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2 Ēpot ⇒ Mω2R2 ∼

GM2

R

[Misner, Thorne Wheeler]



Planck luminosity

In  spacetime dimensions, the Planck power is 
independent of .

D = 4
ℏ

The Planck power can appear in classical GR.

ℒpeak = ℒP × f(scale-independent observables)

ℒpeak
GW150914

≈ 3,6 × 1049 W

Opportunity for new phenomenology. Reminiscent of 
relative locality and QG in , where .D = 2 + 1 mP = c2/G

M, ω

ℒGW

R

ℒGW ∼
c5

G ( GM
c2R )

5

≲ ℒP

Emission can only happen 
as long as: R ≲ 2GM/c2

ℒP =
ℏD − 4

D − 2c
2D + 2
D − 2

G 2
D − 2

=
c5

G
≈ 3,63 × 1052 W

ℒGW ∼
G
c5 ( ···I )2 ∼

G
c5

(Mω3)2R4
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Clock momentum: 
Raychaudhuri constraint 
coupling  and .σI Ω
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Impulsive null initial data

𝒰

σI

Replace smooth profile by series of step 
functions

- Algebra local along null rays, but ultra-local in angular 
directions. LQG topogical excitations not at all exotic.

- Neither IR nor UV cutoff. Physical duration itself a 
quantum observable.

- Each pulse represents a quasi-local graviton.

- Quantize each pulse, then glue many such pulses back together.
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Solving the constraints for impulsive data

Constant  dressed shear: U(1)
d

d𝒰
σI = 0

Double role of shear 

d2

d𝒰2
Ω2 = − 2σIσ̄I Ω2

d
d𝒰

SI = (σI X̄ + σ̄IX)SI

- Euclidean angle in Raychaudhuri equation

- Boost angle in holonomy equation

- Role of -parameter: mixing the two (recall )γ A = Γ+γK
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Algebra of kinematical observables

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)

-  radiative modes + edge modes for the 
holonomy equation
T*SL(2,ℝ)

Highly non-linear relation to geometric data

{a(z), ā(z′ )} = i δ(2)(z |z′ ),

{b(z), b̄(z′ )} = i δ(2)(z |z′ ),

{c(z), c̄(z′ )} = 2 i δ(2)(z |z′ ) L(z),

{L(z), c(z′ )} = − i δ(2)(z |z′ ) c(z),

Ω2
− + Ω2

+ = 16πγG (L + aā)
Ω2

− − Ω2
+ = 16πγG (L + bb̄)

th(2 σσ̄) = b̄b
āa

U = e
γ ln(tan( 2σσ̄)/ 2σσ̄)J

S−

{c(z), U(z′ )} = XU(z) δ(2)(z |z′ ),

{L(z), U(z′ )} = − 1
2 JU(z) δ(2)(z |z′ ) .
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Physical states defined via recurrence relation

Physical states lie in the kernel of a constraint

- Simple recurrence relation

- Constraint commutes with  CasimirSL(2,ℝ)

- Physical states characterized by the value of the Casimir.

c ā b̄ = fγ(L, āa, b̄b)

 ladder operator𝔰𝔩(2,ℝ)

L2 − cc̄ =
1

8πG [ 1
4γ2

(Ω2
− − Ω2

+)2+

−
1
γ2

sinh2(2 σσ̄)Ω2
+Ω2

− −
1
2

(Ω2
+ + Ω2

−)2tan2( 2σσ̄)]
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The sign of the  Casimir determines two QG phasesSL(2,ℝ)

- : discrete series representations, the  generator  is bounded from 
below. Recurrence relations terminate. Shear bounded.
L2 > cc̄ U(1) L

- : continuous series representations, the  generator  is unbounded from 
below. Recurrence relations do not terminate. Shear unbounded.
L2 < cc̄ U(1) L

- Critical shear  separates the two phases. Connection to LQC? [Param’s talk]σcrit

|σcrit. |
2 =

1
4

(Ω2
− − Ω2

+)2

γ2(Ω2
+ + Ω2

−)2 + 4Ω2
+Ω2

−
+ 𝒪( |σcrit |

3 )
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Planck luminosity

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula 
for the  Casimir at null infinitySL(2,ℝ)

- Translate parameters of the pulse into Bondi frame

- Use -expansion to evaluate critical shear at 1/r ℐ+

- Bondi mass loss formula gives critical luminosity

ℒcrit. =
c5

4πG ∮S2

d2Ω | ·σ(0)
crit. |

2 =
ℒP

γ2 + 1
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• Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).

- Planck power separates discrete and continuous  representations.SL(2,ℝ)

- Above , states contain caustics. Contradicts implicit assumption in our argument of smooth  above the 
Planck power.

ℒP ℐ+

• Does classical GR apply when one Planck energy quantum is radiated away during one 
Planck unit of time?

• Conjectures:

- Planck power places an upper bound on semi-classical states (built-in UV cutoff) in non-perturbative QG.

- Planck power plays for QG in  same role as Planck mass in .D = 4 D = 3


