(Extreme) isolated horizons

Wojciech Kamiński

Uniwersytet Warszawski

10.05.24

W. Kamiński $1/16$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ [唐] # 19 9 0

- **1** There was exciting progress in the isolated horizons (especially extreme case, $\kappa = 0$).
- **2** The case of extreme isolated horizons constitutes a hard part of the classification of stationary black holes.
- **3** Apparently, they can be created in physical processes [Kehle, Unger 22]
- **4** They have some applications in quantum gravity.

The goal of this talk is to present some recent developments in this topic

K ロ K K 伊 K K ミ K K ミ K ミ| ミ| 白 Y Q Q Q

Isolated horizons [Ashtekar, Beetle, Lewandowski 01] [Ashtekar, Krishnan 03] [Lewandowski, Pawlowski 01;03]

 \bullet Null hypersurface H fibered by null vector ℓ and degenerate metric (restriction of the spacetime metric)

$$
\tilde{g}_{ij}\ell^i = 0, \quad \pi \colon \mathcal{H} \to \Sigma \text{ (dim }\Sigma = n, \text{ compact)}
$$
 (1)

² Non-expanding condition

$$
\mathcal{L}_{\ell}\tilde{g}=0.\tag{2}
$$

The metric is a pull-back $\tilde{g} = \pi^* g$ (g Riemannian on Σ).

3 Spacetime covariant derivative preserves tangent space to H , restriction $\tilde{\nabla}_i$ (metric and torsion free). Isolated horizon condition (stronger than WIH in Abhays's talk)

$$
\mathcal{L}_{\ell}\tilde{\nabla}=0.\tag{3}
$$

 \bullet Introduce rotation form $\tilde{\nabla}_i \ell^j = \tilde{\omega}_i \ell^j$ and surface gravity $\kappa = \tilde{\omega}_i \ell^i = \text{const.}$ Connection not uniquely determined by $\tilde{\omega}$ and \tilde{g} .

Isolated horizon data (abstractly): $(\mathcal{H}, \ell, \tilde{g}, \nabla)$ satisfying [\(1\)](#page-2-0), [\(2\)](#page-2-1), [\(3\)](#page-2-2).

Isolated horizons (non-extreme case)

Non-extreme horizons $\kappa \neq 0$

1 Einstein equations determines the connection in terms of $\tilde{\omega}$ and \tilde{q}

$$
\mathcal{L}_{\ell}\tilde{\omega}=0, \ \mathcal{L}_{\ell}\tilde{g}=0, \ \tilde{\omega}_{i}\ell^{i}=\kappa, \ \tilde{g}_{ij}\ell^{i}=0.
$$
 (4)

² In analytic case, there exists unique spacetime with this horizon as a Killing horizon (with bifurcated surface)

Black hole holograph [Racz, Wald] [Racz]

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ [로]로 19 Q @

Extreme horizons $\kappa = 0$

 \bullet Einstein equations imposes constraints on the data on Σ

$$
0 = \nabla_{(\mu}\omega_{\nu)} + \omega_{\mu}\omega_{\nu} - \frac{1}{2}R_{\mu\nu} + \frac{1}{2}\lambda g_{\mu\nu} + \dots,
$$
 (EIH_λⁿ)

where $\tilde{\omega} = \pi^* \omega$, $\tilde{g} = \pi^* g$ (NHG data (g, ω))

- ² Connection is left undetermined (higher order constraint)
- \bullet For every data (q,ω) one can construct certain Kundt spacetime (Near Horizon Geometry NHG) [Lewandowski, Pawlowski, Jezierski] [Horowitz] [Reall]

$$
ds^{2} = F\rho^{2}dv^{2} + 2d\rho dv - 4\rho\omega_{\mu}dx^{\mu}dv + g_{\mu\nu}dx^{\mu}dx^{\nu}
$$
 (5)

where x are coordinates on Σ and $\mathcal{H} = \{\rho = 0\}$ (obtained by the Geroch type procedure applied to a spacetime with extreme horizon)

$$
F(x) = \nabla^{\mu} \omega_{\mu} + 2\omega^{\mu} \omega_{\nu} - \lambda + \dots \tag{6}
$$

4 Non-uniqueness of embedding is a desireabl[e fe](#page-3-0)[at](#page-5-0)[ur](#page-3-0)[e \(](#page-4-0)[f](#page-5-0)[or](#page-0-0) [N](#page-22-0)[H](#page-23-0)[G](#page-0-0) [d](#page-22-0)[a](#page-22-0)[t](#page-0-0)a[\)](#page-23-0)[.](#page-24-0) W. Kamiński $5/16$

EIH equation (closely related to Ricci solitons)

$$
\nabla_{(\mu}\omega_{\nu)} + \omega_{\mu}\omega_{\nu} - \frac{1}{2}R_{\mu\nu} + \frac{1}{2}\lambda g_{\mu\nu} = 0, \qquad \text{(EIH}_{\lambda}^{n})
$$

Extreme case:

- \bullet All axisymmetric solutions on S^2 $(n=2)$ found. They correspond to Kerr solutions [Lewandowski Pawlowski 01]
- ? Generalized to higher dimensions with $U(1)^{n-1}$ symmetry (enhancing symmetry of NHG i.e. higher group of isometries than expected) [Kunduri, Lucietti 09] [Hollands, Ishibashi 10]

$$
\nabla_{\mu}\Gamma - 2\omega_{\mu}\Gamma \text{ is a Killing vector for some } \Gamma > 0. \tag{7}
$$

Extreme versus non-extreme horizons

Geometry of extreme horizons is constraint intrinsically in contrast to the non-extreme case where it is constraint by global properties of the spacetime.

W. Kamiński $\,$ 6 $/$ 16 $\,$ [Horizons](#page-0-0) $\,$ Horizons $\,$ 6 $/$ 16 $\,$

Problems for extreme (degenerate) isolated horizons:

• Rigidity problem Does every non-static solution posses at least one symmetry

$$
\mathcal{L}_K g = 0, \ \mathcal{L}_K \omega = 0
$$

Does corresponding NHG spacetime have enhanced $SO(1,2)$ symmetry group?

2 Staticity problem The Killing vector ℓ has vanishing twist if $d\omega = 0$. The black hole is not rotating if $\omega = 0$

$$
d\omega = 0 \Longrightarrow^? \omega = 0.
$$

- **3** Topology problem Does Σ needs to be a sphere (especially 4d due to Hawking theorem)
- ⁴ Killing embeddability Classify possible spacetimes with isolated horizons as Killing horizons (classify isolated horizons with given NHG data)

W. Kamiński $7/16$

Problems for extreme (degenerate) isolated horizons:

1 Rigidity problem Does every non-static solution posses at least one symmetry

$$
\mathcal{L}_K g = 0, \ \mathcal{L}_K \omega = 0
$$

Does corresponding NHG spacetime have enhanced $SO(1,2)$ symmetry group?

2 Staticity problem The Killing vector ℓ has vanishing twist if $d\omega = 0$. The black hole is not rotating if $\omega = 0$

$$
d\omega = 0 \Longrightarrow \omega = 0.
$$

- **3 Topology problem** Does Σ needs to be a sphere (especially 4d due to Hawking theorem)
- ⁴ Killing embeddability Classify possible spacetimes with isolated horizons as Killing horizons (classify isolated horizons with given NHG data)

W. Kamiński $7/16$

Killing vectors on compact manifolds

 \blacktriangleright Killing laplacian $\Box K_\mu := \Delta K_\mu + R^\nu_\mu K_\nu$,

$$
\nabla_{(\mu} K_{\nu)} = 0 \Longrightarrow \Box K_{\mu} = 0, \ \nabla_{\mu} K^{\mu} = 0 \tag{8}
$$

On compact manofolds we have also \Longleftrightarrow .

2 Idea similar as in the case $\Delta \phi = 0 \Longleftrightarrow \phi = \text{const}$

$$
0 = \int \phi \Delta \phi = -\int \nabla_{\mu} \phi \nabla^{\mu} \phi \Longrightarrow \nabla_{\mu} \phi = 0 \tag{9}
$$

Killing vectors on compact manifolds

If $\nabla_{\mu}K^{\mu}=0$ and there exists V and A_{μ} such that

$$
\Box K_{\mu} = \partial_{\mu} V + A_{\mu}, \quad A_{\mu} K^{\mu} = 0 \tag{10}
$$

then $\nabla_{(\mu}K_{\nu)}=0$.

W. Kamiński $8/16$

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ [로]로 19 Q @

Remarkable identity [Dunajski, Lucietti 23]

1 For $K_u = \nabla_u \Gamma - 2\omega_u \Gamma$ (Γ arbitrary function)

$$
\Box K_{\mu} = -2\nabla_{\nu} K^{\nu} \omega_{\mu} + \nabla_{\mu} V + A_{\mu}
$$
 (RI)

where $V = \Delta \Gamma + 2 \lambda \Gamma$ and $A_\mu = -2 \Omega_{\mu\nu} K^\nu$ with $\Omega_{\mu\nu} = 2 \nabla_{[\mu} \omega_{\nu]}$.

2 If we choose a nontrivial Γ such that $\nabla_{\nu}K^{\nu}=0$ then K is a Killing vector field.

Missing piece existence of such nontrivial Γ :

• Solution to the equation

$$
0 = L\Gamma := -\nabla^{\mu}(\nabla_{\mu}\Gamma - 2\omega_{\mu}\Gamma)
$$

Operator L is elliptic and has discrete spectrum. Spectrum of L^\dagger is complex conjugated to L

$$
L^{\dagger}1 = 0 \Longrightarrow 0 \in \text{Spec } L^{\dagger} \Longrightarrow 0 \in \text{Spec } L
$$

W. Kamiński $9 \, / \, 16$

$$
L\Gamma:=-\nabla^\mu(\nabla_\mu\Gamma-2\omega_\mu\Gamma)
$$

Application of Krein-Rutnam theorem shows that

 $\mathbf{1} \cdot \mathbf{r} \neq 0$ (we can choose $\Gamma > 0$)

2 The 0 eigenvalue is multiplicity free and simple and every other eigenavlue has bigger real part

Interpretation: L is a generator of the Brownian motion with shift. Function Γ is the equilibrium probability distribution.

[Andersson, Mars, Simon]

K ロ K K 伊 K K ミ K K ミ K ミ| ミ| 白 Y Q Q Q

Remarkable identity [Dunajski, Lucietti 23]

 \bullet Remarkable identity simplifies for K satisfying Killing equation

$$
0=\Box K_{\mu}=\nabla_{\mu}V-2\Omega_{\mu\nu}K^{\nu}
$$

Equivalent to $K \llcorner d\omega = -\frac{1}{2} dV$. Cartan formula provides

$$
\dot{\omega} := \mathcal{L}_K \omega = dU, \quad U := K \llcorner \omega - \frac{1}{2}V.
$$

2 Lie derivative of NHG equation

$$
0 = \nabla_{(\mu}\dot{\omega}_{\nu)} + 2\omega_{(\mu}\dot{\omega}_{\nu)}, \quad \Delta U + 2\omega_{\mu}\nabla^{\mu}U = 0
$$

The only solution $U = \text{const.}$

Axisymmetry theorem [Dunaski, Lucietti 23] [Colling et.al 24] Every non-static solution to EIH posses a Killing K^{μ} satisfying $\mathcal{L}_K \omega = 0$. No[n](#page-11-0)-static because $0 = K^{\mu} = \nabla^{\mu} \Gamma - 2\Gamma \omega^{\mu}$ $0 = K^{\mu} = \nabla^{\mu} \Gamma - 2\Gamma \omega^{\mu}$ $0 = K^{\mu} = \nabla^{\mu} \Gamma - 2\Gamma \omega^{\mu}$ $0 = K^{\mu} = \nabla^{\mu} \Gamma - 2\Gamma \omega^{\mu}$ $0 = K^{\mu} = \nabla^{\mu} \Gamma - 2\Gamma \omega^{\mu}$ iff $\omega = d \frac{1}{2} \ln \Gamma$ $\omega = d \frac{1}{2} \ln \Gamma$ $\omega = d \frac{1}{2} \ln \Gamma$ [is](#page-0-0) [e](#page-22-0)[x](#page-23-0)[ac](#page-0-0)[t.](#page-22-0)

W. Kamiński $9 \, / \, 16$

Structure of the talk (questions)

Problems for extreme (degenerate) isolated horizons:

1 Rigidity problem Does every non-static solution posses at least one symmetry

$$
\mathcal{L}_K g = 0, \ \mathcal{L}_K \omega = 0
$$

Does corresponding NHG spacetime have enhanced $SO(1,2)$ symmetry group?

2 Staticity problem The Killing vector ℓ has vanishing twist if $d\omega = 0$. The black hole is not rotating if $\omega = 0$

$$
d\omega=0\overset{?}{\Longrightarrow}\omega=0.
$$

- **3 Topology problem** Does Σ needs to be a sphere (especially 4d due to Hawking theorem)
- ⁴ Killing embeddability Classify possible spacetimes with isolated horizons as Killing horizons (classify isolated horizons with given NHG data)

W. Kamiński $10/16$

Static solutions [Chrusciel, Reall, Tod 04] [Bahuad et al 23] [Wylie 23]

• In one dimension,
$$
g^1 = ds^2
$$
, $s \in [0, L]$ and $\omega^1 = \phi ds$

$$
0 = \dot{\phi} + \phi^2 + \frac{1}{2}\lambda
$$

The only periodic solution $\phi = \pm \sqrt{-\lambda/2}$, $\lambda \leq 0$ (static).

- \bullet Every solution to Einstein equation $R_{\mu\nu}=\lambda g_{\mu\nu}$ provides EIH $_\lambda^n$ with $\omega = 0$ (static).
- $\textbf{3}$ For $(g^{1},\omega^{1})\in \textsf{EIH}_{\lambda}^{1}$ and $(g,0)\in \textsf{EIH}_{\lambda}^{n}$

$$
(g1 \oplus g, \omega1 \oplus 0) \in \mathsf{Ell}_\lambda^{n+1}
$$
 (11)

The result is also static.

⁴ Topologically nontrivial construction locally as above.

For $\lambda = 0$ in these solutions $\omega = 0$.

Question

Are these all static solutions?

W. Kamiński $11/16$

• Remarkable identity simplifies $\Omega_{\mu\nu} = 0$ thus $A_{\mu} = 0$

$$
0 = \Box K_{\mu} = \nabla_{\mu} V \Longrightarrow V = \Delta \Gamma + 2\lambda \Gamma = \text{const.} \tag{11}
$$

2 An argument with the eigenspace of Laplacian for $\lambda \leq 0$ shows

$$
\Gamma = \text{const} \Longrightarrow K_{\mu} \propto \omega_{\mu} \tag{12}
$$

 $\bullet \nabla_{\mu}\omega_{\nu} = 0$ so locally we have a splitting. Global result follows from considerations of universal cover.

W. Kamiński $11/16$

Structure of the talk (questions)

Problems for extreme (degenerate) isolated horizons:

1 Rigidity problem Does every non-static solution posses at least one symmetry

$$
\mathcal{L}_K g = 0, \ \mathcal{L}_K \omega = 0
$$

Does corresponding NHG spacetime have enhanced $SO(1,2)$ symmetry group?

2 Staticity problem The Killing vector ℓ has vanishing twist if $d\omega = 0$. The black hole is not rotating if $\omega = 0$

$$
d\omega = 0 \Longrightarrow^? \omega = 0.
$$

3 Topology problem Does Σ needs to be a sphere (especially 4d due to Hawking theorem)

⁴ Killing embeddability Classify possible spacetimes with isolated horizons as Killing horizons (classify isolated horizons with given NHG data)

W. Kamiński $12/16$

$\overline{\text{Topology 4d}},\,n=2$ [Dobkowski-Rylko et.al 18,19] [Lewandowski, Kaminski 24-t.b.p]

Situation in 4d $(n = 2)$ is special

1 Riemannian geometry is complex analysis plus scale

$$
R_{\mu\nu} = \frac{1}{2} R g_{\mu\nu} \tag{13}
$$

 \bullet Projection on anti-holomorphic covectors $P_{\mu\nu}=\frac{1}{2}(g_{\mu\nu}-i\epsilon_{\mu\nu})$

$$
\pi_{\mu} = P_{\mu\nu} \omega^{\nu}, \quad D_{\mu} = P_{\mu\nu} \nabla^{\nu} \tag{14}
$$

3 The EIH equation imposes $D_{\mu}\pi_{\nu} + \pi_{\mu}\pi_{\nu} = 0$ (it holds also in the presence of Maxwell field).

Surface Σ of genus > 1 [to be published] If f_μ satisfies $D_{\mu}f_{\nu} + f_{\mu}f_{\nu} = 0$, $f_{\mu} = P_{\mu}^{\ \nu}$ then $f_{\nu} \equiv 0$.

W. Kamiński $13/16$

 (15)

K ロ ▶ K 御 ▶ K ヨ ▶ K ヨ ▶ (王)도 19 Q Q

$\textsf{Topology 4d, }n=2$ [Dobkowski-Rylko et.al 18,19] [Lewandowski, Kaminski 24-t.b.p]

Situation in 4d $(n = 2)$ is special

1 Riemannian geometry is complex analysis plus scale

$$
R_{\mu\nu} = \frac{1}{2} R g_{\mu\nu} \tag{13}
$$

 \bullet Projection on anti-holomorphic covectors $P_{\mu\nu}=\frac{1}{2}(g_{\mu\nu}-i\epsilon_{\mu\nu})$

$$
\pi_{\mu} = P_{\mu\nu} \omega^{\nu}, \quad D_{\mu} = P_{\mu\nu} \nabla^{\nu} \tag{14}
$$

3 The EIH equation imposes $D_{\mu}\pi_{\nu} + \pi_{\mu}\pi_{\nu} = 0$ (it holds also in the presence of Maxwell field).

Topology theorem [to be published]

For surfaces of nonzero genus the only EM EIH solutions are surfaces with constant curvature, constant electromagnetic field and $\omega = 0$.

In higher dimensions weaker constraints [Kunduri, Lucietti 08] [Bahuad et al 23].

W. Kamiński $13/16$

Structure of the talk (questions)

Problems for extreme (degenerate) isolated horizons:

1 Rigidity problem Does every non-static solution posses at least one symmetry

$$
\mathcal{L}_K g = 0, \ \mathcal{L}_K \omega = 0
$$

Does corresponding NHG spacetime have enhanced $SO(1,2)$ symmetry group?

2 Staticity problem The Killing vector ℓ has vanishing twist if $d\omega = 0$. The black hole is not rotating if $\omega = 0$

$$
d\omega = 0 \Longrightarrow \omega = 0.
$$

- **3 Topology problem** Does Σ needs to be a sphere (especially 4d due to Hawking theorem)
- ⁴ Killing embeddability Classify possible spacetimes with isolated horizons as Killing horizons (classify isolated horizons with given NHG data)

W. Kamiński $14 / 16$

1 Consider metric in null gaussian coordinates (v, ρ, x) ,

$$
ds^{2} = \tilde{F}\rho^{2}dv^{2} + 2d\rho dv - 4\rho\tilde{\omega}_{\mu}dx^{\mu}dv + \tilde{g}_{\mu\nu}dx^{\mu}dx^{\nu}
$$

where $\ell = \partial_v$ (Killing vector), $\mathcal{H} = \{\rho = 0\}$ and null gaussian condition ∂_{ρ} tangent to null affinine geodesic.

2 There is a gauge freedom in the choice of coordinates (Diff_{Σ} and arbitrary shifts in v). The second can be fixed (to constant shift) by

$$
\partial_\rho \sqrt{\tilde{g}}|_{\rho = 0} = \mathrm{const.}
$$

³ We can write Einstein equations in term of the Taylor expansion

$$
\tilde{g}_{\mu\nu} = g_{\mu\nu}^{[0]}(x) + \rho g_{\mu\nu}^{[1]}(x) + \dots, \quad g_{\mu\nu}^{[0]} = g_{\mu\nu} \tag{15}
$$

and similar expansions for \tilde{F} and $\tilde{\omega}$.

We would like to solve Eintein's equations recursively in ρ .

W. Kamiński $15/16$

K ロ K K @ K K 통 K K 통 X 통 를 H K YO Q @

Embeddings [Li, Lucietti 15] [Katona Lucietti 24], [Katona 24]

1 The Einstein equations give recurence relations

 $A_n(g^{[n]})=l.o.t,\quad A_n$ differential operator depending on g and ω

Once $g^{[n]}$ is know $F^{[n]}$ and $\omega_{\mu}^{[n]}$ are determined algebraically.

- \bullet Tensor $g^{[1]}_{\mu\nu}$ contains informations equivalent to choice of connection. ${\sf It}$ is constraint by $A_1(g^{[1]})=0$. [Kolanowski, Lewandowski 20]
- \bullet With this choice of gauge, A_n are elliptic operators of the second order.
- ⁴ Elliptic operators on a compact manifold have finite kernels and cokernels thus equations $A_n(g^{[n]})=B_n$ have finite ambiguity and finite obstruction.
- **In every step of expansion, only finite number of ambiguities appear** and the finite number of constraints.

Embeddings [Li, Lucietti 15] [Katona Lucietti 24], [Katona 24]

1 The case of spherically symmetric EIH with $\lambda > 0$ (Schwarzschild-dS NHG data)

- \bullet A_n have vanishing kernels and cokernels for $n \geq 2$
- \bullet A_1 has one dimensional kernel.

Schwarzschild-de Sitter is the unique stationary spacetime with Schwarzschild-dS isolated horizon and moreover such horizons are unique horizons for corresponding NHG data (except NHG spacetime).

[Katona Lucietti 24], [Katona 24]

2 The case of Kerr EIH with $\lambda = 0$ every A_n has a nontrivial kernel. [Horowitz et al 23]

K ロ K K 伊 K K ミ K K ミ K ミ| ミ| 白 Y Q Q Q

Summary

- **1** Extreme isolated horizons are now better understood
	- **0** in vacuum for $\lambda < 0$
	- for $\lambda > 0$ static solutions still mysterious
- **2** The case of horizons in presence of EM field is largely open.

Outlook:

- \bullet Natural generalization when ℓ does not define fibration, but winds around some compact manifold (cosmological Cauchy horizons in Taub-NUT)
- 2 In such case there is no space of rays (at least globally).
- Axisymmetric solutions classified for $n = 2$.

[Dobkowski-Rylko, Lewandowski, Ossowski]

Reminder: FAU² conference 25-27.06 Erlangen, Germany

Non-trivial bundle structure [Dobkowski-Rylko, Lewandowski, Ossowski]

 $\, {\bf 1} \,$ General axisymmetric metric on S^2

$$
g = P(x)^{-1}dx^{2} + P(x)d\phi^{2}, \ \phi \in [0, L], \ x \in [-1, 1] \tag{15}
$$

 \bullet Conditions for P in final points for metric to be smooth

$$
P(\pm 1) = 0, \quad P'(\pm 1) = \pm \frac{4\pi}{L}.
$$
 (16)

3 EIH equation reduces to ODE for P and Γ (determining ω). General solution does not satisfy $P'(1) = -P'(-1)$ (Γ always smooth).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

Non-trivial bundle structure [Dobkowski-Rylko, Lewandowski, Ossowski]

 \bullet If ℓ does not define fibration the space of rays not defined

- **2** Metric defined separately on two discs with gluing by Hopf bundle map (as on picture). Proper choice of ℓ allows $P'(1) \neq -P'(-1)$.
- ³ All smooth axisymmetric solutions classified.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어