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Towards covariant LQG 2.0

Under the influence (of topological models),
making the case for using higher structures in LQG

What are they? Definition through examples:
Revisiting Stokes theorem
4d BF as 2-gauge theory
Some elements of representation theory

Comments and a Road map



Making the case for using higher structures in LQG

1
Topological 4d BF theory o/ € ¢ @ A'M [% ANF(A) — =B ANt(FB)  tmap is “boundary map”
2 Lie algebra homo
r:g*—>g
2-form is related to a connection data 2A

HB) = F Boundary data

Well known fact: 4d gravity and BF thy share structural features.



Making the case for using higher structures in LQG

Einstein-Cartan(-Holst) gravity formulation

A
[(*e/\e)/\(9‘7+Ze/\e)+}/e/\e/\9‘T

*x e AN(F +lene)=0 Einstein eq

many other formulations rely on extending the number of variables, and use a 2 form B



Making the case for using higher structures in LQG
1
Plebanski o €3803,1)QA'M Sp = JQB’/\PI(&Y) —5/195’/\95’ — P(B)NARB

TolB) = (Jid + 9)B = F

Cf review by Freidel-Speziale
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Making the case for using higher structures in LQG

1
Topological 4d BF theory o/ € ¢ @ A'M [% ANF(A) — =B ANt(FB)  tmap is “boundary map”
2 Lie algebra homo
t:g*—> g
2-form is related to a connection data A
HB) = F Boundary data
v
Gravity Tgmv(‘%) =7

Well known fact: 4d gravity and BF thy share structural features.
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Spinfoam model: consider the topological theory and tweak 1ts state-sum to reproduce gravity.



Making the case for using higher structures in LQG

It 1s only a conjecture that the Crane-Yetter state sum (q-deformed 15 symbol) corresponds
to the partition function of BF + BB action.

There is some evidence [4] that BF' theory with nonzero cosmological con-
stant can be quantized to obtain the so-called Crane—Yetter model [35, 37],

which is a spin foam model bas%t_)gibﬂ_na.ﬁiggry of representations of the
quantum group associated to G.(Undeed, in some circles this is taken almost
as an article of @ BWWW
a%w. So, this issue deserves more study.

An invitation to higher gauge theory (2010)
Baez, Huerta




Making the case for using higher structures in LQG

Spinfoam model: consider the topological theory and tweak 1ts state-sum to reproduce gravity.

Crane-Frenkel categorical/dimensional ladder proposal to characterize topological models

trialgebra ——  Hopf category —— monoidal 2-category 4D
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Hopf algebra monoidal category 3D
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algebra 2D

Pic from Hank Chen’s thesis



Making the case for using higher structures in LQG

Spinfoam model: consider the topological theory and tweak 1ts state-sum to reproduce gravity.

Crane-Frenkel categorical/dimensional ladder proposal to characterize topological models

trialgebra ——  Hopf category —— monoidal 2-category 4D

P
-

oy

-

Hopf algebra monoidal category 3D

algebra 2D
Pic from Hank Chen’s thesis

State-sum model for monoidal 2-category has been constructed but for finite 2-groups.

Cui
(Baratin-Freidel-Korepanov 2-state-sum for 2-Poincare gp) Douglas Reutter

In 4d, higher symmetries are symmetries of the topological theory.

From a spinfoam perspective, we should be using 2-symmetries/2-state sum



Making the case for using higher structures in LQG

Consider matter fields @ with no spin on a 4d spacetime, which geometry is given by frame field e and
spin connection A.

e We assume no curvature and no torsion: F(A) =0, T(e,A)=d,e=0

L(e, A, D)~ L(e,A, D)+ BAF
X = (F(A), T(e,A)) € 180(3,1) @ A’M, B =(B,X) €180 (3,1) ® A°M

4d topological theory is naturally present in 4d, hence 2-symmetries according to the categorical/
dimensional ladder.



Making the case for using higher structures in LQG

Consider matter fields @ with no spin on a 4d spacetime, which geometry is given by frame field e and
spin connection A.

e We assume no curvature and no torsion: F(A) =0, T(e,A)=d,e=0

L(e, A, D)~ L(e,A, D)+ BAF
X = (F(A), T(e,A)) € 180(3,1) @ A’M, B =(B,X) €180 (3,1) ® A°M

4d topological theory is naturally present in 4d, hence 2-symmetries according to the categorical/
dimensional ladder.

Conversely, given Feynman diagrams (scalar field in Minkowski), one can recover 2-symmetries!!

Feynman diagrams (scalar field in Minkowski) = particle excitations in a 2-state-sum

Baratin-Freidel



Making the case for using higher structures in LQG

Consider matter fields @ with no spin on a 4d spacetime, which geometry is given by frame field e and
spin connection A.

e We assume and :F(A) =0, T(e,A)=d,e=0
L(e, A, D)~ L(e,A, D)+ BAF

X = (F(A), T(e,A)) € 180(3,1) @ A’M, B =(B,X) €180 (3,1) ® A°M

4d topological theory is naturally present in 4d, hence 2-symmetries according to the categorical/
dimensional ladder.

A
We assume and : F(A) = Ee Ne, T(e,A)=de=0

s = FQA) - ge Ae,T(e,A)) € 80(4,1) @ A%, B=(B,X) € %o (4,1) ® A?

In order to add gravity, add a symmetry breaking term, to recover the MacDowell-Mansour1 action

1 a
Sy = J?B AF — Eﬂ% AB— Ze‘”JKL?BU A By



Under the influence (of topological models),
Making the case for using higher structures in LQG

recap

Formulations of gravity in the terms of B field have some “holographic features”
1(RB)=F

(Some involve the frame field as part of the connection data (similar to 3d))

2-symmetries are hidden in Feynman diagrams.

2-structures should be present in spinfoams due to the nature of topological models, but are not fully
leveraged
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What are those 2-structures?

Let’s jump
in category theory
Agterix!!

e —
s b
e ]
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%ﬂ

We’re talking about LQG,
Obelix. We should use
Geometry!

Asterix gladiator

Mmmm geometry
<~
and categories....

Johnus Baezus
Categoricus




2-vector space, Lie 2-algebras and Lie 2-groups



Revisiting Stokes theorem

Consider the discretized flux. X € R? encoding the normal of the face S.

We deal with a decorated surface by a vector.
Xe Composing/combining surface means adding the
normals.

We need to be able to compose decorated surfaces: Gauss law.

Constrained spinning tops




Revisiting Stokes theorem

Consider the discretized flux. X € R? encoding the normal of the face S.

X

>3
< !

S

Flux, as a simple bivector, can be discretized

(zxdz)=2J (exdo)= ) J,

X=[ dz><dz=J d(zxdz)=[
S S

oS e€eosS

This appeared both in Fairbain-Perez to discuss string like defects
and
in Freidel-Ziprick to discuss twisted/spinning geometries

Can replace the face information by the edge information



Revisiting Stokes theorem

Consider the discretized flux. X € R? encoding the normal of the face S.

X

>3
< !

S

Flux, as a simple bivector, can be discretized

(zxdz)=2J (exdo)= ) J,

X=[ dz><dz=J d(zxdz)=[
S S

oS e€eosS

This appeared both in Fairbain-Perez to discuss string like defects
and
in Freidel-Ziprick to discuss twisted/spinning geometries

Can replace the face information by the edge information

Note that J, 1s associated to edge e but is not the edge vector.

It can be seen as the normal of a face in a ghost tetrahedron.
Cf Haggard-Han-Riello




D

Revisiting Stokes theorem

X + Jl + J2 —_ J3
Reinterpret this equation: face info relates some “edge” info

X+ J, +J, = J;, tis “boundary map” for the face information



Revisiting Stokes theorem

S .
—— y X + Jl + J2 —_ ]3
A 3! Reinterpret this equation: face info relates some “edge” info
-53 X+ J, +J, = J;, tis “boundary map” for the face information

This provides an example of 2-vector space (of the Baez Crans type).

Such 2-vector space 1s given in terms of a pair of vector spaces, with a linearmap ¢ : W —- V

W and t encode the transformationson Vv = v+ tw



Revisiting Stokes theorem

S .
—— y X + Jl + J2 —_ ]3
A . . . . .
3! Reinterpret this equation: face info relates some “edge” info
-53 X+ J, +J, = J;, tis “boundary map” for the face information

This provides an example of 2-vector space (of the Baez Crans type).

Such 2-vector space 1s given in terms of a pair of vector spaces, with a linearmap ¢ : W —- V

W and t encode the transformationson Vv = v+ tw

Other way to formulate, if v is the source then v’ = v + tw is the target of the transformation w

VoWV T
s(y + 0o, X) = J, + can gompose/add 2-vectors,
provide the source of second match

Wity X) =X+ Ji+ ) the target of first <
(

T—s=1X “aroupoid product” T,



2-vector space cane be made a Lie 2-algebra, with a 2-bracket.

Replace the vector spaces by Lie algebras, with an action of g on §
Vwg, Wwh, VOWwgKX)



What are those 2-structures?

2-vector space cane be made a Lie 2-algebra, with a 2-bracket.

Replace the vector spaces by Lie algebras, with an action of g on §

Lie 2-algebra structure

Lie algebras g,
Source map: s(J,X) =J

Vwg, Wwh VOWwgK])

gXh=g

Target map: 7(J,X) = tX + J
Boundary map: t(X) = 7(J, X) — s(J, X)

Lie 2-bracket:
(Satisfies 2-Jacobi)

[(J1, X1); (U5, X)]h = (W5 L], t(J1, Xp) B Xy — s(4,, Xp) D> X))
— ([J],JQ] ’ [X1,X2] + Jl > Xz - J2 > Xl)



What are those 2-structures?

2-vector space cane be made a Lie 2-algebra, with a 2-bracket.

Replace the vector spaces by Lie algebras, with an action of g on §
V—og, W-h VOW-gX)
Lie 2-algebra structure g X h=3g

e Licalgebras g, |

e Source map: s(J,X)=J

e Targetmap: 7(J,X) =tX+J

¢ Boundary map: #(X) = ©(J, X) — s(J, X)

Lie 2-bracket: [(J1, X1); (U, X)), = (5 L], 1L X)) B X5 — 5(4,, X,) B X))
(Satisfies 2-Jacobi) = (U], (X X 40, 5 Xy — Jy B X))

Source and target maps are compatible with brackets
S[(‘]]a Xl)a (J29 X2)]2 — [S(‘]]’ Xl)a S(J2’ XZ)]
t[(J1, X)) (o, X)) ], = [7(J1, X)) (U5, X)) ]

Spinning geometry example:  $1(2) X 3u(2) = 3u(2)



What are those 2-structures?

Lie 2-algebras space cane be integrated: Lie 2-groups

Convenient to see 2-holonomies (=decorated surfaces) as maps between 1-holonomies (decorated paths).
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Lie 2-algebras space cane be integrated: Lie 2-groups

Convenient to see 2-holonomies (=decorated surfaces) as maps between 1-holonomies (decorated paths).

Lie 2-group structure GXH=3G !
e Lie group G 3 k; decorates edges,
Lie group H © ¢ decorates faces. K.,

e Source map: s(k,?) =k
o Target map: t(k,0) = t(£)k | |
e Boundary map: #(£) = 7(k, £)s "\ (k, ) t-map 1s group homomorphism

(k> ) =ktO)k™, @@)>'=C6¢"



What are those 2-structures?

Lie 2-algebras space cane be integrated: Lie 2-groups

Convenient to see 2-holonomies (=decorated surfaces) as maps between 1-holonomies (decorated paths).

Lie 2-group structure GXH=3G !
e Lie group G 3 k; decorates edges,
Lie group H © ¢ decorates faces. K.,

e Source map: s(k,?) =k
o Target map: t(k,0) = t(£)k | |
e Boundary map: #(£) = 7(k, £)s "\ (k, ) t-map 1s group homomorphism

tk> ) =kt()k™', @)>'=C¢¢"

fe€eH, keG
1(£)) = kokski! Take ¢ = id, it’s like implementing Stokes thm!

£eSUQR), keSUQR) ¢ =Ikk'ky' “Fake-flatness”
£ = Pexp’4 =k



What are those 2-structures?

Curved tetrahedra

Take t = id, it’s like implementing Stokes thm!

£ €SUQR), keSUQ) ¢ =kkk ' “Fake-flatness”

0 Gauss constraint = Bianchi id

Can replace the face information by the edge information by reducing the fake flatness condition.

Underlying motivation/approach to different works to define curved tetrahedron

Haggard-Han-Riello
Charles-Livine
Han-Hsiao-Pan
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What are those 2-structures?

Take t = id, it’s like implementing Stokes thm!

XeR’ JeR’ X, =J,—J,—J,

X=J dzxdz=[ d(zxdz)=J
S S as

(zXdz) = ZJ (zXdz) = ZJe
e YJeeds

g € SUQ2), h=Pexp$ e SUQ)
Whatis 7*G? wip
Girelli-Oliveira-Riello

Ready to generalize to the curved case



What are those 2-structures?

Take r = id, it’s like implementing Stokes thm!

£ € AN,, k€ AN,

e SUR), keSUQR)

g € SUQ), h=Pexp?t e SUQ)



2-gauge theory and BF theories



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Higher gauge thy for Lie 2-algebra g X ) =g

Jurco, Raspollini, Saemann, Wolf

Connection o/ = (A,Y) € (@ A'M) ® (h ® A°M)

Curvaturedata, ¥ = (FF— 12, d,X=dX+AD>2).



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Higher gauge thy for Lie 2-algebra g X ) =g

Jurco, Raspollini, Saemann, Wolf

)
!
Connection o/ = (A,Y) € (@ A'M) ® (h ® A°M)
Curvaturedata, ¥ = (FF— 12, d,X=dX+AD>2). n N
A 4
1- and 2-gauge transf parameterized by ’ .
/

(@, ) EgRAN'MDHR A'M,

g =u;"t(n) gu,
Sy = d(a, §) + [, (a, D), = (da + [A, al, @ > = + dy )

ST = [F,(a, )]y = ([F - 1Z,al,a > d\T + (F — 1Z) > ¢]

2-co-adjoint action!



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Construct a 4d action to implement flat 2-curvature & = 0, a “2-BF” theory
This is called 4d Chern-Simons thy by some.

(BANFY=(BAF —1tX))+(CAdY).
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Construct a 4d action to implement flat 2-curvature & = 0, a “2-BF” theory
This is called 4d Chern-Simons thy by some.
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Lagrange multiplier: \
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which also transform under the 2-adjoint action, invariant under the 2-(co)adjoint ?Ctlon' .
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Construct a 4d action to implement flat 2-curvature & = 0, a “2-BF” theory
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There is a dual 2-symmetry, for the A sector, due to 2-Bianchi identity.

Natural symmetry given by a matched pair of Lie 2-algebras, LieG* X Lie(
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Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Construct a 4d action to implement flat 2-curvature & = 0, a “2-BF” theory
This is called 4d Chern-Simons thy by some.

S/Q@/\P/‘r’) =(BA(F—1X))+ (CAdZ)
Lagrange multiplier: \

% = (C.B) € (h* ® AM) @ (g* ® A2M) Use an invariant bilinear for.m.(,) |
which also transform under the 2-adjoint action, invariant under the 2-(co)adjoint ?Ctlon' .
(breaol ) = = oL asl). - xi3 € LieG, y, € LieG*

Canonical variables
O =BASA+CASZ (B,C) « (A,Y) 1-2-connections dual to each other.

There is a dual 2-symmetry, for the 98 sector, due to 2-Bianchi identity.
Natural symmetry given by a matched pair of Lie 2-algebras, LieG* X Lie(

This 2-BF theory is a BF theory with symmetry ((f)* X g) X (g* X ) 3 h* X g)up to a
boundary term

(BANFY+A(CAZ)Y=(BAF —-1t2))+(ZANd,C)=(BAF).

Canonical variables
O =BASA+2ZANOC=BA B=MB,2)«AC)=A



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Not all BF theories are double of 2-symmetries. This is the analogue of Chern-Simons vs BF theory in
3d

4d BF thy for 4d CherneSi
3d Chern-Simons gp = %0(2,1), 80(3). " ern-Simons

; . * y with Lie 2-algb
thy with Lie algb g g; depends on the value of LieG
the cosmological constant,

Lie algb . Slmons thy with Lie ?lgb
q= 90* Y a0 3d gravity for LieG = LwG?; X LzeGO
go = %0(2,1), 30(3).

g, depends on the value of

the,cosmological constant.



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Standard $0(3,1) BF theory (no BB interaction) can be viewed either as a double of trivial 2-symmetries,
or as a double of (deformed) 2-symmetries. This 1s the same as the change of polarization from before.

30(3,1) ~ 3u(2) X an,
30(3,1)* ¥ R3x R?

Partition function as state sum in Partition function as state sum in
terms of 1-category of 80(3,1) Girelli-Tsimiklis terms of 2-category of Euclidian 2-
representations. Girelli-Laudonio-Tsimiklis group $1(2) X R? 2-representations.



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Standard $0(3,1) BF theory (no BB interaction) can be viewed either as a double of trivial 2-symmetries,
or as a double of (deformed) 2-symmetries. This 1s the same as the change of polarization from before.

30(3,1) ~ 3u(2) X an,
30(3,1)* ¥ R3x R?

Partition function as state sum in Partition function as state sum in
terms of 1-category of 80(3,1) Girelli-Tsimiklis terms of 2-category of Euclidian 2-
representations. Girelli-Laudonio-Tsimiklis group $1(2) X R? 2-representations.

This would imply some relations between symbols based on standard representations and 2-

representations. L ,
Baratin Freidel for the 2-Poincare group



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Standard Lorentz BF theory with BB interaction cannot be viewed as a standard gauge theory. This is

why quantum 2-group structure should arise.
30(3,1)* ~ 80(3,1)

LieG = 31 3,1) = 380(3,1)) ~ LieG*
ieG = (80(3,1) X 80(3,1) = 80(3,1)) ~ Lie 30(3,1) ~ 31(2) I} an,
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We can define 2-spin networks, functions invariant under 1- and 2-gauge transformations,
what is the representation picture?

We lack of a Peter-Weyl theorem to recover it.

Cf Maite’s talk this afternoon
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Cf Maite’s talk this afternoon

For some choices of Lie 2-group, we can discretise the partition function

J[dA][dC][dZ][dB]e” (BNF) [[dg][dh]Hé(t(h)Hg) sc I »
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We can construct a GFT to generate such amplitudes as Feynman diagrams  Girelli-Laudonio-Tanasa-Tsimiklis

We lack of a Peter-Weyl theorem to recover a 2-state-sum.
What are the 2-characters??



Elements of 2-representations

We can define 2-spin networks, functions invariant under 1- and 2-gauge transformations,
what is the representation picture?

We lack of a Peter-Weyl theorem to recover it.
Cf Maite’s talk this afternoon

For some choices of Lie 2-group, we can discretise the partition function

J[dA][dCJ[dZ][dB]eif (BNF) [[dg][dh]Hé(t(h)Hg) sc I »

face links polyhedra

We can construct a GFT to generate such amplitudes as Feynman diagrams  Girelli-Laudonio-Tanasa-Tsimiklis

We lack of a Peter-Weyl theorem to recover a 2-state-sum.

But, for the Poincare 2-group, 1€ BF thy for Poincare, using geometry we could recover the Baratin-

Freidel-Korepanov 2-state-sum model.
Asante-Dittrich-Girelli-Riello-Tsimiklis

Nice mathematical problem! Head start with respect to mathematicians: we know 1-2-gauge invariance

should be equivalent to constraints in the triangulation picture. WIp

Dupuis-Girelli-Hrytseniak



Elements of 2-representations

Attention: there are 2 different notions of 2-vector spaces.

Kapranov-
Baez-Crans || Voepvodsky e Condensed matter models
) | (topological order): mainly

inspired by finite groups and
category theory

e Douglas Reuter state sum.

e Baez-Baratin-Freidel-Wise 2-
representation theory (building
up on Crane, Yetter.....)

e Angulo’s representation theory
e 2-Hopf algebras (Chen-Girelli)
e 2-coadjoint orbits (Chen-Girelli)

“Natural” from an
algebra perspective
2-adj action!

“Natural” from a
category perspective




Elements of 2-representations

Consider a vector space V, a representation of a Lie algebra/Lie group on V 1s given in terms of a matrix

0
What is a “matrix” on a Baez-Crans 2-vector space V= (W — V)?

Sheng-Zhu
Angulo Santacruz



Elements of 2-representations

Consider a vector space V, a representation of a Lie algebra/Lie group on V 1s given in terms of a matrix

0
What is a “matrix” on a Baez-Crans 2-vector space V= (W — V)?

Sheng-Zhu
Angulo Santacruz

It is given in terms of a pair of matrices (M, m) and a map A
(M,m) € GL(W) @ GL(V) = GLy(V) : objects oM = mo
A € Hom(V,W) = GL,(V) : maps between objects AA = (id + A9, id + 0A)

GL(V) is itself a 2-group.

2-(co-)Adjoint action is a 2-representation of this kind!



Road map and comments
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2-EPRL!



Road map to LQG 2.0
Work in progress

3d gravity 4d gravity

Gauge theory Spinning tops 2-gauge theory Spinning top+ string

l

Kapovich Millson
Polygon phase space
YEON PHAsE 5P Polyhedron phase space
(coadjoint orbits) .. .
(2-coadjoint orbits)
Not using
Minkowski theorem

v V . (Polygon=polyhedron)
2-intertwiner

Intertwiner

\ \ 2-Spin network
Spin network

/

Spin foam

2-spin foam
1 a
For example: Svm = [% AS - 5,523 AB - Z€4UKL23U A By

[d%d%[eiSMM ~ Jd%d%[(l +aeBB + ... )eiSBF

2-state-sum




Outlook

2-symmetries could provide a better understanding of the QG regime

Topological models are based on 2-symmetries/representations, should matter for QG spinfoam

construction!

The presence of a cosmological constant reveals, at the discrete level, that 2-group holonomies

are the natural tool to describe discretized quantities.

2-symmetries appear in Feynman diagrams

2-symmetries are naturally present in 4d, but have not been leveraged

2-representation

=g=

D ]1-representation

Don’t stop at 2, use also 3-groups! Matter content could be related to a 3-group structure (see

Vojinovic’talk)



Higher structures are already present

Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Standard gauge theory for Lie algebra q

Data: . .
Gauge connectionA € g Q A,

1
Curvature ' = dA + E[A NAl€ag® A?

Gauge transformations, a € ¢ Q AY
5(ZA — dAa,

5a F=|F,a Co-adjoint action!

Maurer Cartan form/equation, A € ¢ @ A!

1
dA = + E[A A A]
solution: A = g~ 'dg, or A = dgg™!

“Pure gauge”

Higher gauge thy for Lie 2-algebra g X ) =g

Data:.
Connection &f = (A,2) € (g @ A'M) ® (Hh @ A’M)

Curvature data, & = (F —tX, d,2=dX+AD>Y).

1- and 2-gauge transf parameterized by (o, ¢) € g @ A°M ® h @ A'M,
5(a’¢)‘Q{ — d(a’ ¢) + [*an (aa ¢)]2 — (dAaa a > Z + dA¢)

SupF = [F, (@, P, = (F—1Z,al,a > d,2 + (F - 12) > ¢]

2-co-adjoint action!
Generalized MC forms: & = (A,2) € (@ A'M) ® (h @ A’M)
dA+%[A/\A]=tZ, d2=0 1
solution: A = g~ 'dg + 1 B=dp+ 5[(/5 A @]

“Pure 2-gauge”

Proper surface holonomy when F' — 12 = 0



From spinning tops to strings

Recall that spinning top action for group G

dg 1
g — ——m-mdt Balachandran et al.
dt
Co-adjoint orbits Maurer-Cartan form
momentum 7 € g* transforming under transforms under coadjoint action
the co-adjoint action and for global transformations u~'du = 0
: _y —1,-1 It
characterized by Casimir 7 - 7 u— g dgu+

nEgt, mn=g 'mg, m-mw=s



From spinning tops to strings

Recall that spinning top action for group G

d 1
T g_l—g — —r - m)dt Balachandran et al.

dt

Co-adjoint orbits Maurer-Cartan form
the co-adjoint action and for global transformations u~'du = 0
. .. ~1,-1 N
characterized by Casimir 7 - 7 U g dgu+
HEGH, m=g'mg mn-m=s

2

Generalized Maurer-Cartan form
2-co-adjoint orbits

1
momentum (7, p) € ¢* @ A @ Hh* ® A transforming under (g~ dg + t(q); dy-1409 + 5[6] AgD E@RAH® (HR A

the 2-co-adjoint action and characterized by Casimir transforms under 2-coadjoint action

(7, p) ~ (7, Po) + [(7y; Po), (a5 D)1 for global transformations d(a, ¢) = (0,0)

(87" dg +1(9); dyg0) - (@3 9] + 0K

[(ﬂ;p) (g7'dg +1(q);dygq) —7-p = [ﬂ (g7 'dg+1(q)) +p-dyigg—7-p

WIP
String coupled to a spinning top Girelli-Pollack-Riello-Tsimiklis



From polygon to polyhedron

Polygon phase space (with fixed edge length) Kapovich-Millson

C=) X
@:(S?xséxsz)//c/ a

A

SU(2) co-adjoint orbit

2 *(7) ~ R3
X €S, Csu(2) R) + Kirillov symplectic form

2 _ p2
X'=7 (X, X} = ekX,

l



From polygon to polyhedron

Polygon phase space (with fixed edge length) Kapovich-Millson
/ C= 2 Xt=0
R=(SpxSzxS7)11C a
SU(2) co-adjoint orbit

2 *(7) ~ R3
X €S, Csu(2) R) + Kirillov symplectic form

= 2

Polyhedron phase space?

a 0O
i
M <
<
-

WIP
Girelli-Oliveira-Riello

= SUR) X SUR2) =3 SU(2)) 2-coadjoint orbits

X,J) € 8u*(2) @ f,u*(2>
+ 2-Kirillov symplectic form
X-J=s, JP=¢*

{l’ ]}_€Xk

X }—eXk

(X} = elX,

(0 =k,



2-representation theory

Representation theory:
consider a vector space V, a representation of a Lie algebra/Lie group 1s a map

p.qg— GL(V) p.G— GL(V)
X,Y)€eg p([X.Y]) = [pX), p(Y)] p(g18) = p(g1)p(gy) (81-8) €G

2-Representation theory for Baez-Crans 2-vector space:
consider a 2-vector space V = (W — V), a representation of a 2-Lie algebra/Lie 2-group is a map

p:gq— GLV) p: G — GL(V)
X,Y)€Eg p(X,Y],) = [pX), p(Y)], p(g1-8&) = pg)-pg) (81-8) €EG

what is GL(V)?
GL(V) is itself a 2-group, GL(V) = (GL{(V) = GLy(V), > ).

GLy(V) = GL(W) @& GL(V) 2 (M, m) : objects oM = mo
GL,(V) = Hom(V, W) 2 A : maps between objects AA = (A0, 0A)

s(M,m),A) = M,m), ©(M,m),A) = AAM,m) = (AoM, 0Am)



2-representation theory: 2-adjoint action example

consider the Lie 2-algebra LieG =(h > g, > ), a€gqg, ¢ €,
the 2-adjoint representation consists in representing it on itself, soon W=§H3X, V=g J

p . LieG - GL(LieG)
p = ((pg: P, P") = (M, m), A)
p@X=avX, pl@V)=I[aJ], pHWU)=-J>¢

2-adjoint representation:
2adig 5, X) = (p§(@)], p((a, )X + p () = [(a, $), (J, X)]

The 2-bracket encodes the 2-adjoint action



From polygon to polyhedron

Let us consider the co-adjoint orbit of G = SU(2) with Lie algebra su(2).

2 (7)) ~ R3
X 26 szc su (2) IR) + Kirillov symplectic form (X Xi} = €§Xk
X=7

Polygon phase space (with fixed edge length): Each edge is an element in the phase space S2, and we
reduce with respect to the constraint C = Z X=0.

a

R=(S;xS;x87)/IC

Can be generalized to positive or negative curvature. AN, ~ H,

su (2) ~ R?
SUQ2) ~ §°
R3 > SU2) ~ T*SU(2)
To make the edge length dynamical, extend phase space.  3u’(2) ~ R?
(]:2 ~ R4
Let us consider the specific case, with 2-group G = (SU(2) — SU(2), > ) with 2-Lie algebra
LieG = (8u(2) — 3u(2), > ).



4d Actions with Lie 2-symmetries

Let us generalize this to a 2-group G with 2-Lie algebra LieG = (§ —» g, > ).
1
(g~ 'dg +1(q); dy-149 + E[Q AD=ABEG@IA)B(HOA)

e Generalized Maurer-Cartak'@ym 1(B), d,B=0
e Fake flatness and no 2-curvature,

¢ is an exact 1-form

. transforms under adjointagtipn for global transformations d(a, ¢p) = (O 0)
ad(a »(& ldg +1(q);d o-1deq) + J"_;u = ([g 'dg + t(g),al,a > d e-1aed + (8~ ldg +1(q)) > ¢)

T =S
e 2-co-adjoint orbits — momentum (7, p)pe a* @ A @ H* @ A transforming under the co-adjoint -
and characterized byrGosimiizy, py) +° ad, 47y po) = ([my, al, @ > py + 75 > @)

J(g‘ldg +1(q);dy1g0q) - (m,p) — - p = [p (g7 dg+1(q)) +m-dyigg—7-p

OT dg_ldglq —-p=0

0g : d(g‘ ng) = ]

op : ldg + (g =n

515 : t(p) —1dg

0=nx-6gg7! > T*@G?




Higher symmetries are already present in many different places.

Twisted geometry=spinning geometry=2-geometry

der the discretized flux. X € R? encoding the normal of the face S.

(zxdz)=ZJ (zxdz)=2]e

dz X dz = J
e€osS

S

d(z X dz) = [

Ey JS S

Could replace the face information by the edge information
by reducing the fake flatness.

Note that J, 1s associated to edge but is not edge vector.
It can be seen as the normal of a face in a ghost tetrahedron.



Gauge fields and their transformations

Usual gauge theory with Lie group G on manifold M:

1
e connectionA € g ® A'M and its curvature F = dA + E[A ANAlE€g® A’M
e gauge transf parameterized by a € ¢ ® AM, 0,A=da+[A,a], O, F=1IF,a]

e Maurer Cartan form (“pure gauge”): A = g7 'dgorA =dgg 'and F = 0

e Connectionf = (A,2)€ag® AM & H & AZM
e Curvaturedata, # = (F'—1X, d,X2=dX+AD>2).

e 1- and 2-gauge transf parameterized by (o, ) € @ A’M B Hh @ A'M,
O p? =da, @) + [, (a, )] =d(a,p) + ([A,al,a > 2+ A > @] = (dya,a > 2+ dy)

Sp” = [F, (a0, P)] = ([F — X, a],a > dyX + (F — 12) > @]
e Generalized Maurer Cartan forms: A = g7 'dg +tp, B=dypand F =X, d,X =0

e Proper surface holonomy when F' — 12X = 0

Curvature 1s 2-gauge!



Geometry from co-adjoint orbits

Let us consider the co-adjoint orbit of G = SU(2) with Lie algebra su(2).

2 (7)) ~ R3
X 26 szc su (2) IR) + Kirillov symplectic form (X Xi} = €§Xk
X=7

Polygon phase space (with fixed edge length): Each edge is an element in the phase space S2, and we
reduce with respect to the constraint C = Z X=0.

a

R=(S;xS;x87)/IC

Can be generalized to positive or negative curvature. AN, ~ H,

su (2) ~ R?
SUQ2) ~ §°
R3 > SU2) ~ T*SU(2)
To make the edge length dynamical, extend phase space.  3u’(2) ~ R?
(]:2 ~ R4
Let us consider the specific case, with 2-group G = (SU(2) — SU(2), > ) with 2-Lie algebra
LieG = (8u(2) — 3u(2), > ).



4d Actions with Lie 2-symmetries

Construct an action to implement flat 2-curvature & = 0:

e Use Lagrange multipliers B = (C,B) € h* @ A'M & g* ® A*M, which also transform under the 2-
adjoint action,

e Use an invariant bilinear form {, ) on under the 2-adjoint action.
<[)(1’)(2]7)(3> - = <)(29 [)(19)(3]>9 )(1,3 S LleGa)(Q € Ll@G*

(BANFY=(BAF —-1tX))+(CAdZ).
This is called 4d Chern-Simons thy by some.

0 =BAOA+ CAOX (B,C) < (A, 2) 1-2-connections dual to each other.

There is a dual 2-symmetry, from the 93 sector.
Natural symmetry given by a matched pair of Lie 2-algebras, LieG* M LieG

It can be repackaged as a big BF theory with symmetry (g* X § — h* X g, > )
by adding a boundary term

(BAF—2)+(ZAd,C)+d(CAZ)=(BAF -2+ {(ZAd,CY+d(CAZ)=(BAF)+d(CAZ)

0 =BAOA+2ZAOC=2BAU B=(B,2)AC)=A



4d Actions with Lie 2-symmetries

Recall that spinning top action for group G
g ldg—7=0

At

g‘ldg — u‘lg‘ldgu + u"du, u ldu =0

d 1
J(ﬂ' g_ljg;—aﬂ m)dt

g‘ldg — g‘ldg + [g_ldg, al] u~l+a o€

~ Jin + , A T T = 52
. Maurer—Cartan fo%m g g AJg [1”0 J

® no curvature,

e transforms under adjoint action for global transformations

e Co-adjoint orbits — momentum 7 transforming under the co-adjoint action and charac
Casimir



