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Under the influence (of topological models), 
making the case for using higher structures in LQG

Towards covariant LQG 2.0 

What are they? Definition through examples: 
Revisiting Stokes theorem 
4d BF as 2-gauge theory 

Some elements of representation theory

Comments and a Road map 



Topological 4d BF theory 

2-form is related to a connection data  
“Boundary data” 

𝔄

∫ ℬ ∧ ℱ(𝒜) −
1
2

ℬ ∧ t(ℬ)

d𝒜ℬ = 0

t-map is “boundary map” 
Lie algebra homo 

t : 𝔤* → 𝔤

Making the case for using higher structures in LQG

𝒜 ∈ 𝔤 ⊗ Λ1M

t(ℬ) = ℱ

Well known fact: 4d gravity and BF thy share structural features. 



Einstein-Cartan(-Holst) gravity formulation

many other formulations rely on extending the number of variables, and use a 2 form B

Making the case for using higher structures in LQG

∫ (⋆e ∧ e) ∧ (ℱ +
λ
4

e ∧ e) + γe ∧ e ∧ ℱ

⋆ e ∧ (ℱ + λe ∧ e) = 0 Einstein eq



𝒜 ∈ 𝔰𝔬(3,1) ⊗ Λ1MPlebanski

Making the case for using higher structures in LQG

𝒮Pl = ∫ ℬ ∧ ℱ(𝒜) −
1
2

λℬ ∧ ℬ − ϕ(ℬ) ∧ ℬ

TPl(ℬ) = (λid + ϕ)ℬ = ℱ

Cf review by Freidel-Speziale



d𝒜ℬ = 0

𝒜 ∈ 𝔰𝔬(3,1) ⊗ Λ1MPlebanski

Making the case for using higher structures in LQG

𝒮Pl = ∫ ℬ ∧ ℱ(𝒜) −
1
2

λℬ ∧ ℬ − ϕ(ℬ) ∧ ℬ

TPl(ℬ) = (λid + ϕ)ℬ = ℱ

Cf review by Freidel-Speziale

Freidel-Starodubtsev  
(MacDowell-Mansouri)

∫ ℬ ∧ ℱ(𝒜) −
1
2

βℬ ∧ ℬ −
α
4

ϵ4IJKLℬIJ ∧ ℬKL

𝒜 = (ω, e) ∈ 𝔰𝔬(4,1) ⊗ Λ1M

TMM(ℬ) = (βid +
α
2

ϵ)ℬ = ℱ

α ∝ Gλ ∼ 10−120
Gives Immirzi



d𝒜ℬ = 0

𝒜 ∈ 𝔰𝔬(3,1) ⊗ Λ1MPlebanski

Making the case for using higher structures in LQG

𝒮Pl = ∫ ℬ ∧ ℱ(𝒜) −
1
2

λℬ ∧ ℬ − ϕ(ℬ) ∧ ℬ

TPl(ℬ) = (λid + ϕ)ℬ = ℱ

Mikovic-Vojinovic 𝒜 = (ω, e) ∈ 𝔦𝔰𝔬(3,1) ⊗ Λ1M

TMV(ℬ) = ϕ̃ℬ = ℱ

𝒮MV = ∫ ℬ ∧ ℱ(𝒜) + ϕ̃(ℬ) ∧ ℬ

Cf review by Freidel-Speziale

Freidel-Starodubtsev  
(MacDowell-Mansouri)
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d𝒜ℬ = 0

𝒜 ∈ 𝔰𝔬(3,1) ⊗ Λ1MPlebanski

Making the case for using higher structures in LQG

𝒮Pl = ∫ ℬ ∧ ℱ(𝒜) −
1
2

λℬ ∧ ℬ − ϕ(ℬ) ∧ ℬ

TPl(ℬ) = (λid + ϕ)ℬ = ℱ

Mikovic-Vojinovic 𝒜 = (ω, e) ∈ 𝔦𝔰𝔬(3,1) ⊗ Λ1M

TMV(ℬ) = ϕ̃ℬ = ℱ

𝒮MV = ∫ ℬ ∧ ℱ(𝒜) + ϕ̃(ℬ) ∧ ℬ

Herffray-Krasnov
SHK = ∫ ℬ ∧ ℱ −

λ
2

ℬ ∧ ℬ +
α
2 (Tr( ℬI ∧ ℬJ))2

TI
HK(ℬ) = (λδIJ − αTr( X) (X−1)IJ) ℬJ = ℱI, XIJ = ℬI ∧ ℬJ

𝒜 ∈ 𝔰𝔬(3,ℂ) ⊗ Λ1M

Cf review by Freidel-Speziale

Freidel-Starodubtsev  
(MacDowell-Mansouri)

∫ ℬ ∧ ℱ(𝒜) −
1
2

βℬ ∧ ℬ −
α
4

ϵ4IJKLℬIJ ∧ ℬKL

𝒜 = (ω, e) ∈ 𝔰𝔬(4,1) ⊗ Λ1M

TMM(ℬ) = (βid +
α
2

ϵ)ℬ = ℱ

Gives Immirzi α ∝ Gλ ∼ 10−120



Topological 4d BF theory 

2-form is related to a connection data  
“Boundary data” 

𝔄

d𝒜ℬ = 0

t-map is “boundary map” 
Lie algebra homo 

t : 𝔤* → 𝔤

Gravity

Making the case for using higher structures in LQG

𝒜 ∈ 𝔤 ⊗ Λ1M

Tgrav(ℬ) = ℱ

t(ℬ) = ℱ

Well known fact: 4d gravity and BF thy share structural features. 

∫ ℬ ∧ ℱ(𝒜) −
1
2

ℬ ∧ t(ℬ)



Spinfoam model: consider the topological theory and tweak its state-sum to reproduce gravity. 

Making the case for using higher structures in LQG



It is only a conjecture that the Crane-Yetter state sum (q-deformed 15j symbol) corresponds 
to the partition function of BF + BB action. 

Making the case for using higher structures in LQG



Crane-Frenkel categorical/dimensional ladder proposal to characterize topological models 

Pic from Hank Chen’s thesis

Spinfoam model: consider the topological theory and tweak its state-sum to reproduce gravity. 

Making the case for using higher structures in LQG



In 4d, higher symmetries are symmetries of the topological theory.

Crane-Frenkel categorical/dimensional ladder proposal to characterize topological models 

Pic from Hank Chen’s thesis

State-sum model for monoidal 2-category has been constructed but for finite 2-groups.  

(Baratin-Freidel-Korepanov 2-state-sum for 2-Poincare gp) 
Cui 
Douglas Reutter

Spinfoam model: consider the topological theory and tweak its state-sum to reproduce gravity. 

From a spinfoam perspective, we should be using 2-symmetries/2-state sum 

Making the case for using higher structures in LQG



Consider matter fields  with no spin on a 4d spacetime, which geometry is given by frame field e and 
spin connection A.  

Φ

• We assume no curvature and no torsion: F(A) = 0, T(e, A) = dAe = 0

ℒ(e, A, Φ) ≈ ℒ(e, A, Φ) + 𝔅 ∧ 𝔉

𝔉 = (F(A), T(e, A)) ∈ 𝔦𝔰𝔬(3,1) ⊗ Λ2M, 𝔅 = (B, Σ) ∈ 𝔦𝔰𝔬*(3,1) ⊗ Λ2M

4d topological theory is naturally present in 4d,  hence 2-symmetries according to the categorical/
dimensional ladder. 
 

Making the case for using higher structures in LQG



Consider matter fields  with no spin on a 4d spacetime, which geometry is given by frame field e and 
spin connection A.  

Φ

• We assume no curvature and no torsion: F(A) = 0, T(e, A) = dAe = 0

ℒ(e, A, Φ) ≈ ℒ(e, A, Φ) + 𝔅 ∧ 𝔉

𝔉 = (F(A), T(e, A)) ∈ 𝔦𝔰𝔬(3,1) ⊗ Λ2M, 𝔅 = (B, Σ) ∈ 𝔦𝔰𝔬*(3,1) ⊗ Λ2M

4d topological theory is naturally present in 4d,  hence 2-symmetries according to the categorical/
dimensional ladder. 
 

Making the case for using higher structures in LQG

Conversely, given Feynman diagrams (scalar field in Minkowski), one can recover 2-symmetries!! 

Feynman diagrams (scalar field in Minkowski) = particle excitations in a 2-state-sum

Baratin-Freidel



Consider matter fields  with no spin on a 4d spacetime, which geometry is given by frame field e and 
spin connection A.  

Φ

4d topological theory is naturally present in 4d,  hence 2-symmetries according to the categorical/
dimensional ladder. 
 

We assume constant curvature and no torsion: F(A) =
λ
2

e ∧ e, T(e, A) = dAe = 0

𝔉 = (F(A) −
λ
2

e ∧ e, T(e, A)) ∈ 𝔰𝔬(4,1) ⊗ Λ2, 𝔅 = (B, Σ) ∈ 𝔰𝔬*(4,1) ⊗ Λ2

In order to add gravity, add a symmetry breaking term, to recover the MacDowell-Mansouri action

Making the case for using higher structures in LQG

• We assume no curvature and no torsion: F(A) = 0, T(e, A) = dAe = 0

ℒ(e, A, Φ) ≈ ℒ(e, A, Φ) + 𝔅 ∧ 𝔉

𝔉 = (F(A), T(e, A)) ∈ 𝔦𝔰𝔬(3,1) ⊗ Λ2M, 𝔅 = (B, Σ) ∈ 𝔦𝔰𝔬*(3,1) ⊗ Λ2M

𝒮MM = ∫ 𝔅 ∧ 𝔉 −
1
2

β𝔅 ∧ 𝔅 −
α
4

ϵ4IJKL𝔅IJ ∧ 𝔅KL



Formulations of gravity in the terms of B field have some “holographic features” 
T(ℬ) = ℱ

2-structures should be present in spinfoams due to the nature of topological models, but are not fully 
leveraged  

Under the influence (of topological models), 
Making the case for using higher structures in LQG 

recap

(Some involve the frame field as part of the connection data (similar to 3d))

2-symmetries are hidden in Feynman diagrams.



Asterix gladiator 

Let’s jump  
in category theory  

Asterix!!

What are those 2-structures?
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Asterix gladiator 

Johnus Baezus 
Categoricus

Huh! 
Where is it?

We’re talking about LQG, 
Obelix. We should use  

Geometry!

Mmmm geometry  
and categories…. 

Let’s jump  
in category theory  

Asterix!!

What are those 2-structures?



2-vector space, Lie 2-algebras and Lie 2-groups 



Consider the discretized flux.  encoding the normal of the face S.X ∈ ℝ3

Revisiting Stokes theorem

We deal with a decorated surface by a vector.   
Composing/combining surface means adding the 
normals. 

We need to be able to compose decorated surfaces: Gauss law.

X1 + X2 + X3 + X4 = 0

Constrained spinning tops



Consider the discretized flux.  encoding the normal of the face S.X ∈ ℝ3

X = ∫S
dz × dz = ∫S

d(z × dz) = ∫∂S
(z × dz) = ∑

e
∫e∈∂S

(z × dz) = ∑ Je

This appeared both in Fairbain-Perez to discuss string like defects  
and  

in Freidel-Ziprick to discuss twisted/spinning geometries 

Flux, as a simple bivector, can be discretized 

Can replace the face information by the edge information

Revisiting Stokes theorem



Consider the discretized flux.  encoding the normal of the face S.X ∈ ℝ3

X = ∫S
dz × dz = ∫S

d(z × dz) = ∫∂S
(z × dz) = ∑

e
∫e∈∂S

(z × dz) = ∑ Je

This appeared both in Fairbain-Perez to discuss string like defects  
and  

in Freidel-Ziprick to discuss twisted/spinning geometries 

Flux, as a simple bivector, can be discretized 

Note that  is associated to edge e but is not the edge vector.  
It can be seen as the normal of a face in a ghost tetrahedron. 
Cf Haggard-Han-Riello

Je

Can replace the face information by the edge information

Revisiting Stokes theorem



Reinterpret this equation: face info relates some “edge” info

X + J1 + J2 = J3

Revisiting Stokes theorem

, t is “boundary map” for the face informationtX + J1 + J2 = J3



Reinterpret this equation: face info relates some “edge” info

X + J1 + J2 = J3

This provides an example of 2-vector space (of the Baez Crans type).

Such 2-vector space is given in terms of a pair of vector spaces, with a linear map t : W → V

W and t encode the transformations on V v → v + tw

Revisiting Stokes theorem

, t is “boundary map” for the face informationtX + J1 + J2 = J3



Reinterpret this equation: face info relates some “edge” info

X + J1 + J2 = J3

, t is “boundary map” for the face informationtX + J1 + J2 = J3

This provides an example of 2-vector space (of the Baez Crans type).

W and t encode the transformations on V v → v + tw

V ⊕ W → V→

Other way to formulate, if v is the source then  is the target of the transformation w v′￼= v + tw

s(J1 + J2, X) = J1 + J2
τ(J1 + J2, X) = tX + J1 + J2

can compose/add 2-vectors,  
provide the source of second match  
the target of first

“groupoid product”

Such 2-vector space is given in terms of a pair of vector spaces, with a linear map t : W → V

τ − s = tX

Revisiting Stokes theorem



2-vector space cane be made a Lie 2-algebra, with a 2-bracket.

V ⇝ 𝔤, W ⇝ 𝔥, V ⊕ W ⇝ 𝔤 ⋉ 𝔥
Replace the vector spaces by Lie algebras, with an action of  on   𝔤 𝔥



2-vector space cane be made a Lie 2-algebra, with a 2-bracket.

[(J1, X1); (J2, X2)]2 = ([J1; J2] , τ(J1, X1) ⊳ X2 − s(J2, X2) ⊳ X1)

= ([J1; J2] , [X1; X2] + J1 ⊳ X2 − J2 ⊳ X1)

• Lie algebras ,   
• Source map:  
• Target map:  
• Boundary map: 

𝔤 𝔥
s(J, X) = J
τ(J, X) = tX + J

t(X) = τ(J, X) − s(J, X)

Lie 2-algebra structure 𝔤 ⋉ 𝔥 → 𝔤→

Replace the vector spaces by Lie algebras, with an action of  on   𝔤 𝔥

Lie 2-bracket: 
(Satisfies 2-Jacobi)

What are those 2-structures?

V ⇝ 𝔤, W ⇝ 𝔥, V ⊕ W ⇝ 𝔤 ⋉ 𝔥



2-vector space cane be made a Lie 2-algebra, with a 2-bracket.

[(J1, X1); (J2, X2)]2 = ([J1; J2] , τ(J1, X1) ⊳ X2 − s(J2, X2) ⊳ X1)

= ([J1; J2] , [X1; X2] + J1 ⊳ X2 − J2 ⊳ X1)

• Lie algebras ,   
• Source map:  
• Target map:  
• Boundary map: 

𝔤 𝔥
s(J, X) = J
τ(J, X) = tX + J

t(X) = τ(J, X) − s(J, X)

Lie 2-algebra structure 𝔤 ⋉ 𝔥 → 𝔤→

V → 𝔤, W → 𝔥, V ⊕ W → 𝔤 ⋉ 𝔥
Replace the vector spaces by Lie algebras, with an action of  on   𝔤 𝔥

Source and target maps are compatible with brackets

τ[(J1, X1); (J2, X2)]2 = [τ(J1, X1); τ(J2, X2)]

s[(J1, X1); (J2, X2)]2 = [s(J1, X1); s(J2, X2)]

Spinning geometry example: 𝔰𝔲(2) ⋉ 𝔰𝔲(2) → 𝔰𝔲(2)→

Lie 2-bracket: 
(Satisfies 2-Jacobi)

What are those 2-structures?



Convenient to see 2-holonomies (=decorated surfaces) as maps between 1-holonomies (decorated paths).

Lie 2-algebras space cane be integrated: Lie 2-groups

What are those 2-structures?



Convenient to see 2-holonomies (=decorated surfaces) as maps between 1-holonomies (decorated paths).

• Lie group  decorates edges,  
• Lie group  decorates faces. 
• Source map:  
• Target map:  
• Boundary map: 

G ∋ ki
H ∋ ℓ

s(k, ℓ) = k
τ(k, ℓ) = t(ℓ)k

t(ℓ) = τ(k, ℓ)s−1(k, ℓ)
t(k ⊳ ℓ) = k t(ℓ) k−1, (t(ℓ)) ⊳ ℓ′￼= ℓ ℓ′￼ℓ−1
t-map is group homomorphism

G ⋉ H → GLie 2-group structure →

Lie 2-algebras space cane be integrated: Lie 2-groups

What are those 2-structures?



Convenient to see 2-holonomies (=decorated surfaces) as maps between 1-holonomies (decorated paths).

• Lie group  decorates edges,  
• Lie group  decorates faces. 
• Source map:  
• Target map:  
• Boundary map: 

G ∋ ki
H ∋ ℓ

s(k, ℓ) = k
τ(k, ℓ) = t(ℓ)k

t(ℓ) = τ(k, ℓ)s−1(k, ℓ)
t(k ⊳ ℓ) = k t(ℓ) k−1, (t(ℓ)) ⊳ ℓ′￼= ℓ ℓ′￼ℓ−1
t-map is group homomorphism

G ⋉ H → GLie 2-group structure →

Lie 2-algebras space cane be integrated: Lie 2-groups

ℓ ∈ H, ki ∈ G

t(ℓ1) = k2k3k−1
1 Take , it’s like implementing Stokes thm!t = id

ℓ = k3k−1
1 k−1

2ℓ ∈ SU(2), ki ∈ SU(2)
ℓ = Pexp ∮ A = k

What are those 2-structures?

“Fake-flatness”



Take , it’s like implementing Stokes thm!t = id

ℓ1 = k2k3k−1
1ℓ ∈ SU(2), ki ∈ SU(2)

Can replace the face information by the edge information by reducing the fake flatness condition.

Underlying motivation/approach to different works to define curved tetrahedron

Curved tetrahedra

Gauss constraint = Bianchi id

What are those 2-structures?

Haggard-Han-Riello 
Charles-Livine 
Han-Hsiao-Pan 

“Fake-flatness”

ℓ1ℓ2ℓ3(k3 ⊳ ℓ4) = 1



Take , it’s like implementing Stokes thm!t = id

What are those 2-structures?



Take , it’s like implementing Stokes thm!t = id

g ∈ SU(2), h = Pexp ∮ A ∈ SU(2)

X1 = J3 − J2 − J1X ∈ ℝ3, Ji ∈ ℝ3

X = ∫S
dz × dz = ∫S

d(z × dz) = ∫∂S
(z × dz) = ∑

e
∫e∈∂S

(z × dz) = ∑ Je

Ready to generalize to the curved case

What are those 2-structures?

What is ?T*𝔾 WIP  
Girelli-Oliveira-Riello 



Take , it’s like implementing Stokes thm!t = id

g ∈ SU(2), h = Pexp ∮ A ∈ SU(2)

What are those 2-structures?

ℓ ∈ AN2, k ∈ AN2

ℓ ∈ SU(2), k ∈ SU(2)



2-gauge theory and BF theories



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Curvature data,   ℱ = (F − tΣ, dAΣ = dΣ + A ⊳ Σ) .

Connection  𝒜 = (A, Σ) ∈ (𝔤 ⊗ Λ1M) ⊕ (𝔥 ⊗ Λ2M)

Higher gauge thy for Lie 2-algebra 𝔤 ⋉ 𝔥 → 𝔤→
Jurco, Raspollini, Saemann, Wolf



Symmetries of 4d BF theory, aka 4d Chern-Simons thy

1- and 2-gauge transf parameterized by 
,  

  
  

  

(α, ϕ) ∈ 𝔤 ⊗ Λ0M ⊕ 𝔥 ⊗ Λ1M

δ(α,ϕ)𝒜 = d(α, ϕ) + [𝒜, (α, ϕ)]2 = (dα + [A, α], α ⊳ Σ + dAϕ)

δ(α,ϕ)ℱ = [ℱ, (α, ϕ)]2 = ([F − tΣ, α], α ⊳ dAΣ + (F − tΣ) ⊳ ϕ]

Curvature data,   ℱ = (F − tΣ, dAΣ = dΣ + A ⊳ Σ) .

Connection  𝒜 = (A, Σ) ∈ (𝔤 ⊗ Λ1M) ⊕ (𝔥 ⊗ Λ2M)

Higher gauge thy for Lie 2-algebra 𝔤 ⋉ 𝔥 → 𝔤→

2-co-adjoint action!

g′￼= u−1
x t(η) g uy

Jurco, Raspollini, Saemann, Wolf



⟨ℬ ∧ ℱ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨C ∧ dAΣ⟩ .

This is called 4d Chern-Simons thy by some.
Construct a 4d action to implement flat 2-curvature , a “2-BF” theoryℱ = 0

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



Construct a 4d action to implement flat 2-curvature , a “2-BF” theoryℱ = 0

⟨ℬ ∧ ℱ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨C ∧ dAΣ⟩ .

⟨[χ1, χ2], χ3⟩ = − ⟨χ2, [χ1, χ3]⟩, χ1,3 ∈ Lie𝔾, χ2 ∈ Lie𝔾*

This is called 4d Chern-Simons thy by some.

Lagrange multipliers 
,  

which also transform under the 2-adjoint action, 
ℬ = (C, B) ∈ (𝔥* ⊗ Λ1M) ⊕ (𝔤* ⊗ Λ2M) Use an invariant bilinear form   

invariant under the 2-(co)adjoint action. 
⟨, ⟩

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



⟨ℬ ∧ ℱ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨C ∧ dAΣ⟩ .

Natural symmetry given by a matched pair of Lie 2-algebras, Lie𝔾* ⋈ Lie𝔾

⟨[χ1, χ2], χ3⟩ = − ⟨χ2, [χ1, χ3]⟩, χ1,3 ∈ Lie𝔾, χ2 ∈ Lie𝔾*

θ = B ∧ δA + C ∧ δΣ (B, C) ↔ (A, Σ)

This is called 4d Chern-Simons thy by some.

1-2-connections dual to each other. 

Lagrange multipliers 
,  

which also transform under the 2-adjoint action, 
ℬ = (C, B) ∈ (𝔥* ⊗ Λ1M) ⊕ (𝔤* ⊗ Λ2M) Use an invariant bilinear form   

invariant under the 2-(co)adjoint action. 
⟨, ⟩

Canonical variables

Construct a 4d action to implement flat 2-curvature , a “2-BF” theoryℱ = 0

There is a dual 2-symmetry, for the  sector, due to 2-Bianchi identity. ℬ

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



⟨ℬ ∧ ℱ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨C ∧ dAΣ⟩ .

There is a dual 2-symmetry, for the  sector, due to 2-Bianchi identity. ℬ

Natural symmetry given by a matched pair of Lie 2-algebras, Lie𝔾* ⋈ Lie𝔾

⟨[χ1, χ2], χ3⟩ = − ⟨χ2, [χ1, χ3]⟩, χ1,3 ∈ Lie𝔾, χ2 ∈ Lie𝔾*

θ = B ∧ δA + C ∧ δΣ (B, C) ↔ (A, Σ)

This is called 4d Chern-Simons thy by some.

1-2-connections dual to each other. 

Lagrange multipliers 
,  

which also transform under the 2-adjoint action, 
ℬ = (C, B) ∈ (𝔥* ⊗ Λ1M) ⊕ (𝔤* ⊗ Λ2M) Use an invariant bilinear form   

invariant under the 2-(co)adjoint action. 
⟨, ⟩

Construct a 4d action to implement flat 2-curvature , a “2-BF” theoryℱ = 0

This 2-BF theory is a  BF theory with symmetry  up to a 
boundary term

((𝔥* ⋉ 𝔤) ⋉ (𝔤* ⋉ 𝔥) → 𝔥* ⋉ 𝔤)→

Canonical variables

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



⟨ℬ ∧ ℱ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨C ∧ dAΣ⟩ .

There is a dual 2-symmetry, for the  sector, due to 2-Bianchi identity. ℬ

Natural symmetry given by a matched pair of Lie 2-algebras, Lie𝔾* ⋈ Lie𝔾

⟨[χ1, χ2], χ3⟩ = − ⟨χ2, [χ1, χ3]⟩, χ1,3 ∈ Lie𝔾, χ2 ∈ Lie𝔾*

θ = B ∧ δA + C ∧ δΣ (B, C) ↔ (A, Σ)

⟨ℬ ∧ ℱ⟩ + d⟨C ∧ Σ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨Σ ∧ dAC⟩ = ⟨𝔅 ∧ 𝔉⟩ .

θ′￼= B ∧ δA + Σ ∧ δC = 𝔅 ∧ δ𝔄 𝔅 = (B, Σ) ↔ (A, C) = 𝔄

This is called 4d Chern-Simons thy by some.

1-2-connections dual to each other. 

Lagrange multipliers 
,  

which also transform under the 2-adjoint action, 
ℬ = (C, B) ∈ (𝔥* ⊗ Λ1M) ⊕ (𝔤* ⊗ Λ2M) Use an invariant bilinear form   

invariant under the 2-(co)adjoint action. 
⟨, ⟩

Canonical variables

Construct a 4d action to implement flat 2-curvature , a “2-BF” theoryℱ = 0

Canonical variables

Symmetries of 4d BF theory, aka 4d Chern-Simons thy

This 2-BF theory is a  BF theory with symmetry  up to a 
boundary term

((𝔥* ⋉ 𝔤) ⋉ (𝔤* ⋉ 𝔥) → 𝔥* ⋉ 𝔤)→



Not all BF theories are double of 2-symmetries. This is the analogue of Chern-Simons vs BF theory in 
3d 

3d Chern-Simons 
thy with Lie algb 𝔤

BF thy = Chern-
Simons thy with 
Lie algb 
𝔤 = 𝔤0* ⋈ 𝔤0

4d Chern-Simons 
thy with Lie 2-algb 
Lie𝔾

2-BF thy = 4d Chern-
Simons thy with Lie algb 
Lie𝔾 = Lie𝔾*0 ⋈ Lie𝔾03d gravity  for 

.  
 depends on the value of 

the cosmological constant.

𝔤0 = 𝔰𝔬(2,1), 𝔰𝔬(3)
𝔤*0

4d BF thy  for 
.  

 depends on the value of 
the cosmological constant.

𝔤0 = 𝔰𝔬(2,1), 𝔰𝔬(3)
𝔤*0

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



Standard  BF theory (no BB interaction) can be viewed either as a double of trivial 2-symmetries, 
or as a double of (deformed) 2-symmetries. This is the same as the change of polarization from before.   

𝔰𝔬(3,1)

Partition function as state sum in 
terms of 1-category of   
representations.

𝔰𝔬(3,1)
Partition function as state sum in 
terms of 2-category of Euclidian 2-
group   2-representations.𝔰𝔲(2) ⋉ ℝ3

𝔰𝔬(3,1) ≈ 𝔰𝔲(2) ⋈ 𝔞𝔫2
𝔰𝔬(3,1)* ≈ ℝ3 × ℝ3

SO(3,1) SU(2)

ℝ3 × ℝ3

AN
2

ℝ3

ℝ3

Girelli-Tsimiklis 
Girelli-Laudonio-Tsimiklis

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



This would imply some relations between symbols based on standard representations and 2-
representations.   

Partition function as state sum in 
terms of 1-category of   
representations.

𝔰𝔬(3,1)
Partition function as state sum in 
terms of 2-category of Euclidian 2-
group   2-representations.𝔰𝔲(2) ⋉ ℝ3

SO(3,1) SU(2)

ℝ3 × ℝ3

AN
2

ℝ3

ℝ3

Baratin Freidel for the 2-Poincare group

Girelli-Tsimiklis 
Girelli-Laudonio-Tsimiklis

Standard  BF theory (no BB interaction) can be viewed either as a double of trivial 2-symmetries, 
or as a double of (deformed) 2-symmetries. This is the same as the change of polarization from before.   

𝔰𝔬(3,1)

𝔰𝔬(3,1) ≈ 𝔰𝔲(2) ⋈ 𝔞𝔫2
𝔰𝔬(3,1)* ≈ ℝ3 × ℝ3

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



Standard Lorentz BF theory with BB interaction cannot be viewed as a standard gauge theory. This is 
why quantum 2-group structure should arise.   

SO(3,1) SU(2)

SO(3,1)

AN
2

AN2

SU(2)

𝔰𝔬(3,1) ≈ 𝔰𝔲(2) ⋈ 𝔞𝔫2

𝔰𝔬(3,1)* ≈ 𝔰𝔬(3,1)
Lie𝔾 = (𝔰𝔬(3,1) ⋉ 𝔰𝔬(3,1) → 𝔰𝔬(3,1)) ≈ Lie𝔾*→

Symmetries of 4d BF theory, aka 4d Chern-Simons thy



Elements of 2-representations



Elements of 2-representations

We can define 2-spin networks, functions invariant under 1- and 2-gauge transformations, 
what is the representation picture?

We lack of a Peter-Weyl theorem to recover it.  
 

Cf Maite’s talk this afternoon 



For some choices of Lie 2-group, we can discretise the partition function  

∫ [dA][dC][dΣ][dB]ei ∫ ⟨ℬ∧ℱ⟩ ∼ ∫ [dg][dh]∏
face

δ(t(h)∏
links

g) δ( ∏
polyhedra

h)

We can construct a GFT to generate such amplitudes as Feynman diagrams

We lack of a Peter-Weyl theorem to recover a 2-state-sum. 
What are the 2-characters??  
 

Elements of 2-representations

We can define 2-spin networks, functions invariant under 1- and 2-gauge transformations, 
what is the representation picture?

We lack of a Peter-Weyl theorem to recover it.  
 

Girelli-Laudonio-Tanasa-Tsimiklis

Cf Maite’s talk this afternoon 



For some choices of Lie 2-group, we can discretise the partition function  

∫ [dA][dC][dΣ][dB]ei ∫ ⟨ℬ∧ℱ⟩ ∼ ∫ [dg][dh]∏
face

δ(t(h)∏
links

g) δ( ∏
polyhedra

h)

We can construct a GFT to generate such amplitudes as Feynman diagrams

We lack of a Peter-Weyl theorem to recover a 2-state-sum.  
 

But, for the Poincare 2-group, ie BF thy for Poincare, using geometry we could recover the Baratin-
Freidel-Korepanov 2-state-sum model.  

Elements of 2-representations

We can define 2-spin networks, functions invariant under 1- and 2-gauge transformations, 
what is the representation picture?

We lack of a Peter-Weyl theorem to recover it.  
 

Asante-Dittrich-Girelli-Riello-Tsimiklis

Nice mathematical problem! Head start with respect to mathematicians: we know 1-2-gauge invariance 
should be equivalent to constraints in the triangulation picture.

Girelli-Laudonio-Tanasa-Tsimiklis

WIP 
Dupuis-Girelli-Hrytseniak

Cf Maite’s talk this afternoon 



Attention:  there are 2 different notions of 2-vector spaces.

Baez-Crans Kapranov- 
Voevodsky • Condensed matter models  

(topological order): mainly 
inspired by finite groups and 
category theory 

• Douglas Reuter state sum. 
• Baez-Baratin-Freidel-Wise 2-

representation theory (building 
up on Crane,Yetter…..)

• Angulo’s representation theory 
• 2-Hopf algebras (Chen-Girelli) 
• 2-coadjoint orbits (Chen-Girelli)

“Natural” from an  
algebra perspective 

2-adj action! 
“Natural” from a  

category perspective

Elements of 2-representations



Consider a vector space , a representation of a Lie algebra/Lie group on V is given in terms of a matrix V

Elements of 2-representations

What is a “matrix” on a Baez-Crans 2-vector space ?  𝕍 = (W → V )
Sheng-Zhu 
Angulo Santacruz

∂



Consider a vector space , a representation of a Lie algebra/Lie group on V is given in terms of a matrix V

  is itself a 2-group.GL(𝕍)

  : objects(M, m) ∈ GL(W ) ⊕ GL(V ) = GL0(𝕍) ∂M = m∂

  : maps between objects  A ∈ Hom(V, W ) = GL1(𝕍) ΔA = (id + A∂, id + ∂A)

Elements of 2-representations

What is a “matrix” on a Baez-Crans 2-vector space ?  𝕍 = (W → V )
Sheng-Zhu 
Angulo Santacruz

It is given in terms of a pair of matrices  and a map (M, m) A

∂

2-(co-)Adjoint action is a 2-representation of this kind! 



Road map and comments



Road map to LQG 2.0 
Work in progress

Gauge theory

3d gravity 4d gravity

Intertwiner

Spin network

Spin foam

2-gauge theory

Polyhedron phase space 
 (2-coadjoint orbits)

Polygon phase space 
(coadjoint orbits)

Kapovich Millson

2-intertwiner

2-Spin network

2-spin foam

2-EPRL!

Not using  
Minkowski theorem 

(Polygon=polyhedron)

Spinning tops Spinning top+ string



Road map to LQG 2.0 
Work in progress

Gauge theory

3d gravity 4d gravity

Intertwiner

Spin network

Spin foam

2-gauge theory

Polyhedron phase space 
 (2-coadjoint orbits)

Polygon phase space 
(coadjoint orbits)

Kapovich Millson

2-intertwiner

2-Spin network

2-spin foam

∫ d𝔅d𝔄eiSMM ∼ ∫ d𝔅d𝔄(1 + αϵ𝔅𝔅 + . . . )eiSBF

For example:

2-state-sum

Not using  
Minkowski theorem 

(Polygon=polyhedron)

Spinning tops Spinning top+ string

𝒮MM = ∫ 𝔅 ∧ 𝔉 −
1
2

β𝔅 ∧ 𝔅 −
α
4

ϵ4IJKL𝔅IJ ∧ 𝔅KL



Outlook

2-symmetries could provide a better understanding of the QG regime

Topological models are based on 2-symmetries/representations,  should matter for QG spinfoam 
construction!

The presence of a cosmological constant reveals, at the discrete level, that 2-group holonomies 
are the natural tool to describe discretized quantities.

Don’t stop at 2, use also 3-groups! Matter content could be related to a 3-group structure (see 
Vojinovic’talk)

2-symmetries are naturally present in 4d, but have not been leveraged

1-representation

2-representation

2-symmetries appear in Feynman diagrams



Standard gauge theory for Lie algebra 𝔤
Symmetries of 4d BF theory, aka 4d Chern-Simons thy

Higher gauge thy for Lie 2-algebra 

Data:
Gauge connection ,  

Curvature  

A ∈ 𝔤 ⊗ Λ1

F = dA +
1
2

[A ∧ A] ∈ 𝔤 ⊗ Λ2

Gauge transformations, α ∈ 𝔤 ⊗ Λ0

 , δαA = dAα

Co-adjoint action!

Maurer Cartan form/equation, 

dA = ± 1
2

[A ∧ A]

1- and 2-gauge transf parameterized by ,  
    
      
  

(α, ϕ) ∈ 𝔤 ⊗ Λ0M ⊕ 𝔥 ⊗ Λ1M

δ(α,ϕ)𝒜 = d(α, ϕ) + [𝒜, (α, ϕ)]2 = (dAα, α ⊳ Σ + dAϕ)

δ(α,ϕ)ℱ = [ℱ, (α, ϕ)]2 = ([F − tΣ, α], α ⊳ dAΣ + (F − tΣ) ⊳ ϕ]

Curvature data,   ℱ = (F − tΣ, dAΣ = dΣ + A ⊳ Σ) .
Connection   𝒜 = (A, Σ) ∈ (𝔤 ⊗ Λ1M) ⊕ (𝔥 ⊗ Λ2M)

Data:

Generalized MC forms:

 δαF = [F, α]

A ∈ 𝔤 ⊗ Λ1 𝒜 = (A, Σ) ∈ (𝔤 ⊗ Λ1M ) ⊕ (𝔥 ⊗ Λ2M )

A = g−1dg + tϕ

dA +
1
2

[A ∧ A] = tΣ, dAΣ = 0

B = dAϕ +
1
2

[ϕ ∧ ϕ]

Proper surface holonomy when F − tΣ = 0

solution: A = g−1dg, or A = dgg−1 solution: 

𝔤 ⋉ 𝔥 → 𝔤→

2-co-adjoint action!

“Pure gauge” “Pure 2-gauge”

Higher structures are already present 



From spinning tops to strings

∫ (π ⋅ g−1 dg
dt

−
1
2

π ⋅ π)dt

Recall that spinning top action for group G

Maurer-Cartan form
 transforms under coadjoint action  
for global transformations  u−1du = 0

u−1g−1dgu + u−1du,
π0 ∈ 𝔤*, π = g−1π0g, π ⋅ π = s2

Co-adjoint orbits   
momentum  transforming under  
the co-adjoint action and  
characterized by Casimir 

π ∈ 𝔤*

π ⋅ π

Balachandran et al. 



∫ (π ⋅ g−1 dg
dt

−
1
2

π ⋅ π)dt

Recall that spinning top action for group G

Maurer-Cartan form
 transforms under coadjoint action  
for global transformations  u−1du = 0

u−1g−1dgu + u−1du,
π0 ∈ 𝔤*, π = g−1π0g, π ⋅ π = s2

Co-adjoint orbits   
momentum  transforming under  
the co-adjoint action and  
characterized by Casimir 

π ∈ 𝔤*

π ⋅ π

∫ (π; p) ⋅ (g−1dg + t(q); dg−1dgq) − π ⋅ p = ∫ π ⋅ (g−1dg + t(q)) + p ⋅ dg−1dgq − π ⋅ p

2-co-adjoint orbits  
momentum  transforming under  
the 2-co-adjoint action and characterized by Casimir

(π, p) ∈ 𝔤* ⊗ Λ ⊕ 𝔥* ⊗ Λ
transforms under 2-coadjoint action 
 for global transformations d(α, ϕ) = (0,0)

Generalized Maurer-Cartan form   

(g−1dg + t(q); dg−1dgq +
1
2

[q ∧ q]) ∈ (𝔤 ⊗ Λ1) ⊕ (𝔥 ⊗ Λ2)

[(g−1dg + t(q); dg−1dgq) , (α; ϕ)]2 + d(α, ϕ)

(π, p) ∼ (π0, p0) + [(π0; p0), (α; ϕ)]2

String coupled to a spinning top

From spinning tops to strings

Balachandran et al. 

WIP  
Girelli-Pollack-Riello-Tsimiklis 



From polygon to polyhedron

 co-adjoint orbit  SU(2)

X ∈ S2
ℓ ⊂ 𝔰𝔲*(2) ∼ ℝ3

X2 = ℓ2
+ Kirillov symplectic form

{Xi, Xj} = ϵk
ijXk

𝒫 = (S2
ℓ × S2

ℓ × S2
ℓ)//C

C = ∑
a

Xa = 0
Polygon phase space (with fixed edge length) Kapovich-Millson



From polygon to polyhedron

  2-coadjoint orbits  
   
𝔾 = (SU(2) ⋉ SU(2) → SU(2))

 co-adjoint orbit  SU(2)

X ∈ S2
ℓ ⊂ 𝔰𝔲*(2) ∼ ℝ3

X2 = ℓ2
+ Kirillov symplectic form

{Xi, Xj} = ϵk
ijXk

𝒫 = (S2
ℓ × S2

ℓ × S2
ℓ)//C

C = ∑
a

Xa = 0
Polygon phase space (with fixed edge length) Kapovich-Millson

Polyhedron phase space? Ci = Xi − ∑
j

Jj = 0

C = ∑ Xi = 0

(X, J ) ∈ 𝔰𝔲*(2) ⊕ 𝔰𝔲*(2)
+ 2-Kirillov symplectic form

X ⋅ J = s, J2 = ℓ2

WIP  
Girelli-Oliveira-Riello 

{Xi, Xj} = ϵk
ijXk

{Ji, Xj} = ϵk
ijXk

{Ji, Jj} = ϵk
ijJk

→



2-representation theory
Representation theory:  
consider a vector space , a representation of a Lie algebra/Lie group is a map V

ρ : 𝔤 → GL(V ) ρ : G → GL(V )
ρ([X, Y ]) = [ρ(X), ρ(Y )] ρ(g1g2) = ρ(g1)ρ(g2)(X, Y ) ∈ 𝔤 (g1, g2) ∈ G

2-Representation theory for Baez-Crans 2-vector space:  
consider a 2-vector space , a representation of a 2-Lie algebra/Lie 2-group is a map 𝕍 = (W → V )

ρ : 𝔤 → GL(𝕍) ρ : 𝔾 → GL(𝕍)
ρ([X, Y ]2) = [ρ(X), ρ(Y )]2 ρ(g1 . g2) = ρ(g1) . ρ(g2)(X, Y ) ∈ 𝔤 (g1, g2) ∈ 𝔾

what is  ?GL(𝕍)

  is itself a 2-group, .GL(𝕍) GL(𝕍) = (GL1(𝕍) → GL0(𝕍), ⊳ )

  : objectsGL0(𝕍) = GL(W ) ⊕ GL(V ) ∋ (M, m) ∂M = m∂

  : maps between objects  GL1(𝕍) = Hom(V, W ) ∋ A ΔA = (A∂, ∂A)

s((M, m), A) = (M, m), τ((M, m), A) = ΔA(M, m) = (A∂M, ∂Am)



2-representation theory: 2-adjoint action example
consider the Lie 2-algebra ,  
the 2-adjoint representation consists in representing it on itself, so on  

Lie𝔾 = (𝔥 → 𝔤, ⊳ ), α ∈ 𝔤, ϕ ∈ 𝔥
W = 𝔥 ∋ X, V = 𝔤 ∋ J

ρ : Lie𝔾 → GL(Lie𝔾)

ρ1
0(α)X = α ⊳ X, ρ0

0(α)(J ) = [α, J], ρ1(ϕ)(J ) = − J ⊳ ϕ

ρ = ((ρ1
0 , ρ0

0), ρ1) = ((M, m), A)

2-adjoint representation:

2ad(α,ϕ)(J, X) ≡ (ρ0
0(α)J, ρ1

0(τ(α, ϕ))X + ρ1(ϕ)J ) = [(α, ϕ), (J, X)]

The 2-bracket encodes the 2-adjoint action



From polygon to polyhedron

Let us consider the specific case, with 2-group  with 2-Lie algebra 
.   

𝔾 = (SU(2) → SU(2), ⊳ )
Lie𝔾 = (𝔰𝔲(2) → 𝔰𝔲(2), ⊳ )

Let us consider the co-adjoint orbit of  with Lie algebra .   G = SU(2) 𝔰𝔲(2)

X ∈ S2
ℓ ⊂ 𝔰𝔲*(2) ∼ ℝ3

X2 = ℓ2
+ Kirillov symplectic form {Xi, Xj} = ϵk

ijXk

Polygon phase space (with fixed edge length): Each edge is an element in the phase space , and we 
reduce with respect to the constraint .

S2
ℓ

C = ∑
a

Xa = 0

𝒫 = (S2
ℓ × S2

ℓ × S2
ℓ)//C

Can be generalized to positive or negative curvature.

𝔰𝔲*(2) ∼ ℝ3
AN2 ∼ H3

SU(2) ∼ S3

To make the edge length dynamical, extend phase space. 𝔰𝔲*(2) ∼ ℝ3
ℝ3 ⋊ SU(2) ∼ T*SU(2)

ℂ2 ∼ ℝ4



4d Actions with Lie 2-symmetries

Let us generalize this to a 2-group  with 2-Lie algebra .   𝔾 Lie𝔾 = (𝔥 → 𝔤, ⊳ )

∫ (g−1dg + t(q); dg−1dgq) ⋅ (π, p) − π ⋅ p = ∫ p ⋅ (g−1dg + t(q)) + π ⋅ dg−1dgq − π ⋅ p

δπ : dg−1dgq − p = 0
δg : d(g−1πg) = []
δp : g−1dg + t(q) = π
δq : t(p) = dg−1dgπ
θ = π ⋅ δgg−1 T*𝔾?

(g−1dg + t(q); dg−1dgq +
1
2

[q ∧ q]) ≡ (A, B) ∈ (𝔤 ⊗ Λ1) ⊕ (𝔥 ⊗ Λ2)

• Generalized Maurer-Cartan form   
•  Fake flatness and no 2-curvature,  

•  transforms under adjoint action for global transformations  

• 2-co-adjoint orbits — momentum  transforming under the co-adjoint action 
and characterized by Casimir

d(α, ϕ) = (0,0)

(π, p) ∈ 𝔤* ⊗ Λ ⊕ 𝔥* ⊗ Λ

2ad(α,ϕ)(g−1dg + t(q); dg−1dgq) + d(α, ϕ) = ([g−1dg + t(q), α], α ⊳ dg−1dgq + (g−1dg + t(q)) ⊳ ϕ)

F(A) = t(B), dAB = 0

 is an exact 1-formϕ

(π, p) ∼ (π0, p0) +2 ad(α,ϕ)(π0; p0) = ([π0, α], α ⊳ p0 + π0 ⊳ ϕ)

p ⋅ π = s



Higher symmetries are already present in many different places. 

Consider the discretized flux.  encoding the normal of the face S.X ∈ ℝ3

X = ∫S
dz × dz = ∫S

d(z × dz) = ∫∂S
(z × dz) = ∑

e
∫e∈∂S

(z × dz) = ∑ Je

Could replace the face information by the edge information

by reducing the fake flatness.

Note that  is associated to edge but is not edge vector.  
It can be seen as the normal of a face in a ghost tetrahedron.

Je

Twisted geometry=spinning geometry=2-geometry



Gauge fields and their transformations

Usual gauge theory with Lie group G on manifold M:  

• connection  and its curvature  

• gauge transf parameterized by ,   

• Maurer Cartan form (“pure gauge”):  or  and 

A ∈ 𝔤 ⊗ Λ1M F = dA +
1
2

[A ∧ A] ∈ 𝔤 ⊗ Λ2M

α ∈ 𝔤 ⊗ Λ0M δαA = dα + [A, α], δαF = [F, α]

A = g−1dg A = dgg−1 F = 0

• Connection   

• Curvature data,   

• 1- and 2-gauge transf parameterized by ,  
       
      
      

• Generalized Maurer Cartan forms: ,  and  

• Proper surface holonomy when 

𝒜 = (A, Σ) ∈ 𝔤 ⊗ Λ1M ⊕ 𝔥 ⊗ Λ2M

ℱ = (F − tΣ, dAΣ = dΣ + A ⊳ Σ) .

(α, ϕ) ∈ 𝔤 ⊗ Λ0M ⊕ 𝔥 ⊗ Λ1M
δ(α,ϕ)𝒜 = d(α, ϕ) + [𝒜, (α, ϕ)] = d(α, ϕ) + ([A, α], α ⊳ Σ + A ⊳ ϕ] = (dAα, α ⊳ Σ + dAϕ)

δ(α,ϕ)ℱ = [ℱ, (α, ϕ)] = ([F − tΣ, α], α ⊳ dAΣ + (F − tΣ) ⊳ ϕ]

A = g−1dg + tϕ B = dAϕ F = tΣ, dAΣ = 0

F − tΣ = 0

Curvature is 2-gauge!



Geometry from co-adjoint orbits

Let us consider the specific case, with 2-group  with 2-Lie algebra 
.   

𝔾 = (SU(2) → SU(2), ⊳ )
Lie𝔾 = (𝔰𝔲(2) → 𝔰𝔲(2), ⊳ )

Let us consider the co-adjoint orbit of  with Lie algebra .   G = SU(2) 𝔰𝔲(2)

X ∈ S2
ℓ ⊂ 𝔰𝔲*(2) ∼ ℝ3

X2 = ℓ2
+ Kirillov symplectic form {Xi, Xj} = ϵk

ijXk

Polygon phase space (with fixed edge length): Each edge is an element in the phase space , and we 
reduce with respect to the constraint .

S2
ℓ

C = ∑
a

Xa = 0

𝒫 = (S2
ℓ × S2

ℓ × S2
ℓ)//C

Can be generalized to positive or negative curvature.

𝔰𝔲*(2) ∼ ℝ3
AN2 ∼ H3

SU(2) ∼ S3

To make the edge length dynamical, extend phase space. 𝔰𝔲*(2) ∼ ℝ3
ℝ3 ⋊ SU(2) ∼ T*SU(2)

ℂ2 ∼ ℝ4



4d Actions with Lie 2-symmetries
Construct an action to implement flat 2-curvature :  

• Use Lagrange multipliers , which also transform under the 2-
adjoint action,  

•  Use an invariant bilinear form  on  under the 2-adjoint action. 

ℱ = 0

ℬ = (C, B) ∈ 𝔥* ⊗ Λ1M ⊕ 𝔤* ⊗ Λ2M

⟨, ⟩

⟨ℬ ∧ ℱ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨C ∧ dAΣ⟩ .

There is a dual 2-symmetry, from the  sector. ℬ

Natural symmetry given by a matched pair of Lie 2-algebras, Lie𝔾* ⋈ Lie𝔾

⟨[χ1, χ2], χ3⟩ = − ⟨χ2, [χ1, χ3]⟩, χ1,3 ∈ Lie𝔾, χ2 ∈ Lie𝔾*

θ = B ∧ δA + C ∧ δΣ (B, C) ↔ (A, Σ)

It can be repackaged as a big BF theory with symmetry   
by adding a boundary term

(𝔤* ⋉ 𝔥 → 𝔥* ⋉ 𝔤, ⊳ )

⟨B ∧ (F − tΣ)⟩ + ⟨Σ ∧ dAC⟩ + d⟨C ∧ Σ⟩ = ⟨B ∧ (F − tΣ)⟩ + ⟨Σ ∧ dAC⟩ + d⟨C ∧ Σ⟩ = ⟨𝔅 ∧ 𝔉⟩ + d⟨C ∧ Σ⟩ .

θ′￼= B ∧ δA + Σ ∧ δC = 𝔅 ∧ δ𝔄 𝔅 = (B, Σ) ↔ (A, C) = 𝔄

This is called 4d Chern-Simons thy by some.

1-2-connections dual to each other. 



4d Actions with Lie 2-symmetries

• Maurer-Cartan form   
•  no curvature,  

•  transforms under adjoint action for global transformations 

• Co-adjoint orbits — momentum  transforming under the co-adjoint action and characterized by 
Casimir

g−1dg ≡ A ∈ 𝔤 ⊗ Λ1

π

g−1dg → u−1g−1dgu + u−1du,

F(A) = 0

u−1du = 0

g−1dg → g−1dg + [g−1dg, α] u ∼ 1 + α, α ∈ 𝔤

∫ (π ⋅ g−1 dg
dt

−
1
2

π ⋅ π)dt

δπ : g−1dg − π = 0
δg : d(gπg−1) = 0
δλ : π2 = s2

θ = π ⋅ δgg−1 T*G

π0 ∈ 𝔤*, π = g−1π0g ∼ π0 + [π0, α], π ⋅ π = s2

Recall that spinning top action for group G


