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Extereme isolated horizons

There was exciting progress in the isolated horizons (especially
extreme case, k = 0).

The case of extreme isolated horizons constitutes a hard part of the
classification of stationary black holes.

Apparently, they can be created in physical processes ikene, unger 22]

©0 o o

They have some applications in quantum gravity.

The goal of this talk is to present some recent developments in this topicJ
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ISOIated horlzons [Ashtekar, Beetle, Lewandowski 01] [Ashtekar, Krishnan 03] [Lewandowski, Pawlowski 01;03]

@ Null hypersurface H fibered by null vector £ and degenerate metric
(restriction of the spacetime metric)

Gijl' =0, m H— Y (dim¥=n, compact) (1)
@ Non-expanding condition
L0G=0. (2)

The metric is a pull-back § = 7*g (g Riemannian on X).

© Spacetime covariant derivative preserves tangent space to H,
restriction V; (metric and torsion free). Isolated horizon condition
(stronger than WIH in Abhays's talk)

LV = 0. (3)

@ Introduce rotation form V7 = &;#7 and surface gravity
Kk = @;¢* = const. Connection not uniquely determined by @ and g.

Isolated horizon data (abstractly): (H,Z, g, V) satisfying (1), (2), (3). J
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Isolated horizons (non-extreme case)

Non-extreme horizons « # 0

@ Einstein equations determines the connection in terms of @ and g
Lo =0, Lo§ =0, @&l" =K, Gijl' =0. (4)

@ In analytic case, there exists unique spacetime with this horizon as a
Killing horizon (with bifurcated surface)

Black hole holograph racz. waid] [Racz]
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EXt reme isolated horizons {Qi:tj:ra;,Llsuecei:tet,i]Lewandowski 01] [Lewandowski Pawlowski 01]

Extreme horizons xk = 0

@ Einstein equations imposes constraints on the data on %
| 1 1 n
0= V(W) +wuw, — §R;w + 5)\9,“,—1— - (EIHY)

where @ = 7w, § = 7*¢g (NHG data (g,w))
@ Connection is left undetermined (higher order constraint)

@ For every data (g,w) one can construct certain Kundt spacetime
(Near HOI’iZOn Geometry NHG) [Lewandowski, Pawlowski, Jezierski] [Horowitz] [Reall]

ds? = Fp?dv? + 2dpdv — 4pw, dz"dv + g, dz" dz” (5)

where z are coordinates on ¥ and H = {p = 0} (obtained by the
Geroch type procedure applied to a spacetime with extreme horizon)

F(z) = VFw, + 2whw, — A+ .. .. (6)

@ Non-uniqueness of embedding is a desireable feature (for NHG data).
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EIH equation (closely related to Ricci solitons)

V(uwyy +wuwy, — %RW + %/\g,w =0, (EIHY)
Extreme case:
@ All axisymmetric solutions on S? (n = 2) found. They correspond to
Kerr solutions [Lewandowski Pawlowski 01]
@ Generalized to higher dimensions with U(1)"~! symmetry
(enhancing symmetry of NHG i.e. higher group of isometries than
expected) [Kunduri, Lucietti 09] [Hollands, Ishibashi 10]

V,I' = 2w,I"is a Killing vector for some I' > 0. (7)

Extreme versus non-extreme horizons

Geometry of extreme horizons is constraint intrinsically in contrast to the
non-extreme case where it is constraint by global properties of the
spacetime.
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Structure of the talk (questions)

Problems for extreme (degenerate) isolated horizons:

@ Rigidity problem Does every non-static solution posses at least one

symmetry
ﬁKg = O7 .CKw =0

Does corresponding NHG spacetime have enhanced SO(1,2)
symmetry group?

@ Staticity problem The Killing vector ¢ has vanishing twist if
dw = 0. The black hole is not rotating if w =0

dw:0:?>w:0.

@ Topology problem Does ¥ needs to be a sphere (especially 4d due
to Hawking theorem)

@ Killing embeddability Classify possible spacetimes with isolated
horizons as Killing horizons (classify isolated horizons with given
NHG data)
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Structure of the talk (questions)

@ Rigidity problem Does every non-static solution posses at least one
symmetry
ﬁKg = O7 .CKw =0
Does corresponding NHG spacetime have enhanced SO(1,2)
symmetry group?
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Killing vectors on compact manifolds

@ Killing laplacian UK, := AK,, + R} K,,
VuKy)y=0=0K,=0, V,K'"=0 (8)

On compact manofolds we have also <.
@ Idea similar as in the case A¢p = 0 <= ¢ = const

0= /quqa = —/v“qsvw — V=0 (9)

Killing vectors on compact manifolds

If V,K* =0 and there exists V' and A, such that
OK,=0,V+A, AK'=0 (10)

then VK, =0.
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Remarkable identity [Dunajski, Lucietti 23]

Q@ For K, =V,I' = 2w,I' (T arbitrary function)
0K, = -2V, K w, + V,V + A, (RI)

where V' = AT + 2AI" and A, = —2Q,, K" with Q,, =2V |,w,,.

@ If we choose a nontrivial T" such that V,K” = 0 then K is a Killing
vector field.

Missing piece existence of such nontrivial T':

@ Solution to the equation
0= LT := —V*(V,I — 2w,T")

Operator L is elliptic and has discrete spectrum. Spectrum of LT is
complex conjugated to L

L'1=0=0¢eSpecL’ = 0 € SpecL
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Remarkable identity [Dunajski, Lucietti 23]

LT := -VH(V,I' —2w,T)
Application of Krein-Rutnam theorem shows that

@ T # 0 (we can choose " > 0)

@ The 0 eigenvalue is multiplicity free and simple and every other
eigenavlue has bigger real part

Interpretation: L is a generator of the Brownian motion with shift.
Function T is the equilibrium probability distribution.

[Andersson, Mars, Simon]
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Remarkable identity [Dunajski, Lucietti 23]

© Remarkable identity simplifies for K satisfying Killing equation
0=0K,=V,V-29, K"
Equivalent to KiLdw = —%dV. Cartan formula provides
. 1
w=Lgw=dU, U:=K.w-— §V.
@ Lie derivative of NHG equation
0= V(Hd)l,) + 2&)(”(,«')1,), AU + QwHV“U =0

The only solution U = const.

Axisymmetry theorem [Dunaski, Lucietti 23] [Colling et.al 24]

Every non-static solution to EIH posses a Killing K* satisfying Lxw = 0.

Non-static because 0 = K* = VHI' — 2I'w* iff w = d% InT" is exact.
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Structure of the talk (questions)

@ Staticity problem The Killing vector ¢ has vanishing twist if
dw = 0. The black hole is not rotating if w =0

dw:0:?>w:0.
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Statlc SOI UTIONS (Chrusciel, Reall, Tod 04] [Bahuad et al 23] [Wyie 23]

@ In one dimension, g = ds?, s € [0, L] and w' = ¢ds
) , 1

The only periodic solution ¢ = 4+1/—X/2, A < 0 (static).

@ Every solution to Einstein equation R, = Ag,,,, provides EIHY with
w = 0 (static).

@ For (g%, w') € EIH} and (g,0) € EIHY
(9" ® g, ®0) € EIHYH (11)

The result is also static.
@ Topologically nontrivial construction locally as above.

For A = 0 in these solutions w = 0.

Are these all static solutions? \
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Statlc SOI UTIONS (Chrusciel, Reall, Tod 04] [Bahuad et al 23] [Wyie 23]

© Remarkable identity simplifies €, = 0 thus A4, =0
0=0K,=V,V =V = ATl +2AT" = const. (11)
@ An argument with the eigenspace of Laplacian for A < 0 shows
I' = const = K, «x w,, (12)

@ V,w, =0 so locally we have a splitting. Global result follows from
considerations of universal cover.

Staticity theorem  (chrusciel, Reall, Tod 04] [Bahuad et al 23] [Wylie 23]

If EIHY data is static then
Q@ for \=0,w=0
@ for A < 0, it is a type of solution described earlier,

@ forn=2and A € R, w=20. This holds also in the case with
Maxwell field

W. Kaminski Horizons 11/16



Structure of the talk (questions)

@ Topology problem Does ¥ needs to be a sphere (especially 4d due
to Hawking theorem)
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T0p0|0gy 4d , = 2 [Dobkowski-Rylko et.al 18,19] [Lewandowski, Kaminski 24-t.b.p]

Situation in 4d (n = 2) is special

@ Riemannian geometry is complex analysis plus scale
1
Rul/ = §Rg;uj (13)
@ Projection on anti-holomorphic covectors Py, = 3(gu — i€u)
T, = Ppw’, D, =P,V (14)

@ The EIH equation imposes D,,m, + m,m, = 0 (it holds also in the
presence of Maxwell field).

Surface ¥ of genus > 1 [to be published]

If f, satisfies
Dufu+fufu:07 fu:Ppyfl/ (15)
then f, = 0.
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T0p0|0gy 4d , = 2 [Dobkowski-Rylko et.al 18,19] [Lewandowski, Kaminski 24-t.b.p]

Situation in 4d (n = 2) is special
@ Riemannian geometry is complex analysis plus scale
1
Rul/ = §Rg;uj (13)
@ Projection on anti-holomorphic covectors Py, = 3(gu — i€u)
T, = Ppw’, D, =P,V (14)

@ The EIH equation imposes D,,m, + m,m, = 0 (it holds also in the
presence of Maxwell field).

Topology theorem [to be published]

For surfaces of nonzero genus the only EM EIH solutions are surfaces
with constant curvature, constant electromagnetic field and w = 0.

In higher dimensions weaker constraints [kundur, Lucietti 08] [Bahuad et al 23].
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Structure of the talk (questions)

@ Killing embeddability Classify possible spacetimes with isolated
horizons as Killing horizons (classify isolated horizons with given
NHG data)
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Embeddings [Li, Lucietti 15] [Katona Lucietti 24|, [Katona 24]

@ Consider metric in null gaussian coordinates (v, p, ),
ds? = Fp*dv® + 2dpdv — 4po,detdv + §udatdz”

where ¢ = 9, (Killing vector), H = {p = 0} and null gaussian
condition @, tangent to null affinine geodesic.

@ There is a gauge freedom in the choice of coordinates (Diff and
arbitrary shifts in v). The second can be fixed (to constant shift) by

9p\/ 9l p=0 = const .
© We can write Einstein equations in term of the Taylor expansion

G =90 @) +pglil@) + ..., g =gu (15)

and similar expansions for F' and @.

We would like to solve Eintein's equations recursively in p.
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Embeddings [Li, Lucietti 15] [Katona Lucietti 24|, [Katona 24]

© The Einstein equations give recurence relations

An(g[”]) =l.0.t, A, differential operator depending on g and w
Once g™ is know FI™ and wLn] are determined algebraically.

1 S . . . .
@ Tensor gL,l contains informations equivalent to choice of connection.

It is constraint by Al(g[l]) = 0 [Kolanowski, Lewandowski 20]

@ With this choice of gauge, A, are elliptic operators of the second
order.

@ Elliptic operators on a compact manifold have finite kernels and
cokernels thus equations A,,(g!") = B,, have finite ambiguity and
finite obstruction.

@ In every step of expansion, only finite number of ambiguities appear
and the finite number of constraints.
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Embeddings [Li, Lucietti 15] [Katona Lucietti 24], [Katona 24]

@ The case of spherically symmetric EIH with \ > 0
(Schwarzschild-dS NHG data)

@ A, have vanishing kernels and cokernels for n > 2
© A has one dimensional kernel.
Schwarzschild-de Sitter is the unique stationary spacetime with
Schwarzschild-dS isolated horizon and moreover such horizons are
unique horizons for corresponding NHG data (except NHG
spacetime).
[Katona Lucietti 24], [Katona 24]
@ The case of Kerr EIH with A\ = 0 every A,, has a nontrivial kernel.
[Horowitz et al 23]
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@ Extreme isolated horizons are now better understood

@ in vacuum for A <0
@ for A > 0 static solutions still mysterious

@ The case of horizons in presence of EM field is largely open.
Outlook:
© Natural generalization when ¢ does not define fibration, but winds
around some compact manifold (cosmological Cauchy horizons in
Taub-NUT)
@ In such case there is no space of rays (at least globally).
© Axisymmetric solutions classified for n = 2.

[Dobkowski-Rylko, Lewandowski, Ossowski]

Reminder: FAU? conference 25-27.06 Erlangen, Germany J
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Non—trivial bundle structure [Dobkowski-Rylko, Lewandowski, Ossowski]

@ General axisymmetric metric on S
g = P(x)"tda* + P(x)d¢?, ¢ € [0,L], z € [-1,1] (15)
@ Conditions for P in final points for metric to be smooth

47

P(£1) =0, P'(&)==+- (16)

@ EIH equation reduces to ODE for P and T" (determining w). General
solution does not satisfy P’(1) = —P’(—1) (T always smooth).
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Non—trivial bundle structure [Dobkowski-Rylko, Lewandowski, Ossowski]

@ If ¢ does not define fibration the space of rays not defined

@ Metric defined separately on two discs with gluing by Hopf bundle
map (as on picture). Proper choice of £ allows P'(1) # —P'(—1).

@ All smooth axisymmetric solutions classified.
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