPRL

[Bonzom ’09, Hellmann, Kaminski ’12, Han ’13, Engle, Kaminski, Oliveira '21]

N ;=0
Ef = Zf@f:47TNf/77 Ny e Z % 0
(S

-

every 4-simplex is constantly curved
— 4D bulk is smoothly dS/AdS +

| zero deficit angle

Valid for any 4-complex with internal triangle(s) Az three-manifold

Han, QP '24
[Fan, QP 7241 46703



Critical point geometry — cont.

e Critical point geometry:

4 )

s Every 4-simplex is constantly curved

m 4-simplices are glued by identifying boundary constantly curved tetrahedra

s Vanishing deficit angle hinged by each internal triangle (mod 47Z/~)

\_ J

¢ in the semiclassical regime = the critical point of the spinfoam amplitude describes a 4D dS

spacetime (when A > () or a 4D AdS spacetime (when A < 0) — “(A)dS-ness property”

Han, QP *24
[Han, QP "24] 17/23



Critical point geometry — cont.

o Critical point geometry: —— real critical point

4 )
s Every 4-simplex is constantly curved
m 4-simplices are glued by identifying boundary constantly curved tetrahedra
s Vanishing deficit angle hinged by each internal triangle (mod 47Z/~)
. J
¢ in the semiclassical regime = the critical point of the spinfoam amplitude describes a 4D dS
spacetime (when A > () or a 4D AdS spacetime (when A < 0) — “(A)dS-ness property”
Im(z)
A
o But NOT (A)dS-ness problem! /_ E _(f)
e Consider complex critical point, as is done in EPRL [rf. Dongxue’s talk] \ () | > Re(z2)
o\T"
= Non-(A)dS geometries are captured by the complex critical points
[Han, QP ’'24]
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Plan of this talk

o Concrete testimonies

» Computable — stationary phase analysis
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Stationary phase approximation of SF amplitude

G finite-dimensional integral
with oscillatory action

e.g. one A,,: 40-dim integral
/\; : 114-dim integral

!

stationary phase approximation

a 4-simplex geometry

triangle areas & normals
{ag, 0y}

[Haggard, Han, Kaminski, Riello ’15,
Han ’15, Haggard, Han, Riello *16]

Miat (S3\I'5, SL(2, C))
coordinates{z, z,- - - }

[Han, QP, to appear]
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Stationary phase approximation of SF amplitude

finite-dimensional integral
with oscillatory action

e.g. one A,,: 40-dim integral
/\; : 114-dim integral

!

stationary phase approximation

4-simplex geometry
triangle areas & normals
{ag, 0y}

[Haggard, Han, Kaminski, Riello ’15,
Han ’15, Haggard, Han, Riello *16]

Miat (S3\I'5, SL(2, C))
coordinates{z, z,- - - }

-
4-simplex geometry
triangle areas & normals

. {ag,ny}

~

[Han, QP, to appear]
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Stationary phase approximation of SF amplitude

finite-dimensional integral
with oscillatory action

e.g. one A,,: 40-dim integral
/\; : 114-dim integral

!

stationary phase approximation

4-simplex geometry
triangle areas & normals
{ag, 0y}

[Haggard, Han, Kaminski, Riello ’15,
Han ’15, Haggard, Han, Riello *16]

Miat (S3\I'5, SL(2, C))
coordinates{z, z,- - - }

(~ _ )
4-simplex geometry

triangle areas & normals

. {ap,ny} )

i

-

\—

CS phase space coordinates

{z({ag,ng}), 2({ay,nz}), -}

J

[Han, QP, to appear]
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Stationary phase approximation of SF amplitude

finite-dimensional integral
with oscillatory action

e.g. one A,,: 40-dim integral
/\; : 114-dim integral

!

stationary phase approximation

4-simplex geometry
triangle areas & normals
{ag, 0y}

[Haggard, Han, Kaminski, Riello ’15,
Han ’15, Haggard, Han, Riello ’16]

Miat (S3\I'5, SL(2, C))
coordinates{z, z,- - - }

4 )
4-simplex geometry

triangle areas & normals

{ap,ny}

\_ Y,
~ )
CS phase space coordinates
{Z({le,ﬂf}), 5({le,11f}), T }
- ,
~ )
SF amplitude at (real) critical point
Output 4= es(w@,...)‘
W=z,W=2,
\ ,

[Han, QP, to appear]
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Stationary phase approximation of SF amplitude

finite-dimensional integral
with oscillatory action

e.g. one A,,: 40-dim integral
/\; : 114-dim integral

!

stationary phase approximation

4-simplex geometry
triangle areas & normals
{ag, 0y}

[Haggard, Han, Kaminski, Riello ’15,
Han ’15, Haggard, Han, Riello ’16]

Miat (S3\I'5, SL(2, C))
coordinates{z, z,- - - }

4 _ )
4-simplex geometry

triangle areas & normals

{ap,ny}

\_ y,
~ )
CS phase space coordinates
{Z({le,ﬂf}), 5({le,11f}), T }
- W,
~ )
SF amplitude at (real) critical point
Output 4= es(w,@,...)‘
W=z,W=2,
- ,

l perturbation

Output {-[

quantum correction )

[Han, QP, to appear]
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Stationary phase approximation of SF amplitude

finite-dimensional integral
with oscillatory action
e.g. one A,,: 40-dim integral
/\; : 114-dim integral

!

stationary phase approximation

4-simplex geometry
triangle areas & normals
{ag, 0y}

[Haggard, Han, Kaminski, Riello ’15,
Han ’15, Haggard, Han, Riello ’16]

Miat (S3\I'5, SL(2, C))
coordinates{z, z,- - - }

4 _ )
4-simplex geometry

triangle areas & normals

{ap,ny}

i

-

CS phase space coordinates

{z({ag,ng}), 2({ay,nz}), -}

\_ J
4 )
SF amplitude at (real) critical point
OUtpUth S(’UJ,’J),)‘
w==z w

l perturbation

Output

quantum correctlon

analytic
continuation

Output {-(SF amplitude at (complex) critical pomt

[Han, QP, to appear]
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Stationary phase approximation of SF amplitude — cont.

(~ _ )
4-simplex geometry

triangle areas & normals {— Input

. {ag,ns} )
R S
o Itis a concrete, complete and computable CS phase space coordinates
program to calculate the SF amplitude {z({af,nr}), 2({ag,ng}), - } y
-
evaluated at the critical point and its quantum l
perturbation. [r.f. Dongxue’s talk for EPRL program] . ™
SF amplitude at (real) critical point
°“tp”t" eS(w.d.)
w==z w
e Can be easily generalized to 4-complex
geometry and compute for SF amplitude for l perturbation
a general 4-complex. analytic
Output quantum correctlon continuation

Output {-[SF amplitude at (complex) critical pomt

[Han, QP, to appear]
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Plan of this talk

P

¢ Future explorations
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Outlook — Can we do better?

» @Generalize the model to include timelike tetrahedra, as in the Conrady-Hnybida extension of EPRL
[Conrady, Hnybida ’11, Han, Liu ’18]

» A quantum group representation of the SF model?

o Clue 1: combinatorial quant. of CS theory — quantum group rep.  [Alekseey, Grosse, Schomerus '94-95,
Buffenoir, Noui, Roche ’'02]
o Clue 2: Turaev-Viro model

o Clue 3: quantum state of constantly curved tetrahedron = g-deformed intertwiner [Han, Hsiao, QP "23]
[r.f. Chen-Hung’s talk]

It is ready to set up the numerical development for this SF model, as is done with the EPRL model

Realize numerically the real and complex critical points;

€

Consider the higher-order quantum corrections;

€

Application to cosmology;
¢ Etc.

€
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Can we do even better?

“Spinfoam model is a covariant formalism of quantum gravity”
f Dgw e OEH

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity
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Can we do even better?

“Spinfoam model is a covariant formalism of quantum gravity”
f DgW e OEH

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better formalism should be triangulation independent!
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Can we do even better?

“Spinfoam model is a covariant formalism of quantum gravity”
f DgW e OEH

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better formalism should be triangulation independent!

> A “moduli space field theory” formalism of the SF model with A, in an analogous way to the GFT

o Consider a field W(j, 1) : Myat(30.4,5U(2)) — C (4, ¢) : configuration of a tetrahedron

[Han, QP, W.I.P]
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Can we do even better?

“Spinfoam model is a covariant formalism of quantum gravity”
f Dgw e OEH

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better formalism should be triangulation independent!

> A “moduli space field theory” formalism of the SF model with A, in an analogous way to the GFT

o Consider a field W(j, 1) : Myat(30.4,5U(2)) — C (4, ¢) : configuration of a tetrahedron

o Consider a generalized moduli-space field action

S[¥] = K[¥] + V[¥] + c.c.

kinetic: K[V] = Soo [ de] (4, ) (4, )
{stez/kzZ)*
potential: V[¥] = %{' 2}: lif [dea] Av({Javs tat) f[l\lj({jab}aba)

[Han, QP, W.I.P]
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Can we do even better?

“Spinfoam model is a covariant formalism of quantum gravity”
f Dgw e OEH

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better formalism should be triangulation independent!

> A “moduli space field theory” formalism of the SF model with A, in an analogous way to the GFT

o Consider a field W(j, 1) : Myat(30.4,5U(2)) — C (4, ¢) : configuration of a tetrahedron

o Consider a generalized moduli-space field action

S[¥] = K[¥] + V[¥] + c.c.

kinetic: K[V] = Soo [ de] (4, ) (4, )
{ite(z/kZ)*
5 5
potential: V[¥] =5 >[I [I[dw] Av({Jab,ta}) IT ¥{Jas},ta)
{jab}a<ba’ 1 a=1
N

o Expectation: ( f DY 51V Z Sym(T) Ar gives finite amplitude order-by-order

(2) triangulation independent [Han, QP, W.I.P]
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Can we do even better?

“Spinfoam model is a covariant formalism of quantum gravity”
f Dgw e OEH

The SF model with A is good 4D QG formalism because
it is finite and semi-classically consistent with the Einstein gravity

A better formalism should be triangulation independent!

> A “moduli space field theory” formalism of the SF model with A, in an analogous way to the GFT

o Consider a field W(j, 1) : Myat(30.4,5U(2)) — C (4, ¢) : configuration of a tetrahedron

o Consider a generalized moduli-space field action

S[¥] = K[¥] + V[¥] + c.c.

kinetic: K[V] = Soo [ de] (4, ) (4, )
{ite(z/kZ)*
5 5
potential: V[¥] =5 >[I [I[dw] Av({Jab,ta}) IT ¥{Jas},ta)
{jab}a<ba’ 1 a=1
N

o Expectation: ( f DY 51V Z Sym(T) Ar gives finite amplitude order-by-order

(2) triangulation independent [Han, QP, W.I.P]

Thank you for your attention!
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How does a 3D theory describe 4D geometry?

4

1
3 3 m1(sky ( 3-simplex )) XM, o G2\ 4 points )

WLC \y v Wilat

{Hl,Hz,Hg,H4 € SU(Q)’H4H3H2H1 = ]ISU(Q)}/SU(2)

3D geometries are encoded in holonomies on 2D surface: H(af,fif) = e3% ™7 Vf=1... 4
[Haggard, Han, Riello ’16]

. isomorphism
One dimension higher: 1 (sky (4-simplex)) I = m(S°\I's)

WG N\ v What

{{H.} € SL(2,C)|closure conditions} /SL(2, C)

( 4D geometries are encoded in holonomies on 3D manifold ) [Haggard, Han, Kaminski, Riello *15, Han *15]




Critical deficit angle — compare to EPRL

e A technical advancement in this spinfoam model compared to EPRL SF

Poisson summation

Zepre= Y. [TAGy) [du(X)e2sdrfs(X) = fHAJf (257) [ dp(X) e2s 35 (Fr (X)Fdmiug)
{irreN/2 f {uf el

ZA_fHA §1)d(255) [dpu(X) e WishXtospdmiugis =y c 7, fixed V f

[Han, QP ’24]



