Quantum Geometry of the Light Cone

LOOPS'24, 10-05-2024 **Florida Atlantic University** Fort Lauderdale, FL USA

Wolfgang Wieland, <u>www.wmwieland.eu</u> FAU Erlangen-Nuremberg

[ww, arXiv:2402.12578] [ww, arXiv:2401.17491] [ww, JHEP 2021, arXiv:2104.05803] [ww, Class. Quant. Grav 34 2017, arXiv:1704.07391] [ww, Ann. Henri Poincaré 18 (2017), arXiv:1706.00479]

A simple Observation

In D = 4 spacetime dimensions, the Planck power is independent of ħ.

In D = 4 spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

In D = 4 spacetime dimensions, the Planck power is independent of \hbar .

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\ln D = 4$ spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$

In D = 4 spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$

In D = 4 spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$

[Misner, Thorne Wheeler]

$$\mathscr{L}_{\rm GW} \sim \frac{G}{c^5} (\ddot{I})^2 \sim \frac{G}{c^5} (M\omega^3)^2$$
$$\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{G}{c^5} (M\omega^3)^2$$

In D = 4 spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$

M, ω R

[Misner, Thorne Wheeler]

$$\mathscr{L}_{\text{GW}} \sim \frac{G}{c^5} (\ddot{I})^2 \sim \frac{G}{c^5} (M\omega^3)^2$$
$$\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{G}{c^5}$$

 $\ln D = 4$ spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$

M, ω R

[Misner, Thorne Wheeler]

$$\mathscr{L}_{\text{GW}} \sim \frac{G}{c^5} (\ddot{I})^2 \sim \frac{G}{c^5} (M\omega^3)^2$$
$$\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{G}{c^5}$$

$$\mathcal{L}_{\rm GW} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{D}$$

In D = 4 spacetime dimensions, the Planck power is independent of ħ.

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$ $\mathscr{L}_{peak}\Big|_{\text{GW150914}} \approx 3.6 \times 10^{49} \text{W}$

M, ω R

[Misner, Thorne Wheeler]

$$\mathscr{L}_{\text{GW}} \sim \frac{G}{c^5} (\ddot{I})^2 \sim \frac{G}{c^5} (M\omega^3)^2$$
$$\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{G}{c^5}$$

$$\mathcal{L}_{\rm GW} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{D}$$

In D = 4 spacetime dimensions, the Planck power is independent of \hbar .

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$ $\mathscr{L}_{peak}\Big|_{\text{GW150914}} \approx 3.6 \times 10^{49} \text{W}$

Opportunity for new phenomenology. Reminiscent of relative locality and QG in D = 2 + 1, where $m_{\rm P} = c^2/G$.

M, ω

[Misner, Thorne Wheeler]

$$\mathscr{L}_{\text{GW}} \sim \frac{G}{c^5} (\ddot{I})^2 \sim \frac{G}{c^5} (M\omega^3)^2$$
$$\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{G}{c^5}$$

$$\mathcal{L}_{\rm GW} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{D}$$

In D = 4 spacetime dimensions, the Planck power is independent of \hbar .

$$\mathscr{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W$$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f(scale-independent observables)$ $\mathscr{L}_{peak}\Big|_{\text{GW150914}} \approx 3.6 \times 10^{49} \text{W}$

Opportunity for new phenomenology. Reminiscent of relative locality and QG in D = 2 + 1, where $m_{\rm P} = c^2/G$.

M, ω

[Misner, Thorne Wheeler]

$$\mathscr{L}_{\rm GW} \sim \frac{G}{c^5} (\ddot{I})^2 \sim \frac{G}{c^5} (M\omega^3)^2$$
$$\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{G}{c^5} (M\omega^3)^2$$

Emission can only happen as long as: $R \leq 2GM/c^2$

$$\mathcal{L}_{\rm GW} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{D}$$

[Freidel, Livine, Girelli, Smolin, Kowalski-Glikmann, Amelino-Camelia, ..., Corichi, Ashtekar, Varadarajan, ...]

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

$$\mathscr{L} \lesssim \mathscr{L}_{\mathrm{P}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \mathrm{V}$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

Comments:

$$\mathscr{L} \lesssim \mathscr{L}_{\mathrm{P}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \mathrm{V}$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

Comments:

- For dimensional reasons, bound can only appear in D = 4.

$$\mathscr{L} \lesssim \mathscr{L}_{\mathrm{P}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\mathrm{W}$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

Comments:

- For dimensional reasons, bound can only appear in D = 4.
- If it exists, and since *G* is in the denominator, impossible to see in perturbative gravity.

$$\mathscr{L} \lesssim \mathscr{L}_{\mathrm{P}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\mathrm{W}$$

d can only appear in D = 4. denominator, impossible to

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

Comments:

- For dimensional reasons, bound can only appear in D = 4. - If it exists, and since G is in the denominator, impossible to
- see in perturbative gravity.
- Yet point of caution: No good reason for such a bound from the perspective of the physics at null infinity.

$$\mathscr{L} \lesssim \mathscr{L}_{\mathrm{P}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\mathrm{W}$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

Comments:

- For dimensional reasons, bound can only appear in D = 4. - If it exists, and since G is in the denominator, impossible to
- see in perturbative gravity.
- Yet point of caution: No good reason for such a bound from the perspective of the physics at null infinity.

$$\mathscr{L} \lesssim \mathscr{L}_{\mathrm{P}} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\mathrm{W}$$

$$\mathscr{L}_{Bondi} = \frac{c^5}{4\pi G} \oint_{S_2} d^2 \Omega \, |\dot{\sigma}^{(0)}|^2$$
free

How to explore such a bound

Why null boundaries?

• Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
 - Push gauge evolution to its extreme.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
 - Push gauge evolution to its extreme.

- Take ADM initial data. Constraints $\mathscr{H}_a = D_b(K^{ab} - h^{ab}K), \ \mathscr{H} = K_{ab}K^{ab} - K^2 - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
 - Push gauge evolution to its extreme.

- Take ADM initial data. Constraints $\mathcal{H}_{a} = D_{b}(K^{ab} - h^{ab}K), \ \mathcal{H} = K_{ab}K^{ab} - K^{2} - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
 - Push gauge evolution to its extreme.
 - Pick $\Psi_{\mathcal{N}}$ as unique representative of entire gauge orbit.

- Take ADM initial data. Constraints $\mathcal{H}_{a} = D_{b}(K^{ab} - h^{ab}K), \ \mathcal{H} = K_{ab}K^{ab} - K^{2} - {}^{(3)}R[h]$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
 - Push gauge evolution to its extreme.
 - Pick $\Psi_{\mathcal{N}}$ as unique representative of entire gauge orbit.
 - Register radiation at null surface boundary.

• Register radiative modes at null boundary

• Register radiative modes at null boundary

- Register radiative modes at null boundary
- Besides radiation, we have corner data

- Register radiative modes at null boundary
- Besides radiation, we have corner data

reference frames
- Register radiative modes at null boundary
- Besides radiation, we have corner data

charges dual to edge modes/quantum *reference frames*

[Sachs, Ashtekar, Lewandowski, Freidel, Ciambelli, Leigh, Reisenberger, Geiller, Pranzetti, Chandrasekaran, Flanaghan, Prabhu, Oliveri, Pranzetti, Speziale, ww, ...]

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead

charges dual to edge *modes/quantum reference frames*

[Sachs, Ashtekar, Lewandowski, Freidel, Ciambelli, Leigh, Reisenberger, Geiller, Pranzetti, Chandrasekaran, Flanaghan, Prabhu, Oliveri, Pranzetti, Speziale, ww, ...]

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead
 - Choice of parametrisation of state space

reference frames [Sachs, Ashtekar, Lewandowski, Freidel, Ciambelli, Leigh, Reisenberger, Geiller, Pranzetti,

Chandrasekaran, Flanaghan, Prabhu, Oliveri, Pranzetti, Speziale, ww, ...]

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead
 - Choice of parametrisation of state space
 - Equip state space with symplectic structure

[Sachs, Ashtekar, Lewandowski, Freidel, Ciambelli, Leigh, Reisenberger, Geiller, Pranzetti, Chandrasekaran, Flanaghan, Prabhu, Oliveri, Pranzetti, Speziale, ww, ...]

reference frames

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead
 - Choice of parametrisation of state space
 - Equip state space with symplectic structure
 - Truncation + quantisation

[Sachs, Ashtekar, Lewandowski, Freidel, Ciambelli, Leigh, Reisenberger, Geiller, Pranzetti, Chandrasekaran, Flanaghan, Prabhu, Oliveri, Pranzetti, Speziale, ww, ...]

reference frames

Step 1: Null surface geometry

• Signature (0 + +) metric

• Signature (0 + +) metric

 $\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i{}_a e^j{}_b, \quad i, j = 1, 2$

• Signature (0 + +) metric

 $\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i{}_a e^j{}_b, \quad i, j = 1, 2$

Parametrisation of the co-dyad

• Signature (0 + +) metric

$$\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i{}_a e^j{}_b, \quad i,j$$

- Parametrisation of the co-dyad
 - Conformal factor $\boldsymbol{\Omega}$

$$e^i = \Omega S^i_m{}^{(o)}e^m$$

• Signature (0 + +) metric

$$\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i{}_a e^j{}_b, \quad i,j$$

- Parametrisation of the co-dyad
 - Conformal factor $\boldsymbol{\Omega}$
 - Shape modes: holonomy $S \in SL(2,\mathbb{R})$

$$e^i = \Omega S^i_m{}^{(o)}e^m$$

• Signature (0 + +) metric

$$\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i{}_a e^j{}_b, \quad i,j$$

- Parametrisation of the co-dyad
 - Conformal factor Ω
 - Shape modes: holonomy $S \in SL(2,\mathbb{R})$
 - Fiducial background structure: null direction ℓ^a : $\pi_* \ell^a = 0$, co-dyad $({}^{(o)}e^1, {}^{(o)}e^2) = (d\vartheta, \sin\vartheta \, d\varphi).$

$$e^i = \Omega S^i_m{}^{(o)}e^m$$

= 1,2

• Signature (0 + +) metric

$$\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i{}_a e^j{}_b, \quad i,j$$

- Parametrisation of the co-dyad
 - Conformal factor Ω
 - Shape modes: holonomy $S \in SL(2,\mathbb{R})$
 - Fiducial background structure: null direction ℓ^a : $\pi_* \ell^a = 0$, co-dyad $({}^{(o)}e^1, {}^{(o)}e^2) = (d\vartheta, \sin\vartheta \, d\varphi).$

$$e^i = \Omega S^i_m{}^{(o)}e^m$$

= 1,2

[ww 2017]

• We look at abstract null boundary with initial and final cuts

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$\begin{split} \partial^{b}_{\mathcal{U}} \nabla_{b} \partial^{a}_{\mathcal{U}} \Big|_{\mathcal{N}} &= -\frac{1}{2} (\Omega^{-2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{U}} \Omega^{2}) \partial^{a}_{\mathcal{U}} \\ \mathcal{U} \Big|_{\mathcal{C}_{\pm}} &= \pm 1 \end{split}$$

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$\begin{split} \partial^{b}_{\mathcal{U}} \nabla_{b} \partial^{a}_{\mathcal{U}} \Big|_{\mathcal{N}} &= -\frac{1}{2} (\Omega^{-2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{U}} \Omega^{2}) \partial^{a}_{\mathcal{U}} \\ \mathcal{U} \Big|_{\mathcal{C}_{\pm}} &= \pm 1 \end{split}$$

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$\begin{split} \partial^{b}_{\mathcal{U}} \nabla_{b} \partial^{a}_{\mathcal{U}} \Big|_{\mathcal{N}} &= -\frac{1}{2} (\Omega^{-2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{U}} \Omega^{2}) \partial^{a}_{\mathcal{U}} \\ \mathcal{U} \Big|_{\mathcal{C}_{\pm}} &= \pm 1 \end{split}$$

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$\begin{split} \partial^{b}_{\mathcal{U}} \nabla_{b} \partial^{a}_{\mathcal{U}} \Big|_{\mathcal{N}} &= -\frac{1}{2} (\Omega^{-2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{U}} \Omega^{2}) \partial^{a}_{\mathcal{U}} \\ \mathcal{U} \Big|_{\mathcal{C}_{\pm}} &= \pm 1 \end{split}$$

—

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$\begin{split} \partial^{b}_{\mathcal{U}} \nabla_{b} \partial^{a}_{\mathcal{U}} \Big|_{\mathcal{N}} &= -\frac{1}{2} (\Omega^{-2} \frac{\mathrm{d}}{\mathrm{d}\mathcal{U}} \Omega^{2}) \partial^{a}_{\mathcal{U}} \\ \mathcal{U} \Big|_{\mathcal{C}_{\pm}} &= \pm 1 \end{split}$$

- Affinity proportional to expansion. ____
- On phase space, $\delta \mathcal{U} \neq 0$.

Given such data, Einstein's equations and torsionless equation impose two constraints

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2$$

Given such data, Einstein's equations and torsionless equation impose two constraints

chaudhuri equation: $e^{a}\ell^{b} = 0$

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma} X\right)\right)S$$

chaudhuri equation: $\ell^a \ell^b = 0$

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma}X\right)\right)S$$
shear

chaudhuri equation: $e^{a}\ell^{b} = 0$

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma}X\right)\right)S$$
shear

chaudhuri equation: $e^{a}\ell^{b} = 0$

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma}X\right)\right)S$$
shear

chaudhuri equation: $e^{a}\ell^{b} = 0$

Transport equation: - φ is a U(1) connection on \mathcal{N}

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma}X\right)\right)S$$
shear

chaudhuri equation: $e^{a}\ell^{b} = 0$

Transport equation: - φ is a U(1) connection on \mathcal{N} - J, X, \overline{X} are $\mathfrak{Sl}(2, \mathbb{R})$ generators

Given such data, Einstein's equations and torsionless equation impose two constraints

$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma}X\right)\right)S$$
shear

chaudhuri equation: $\mathcal{E}^{a}\mathcal{C}^{b} = 0$

Transport equation: - φ is a U(1) connection on \mathcal{N} - J, X, \overline{X} are $\mathfrak{sl}(2, \mathbb{R})$ generators - $[J, X] = -2iX, \quad [X, \overline{X}] = iJ$ Step 2: Null symplectic structure

Boundary symplectic structure for *y*-action

Boundary symplectic structure for *y*-action

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\begin{split} \Theta_{\mathcal{N}} &= -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left(J \mathrm{d}SS^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D}S_I S_I^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\mathrm{d}\mathcal{U} \left(\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2 \right). \end{split}$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\begin{split} \Theta_{\mathcal{N}} &= -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left(J \mathrm{d} S S^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1} \right) \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\mathrm{d} \mathcal{U} \left(\frac{\mathrm{d}^2}{\mathrm{d} \mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2 \right). \end{split}$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

+

Corner phase space: initial data for Raychaudhuri equation

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\begin{split} \Theta_{\mathcal{N}} &= -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left(J \mathrm{d} S S^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1} \right) \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\mathrm{d} \mathcal{U} \left(\frac{\mathrm{d}^2}{\mathrm{d} \mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2 \right). \end{split}$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

)+

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ_I

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\mathrm{Tr} \big(J \mathrm{d}SS^{-1} - \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\mathrm{Tr} \big((\sigma_I \bar{X} + \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\mathrm{Tr} \big((\sigma_I \bar{X} + \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\mathrm{d}\mathcal{U} \big(\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2} \Omega^2 \big)$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

¹)+

 $+ \bar{\sigma}_I X) \mathbb{D}S_I S_I^{-1} +$

 $2^2 + 2\sigma_I \bar{\sigma}_I \Omega^2$

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ_I - dressed D-differential

Boundary symplectic structure for γ -action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\begin{split} \Theta_{\mathcal{N}} &= -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left(J \mathrm{d} S S^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1} \right) \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\mathrm{d} \mathcal{U} \left(\frac{\mathrm{d}^2}{\mathrm{d} \mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2 \right). \end{split}$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ_I - dressed D-differential $\mathbb{D} = \mathbb{d} - \mathbb{d}\mathcal{U} - \mathbb{d}\mathcal{U}$ $d\mathcal{U}$

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\begin{split} \Theta_{\mathcal{N}} &= -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left(J \mathrm{d}SS^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D}S_I S_I \right) \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d}\mathcal{U} \wedge d^2 v_o \,\mathrm{d}\mathcal{U} \left(\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2 \right) \end{split}$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

 $+ \bar{\sigma}_I X) \mathbb{D}S_I S_I^{-1} +$

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ_I

- dressed D-differential
 - $\mathbb{D} = \mathbb{d} \mathbb{d}\mathcal{U}\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}}$
- U(1)-interaction picture for σ_I

Boundary symplectic structure for *y*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$\begin{split} \Theta_{\mathcal{N}} &= -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left(J \mathrm{d} S S^{-1} \right) + \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\Omega^2 \,\operatorname{Tr} \left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1} \right) \\ &- \frac{1}{8\pi G} \int_{\mathcal{N}} \mathrm{d} \mathcal{U} \wedge d^2 v_o \,\mathrm{d} \mathcal{U} \left(\frac{\mathrm{d}^2}{\mathrm{d} \mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2 \right). \end{split}$$

$$S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(* (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]$$

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ_I

- dressed D-differential
 - $\mathbb{D} = \mathbb{d} \mathbb{d}\mathcal{U}$ $d\mathcal{U}$
- U(1)-interaction picture for σ_I

Clock momentum: Raychaudhuri constraint coupling σ_I and Ω .

Step 3: Quantum impulsive null geometries

Replace smooth profile by series of step functions

Replace smooth profile by series of step functions

N U Replace smooth profile by series of step functions - Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic.

Replace smooth profile by series of step functions

- Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic.
- Neither IR nor UV cutoff. Physical duration itself a quantum observable.

Replace smooth profile by series of step functions

- Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic.
- Neither IR nor UV cutoff. Physical duration itself a quantum observable.
- Each pulse represents a quasi-local graviton.

 $\backslash \mathcal{U}$ Replace smooth profile by series of step functions - Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic. - Neither IR nor UV cutoff. Physical duration itself a

- quantum observable.
- Each pulse represents a quasi-local graviton.
- Quantize each pulse, then glue many such pulses back together.

Constant U(1) dressed shear: $\frac{d}{d\mathcal{U}}\sigma_I = 0$

Constant U(1) dressed shear: $\frac{d}{d\mathcal{U}}\sigma_I = 0$

Double role of shear

$$\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2$$
$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}^2} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I$$

Constant
$$U(1)$$
 dressed shear: $\frac{d}{d\mathcal{U}}\sigma_I = 0$

Double role of shear

$$\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2$$
$$- \mathrm{Euc}$$
$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}^2} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I$$

lidean angle in Raychaudhuri equation

Double role of shear

$$\frac{\mathrm{d}^2}{\mathrm{d}\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2 - \mathrm{Boc}$$
$$\frac{\mathrm{d}}{\mathrm{d}\mathcal{U}} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I$$

lidean angle in Raychaudhuri equation

ost angle in holonomy equation

Double role of shear

$$\frac{\mathrm{d}^{2}}{\mathrm{d}\mathscr{U}^{2}}\Omega^{2} = -2\sigma_{I}\bar{\sigma}_{I}\Omega^{2} - \mathrm{Eucl}$$

$$-\frac{\mathrm{d}}{\mathrm{d}}\Omega^{2} - \mathrm{Boo}$$

$$\frac{\mathrm{d}}{\mathrm{d}}S_{I} = (\sigma_{I}\bar{X} + \bar{\sigma}_{I}X)S_{I} - \mathrm{Role}$$

- lidean angle in Raychaudhuri equation
- ost angle in holonomy equation
- e of γ -parameter: mixing the two (recall $A = \Gamma + \gamma K$)

Kinematical phase space of a single pulse

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)

$$\left\{ \begin{aligned} a(\mathbf{z}), \bar{a}(\mathbf{z}') \right\} &= \mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'), \\ \left\{ b(\mathbf{z}), \bar{b}(\mathbf{z}') \right\} &= \mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'), \end{aligned}$$

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes) -----
- $T^*SL(2,\mathbb{R})$ radiative modes + edge modes for the holonomy equation

 $\left\{ \begin{aligned} a(\mathbf{z}), \bar{a}(\mathbf{z}') \right\} &= \mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'), \\ \left\{ b(\mathbf{z}), \bar{b}(\mathbf{z}') \right\} &= \mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'), \end{aligned}$ $\left\{ c(\mathbf{z}), \bar{c}(\mathbf{z}') \right\} = 2 \,\mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}') \,L(\mathbf{z}),$ $\left\{ L(\mathbf{z}), c(\mathbf{z}') \right\} = - \,\mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}') \,c(\mathbf{z}),$

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)
- $T^*SL(2,\mathbb{R})$ radiative modes + edge modes for the holonomy equation

 $\left\{ \begin{aligned} a(\mathbf{z}), \bar{a}(\mathbf{z}') \right\} &= \mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'), \\ \left\{ b(\mathbf{z}), \bar{b}(\mathbf{z}') \right\} &= \mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'), \end{aligned}$ $\{ c(\mathbf{z}), \bar{c}(\mathbf{z}') \} = 2 \,\mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}')\,L(\mathbf{z}),$ $\{ L(\mathbf{z}), c(\mathbf{z}') \} = - \,\mathrm{i}\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}')\,c(\mathbf{z}),$ $\{ c(\mathbf{z}), U(\mathbf{z}') \} = XU(\mathbf{z})\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}'),$ $\{ L(\mathbf{z}), U(\mathbf{z}') \} = -\frac{1}{2}JU(\mathbf{z})\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}') \,.$

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)
- $T^*SL(2,\mathbb{R})$ radiative modes + edge modes for the holonomy equation

Highly non-linear relation to geometric data

$$\Omega_{-}^{2} + \Omega_{+}^{2} = 16\pi\gamma G \left(L + a\bar{a}\right) \qquad \text{th}\left(2\sqrt{\sigma\bar{\sigma}}\right)$$
$$\Omega_{-}^{2} - \Omega_{+}^{2} = 16\pi\gamma G \left(L + b\bar{b}\right) \qquad U = e^{\gamma \ln\left(\frac{1}{2}\right)}$$

$$= \sqrt{\frac{\bar{b}b}{\bar{a}a}}$$
$$\ln\left(\sqrt{2\sigma\bar{\sigma}}\right)/\sqrt{2\sigma\bar{\sigma}}\right)J_{S_{1}}$$

 $\left\{a(\mathbf{z}), \bar{a}(\mathbf{z}')\right\} = \mathrm{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}'),$ $\left\{b(\mathbf{z}), \bar{b}(\mathbf{z}')\right\} = \mathrm{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}'),$ $\left\{c(\mathbf{z}), \bar{c}(\mathbf{z}')\right\} = 2\,\mathrm{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}')\,L(\mathbf{z}),$ $\left\{ L(\mathbf{z}), c(\mathbf{z}') \right\} = -i\,\delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}')\,c(\mathbf{z}),$ $\{c(z), U(z')\} = XU(z) \,\delta^{(2)}(z \,|\, z'),$ $\left\{L(z), U(z')\right\} = -\frac{1}{2}JU(z)\,\delta^{(2)}(z\,|\,z')\,.$

Physical states lie in the kernel of a constraint

Physical states lie in the kernel of a constraint

- Simple recurrence relation

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation _
- Constraint commutes with $SL(2,\mathbb{R})$ Casimir —

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation _
- Constraint commutes with $SL(2,\mathbb{R})$ Casimir —
- Physical states characterized by the value of the Casimir.

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation
- Constraint commutes with $SL(2,\mathbb{R})$ Casimir —
- Physical states characterized by the value of the Casimir.

$$L^{2} - c\bar{c} = \frac{1}{8\pi G} \left[\frac{1}{4\gamma^{2}} (\Omega_{-}^{2} - \frac{1}{\gamma^{2}} \sinh^{2}(2\sqrt{\sigma\bar{\sigma}}) \right]$$

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

 $(\Omega_{\perp}^{2})^{2}$ + $\bar{\bar{\sigma}} \Omega_+^2 \Omega_-^2 - \frac{1}{2} (\Omega_+^2 + \Omega_-^2)^2 \tan^2 \left(\sqrt{2\sigma\bar{\sigma}} \right) \Big|$

The sign of the $SL(2,\mathbb{R})$ Casimir determines two QG phases

- $L^2 > c\bar{c}$: discrete series representations, the U(1) generator L is bounded from below. Recurrence relations terminate. Shear bounded.

- $L^2 > c\bar{c}$: discrete series representations, the U(1) generator L is bounded from below. Recurrence relations terminate. Shear bounded.
- $L^2 < c\bar{c}$: continuous series representations, the U(1) generator L is unbounded from below. Recurrence relations do not terminate. Shear unbounded.

- $L^2 > c\bar{c}$: discrete series representations, the U(1) generator L is bounded from below. Recurrence relations terminate. Shear bounded.
- $L^2 < c\bar{c}$: continuous series representations, the U(1) generator L is unbounded from below. Recurrence relations do not terminate. Shear unbounded.
- Critical shear σ_{crit} separates the two phases. Connection to LQC? [Param's talk]

- $L^2 > c\bar{c}$: discrete series representations, the U(1) generator L is bounded from below. Recurrence relations terminate. Shear bounded.
- $L^2 < c\bar{c}$: continuous series representations, the U(1) generator L is unbounded from below. Recurrence relations do not terminate. Shear unbounded.
- Critical shear σ_{crit} separates the two phases. Connection to LQC? [Param's talk]

$$|\sigma_{crit.}|^{2} = \frac{1}{4} \frac{(\Omega_{-}^{2} - \Omega_{+}^{2})^{2}}{\gamma^{2}(\Omega_{+}^{2} + \Omega_{-}^{2})^{2} + 4\Omega_{+}^{2}\Omega_{-}^{2}} + \mathcal{O}(|\sigma_{crit}|^{3})$$

When do we go from discrete to continuous representations?

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula for the $SL(2,\mathbb{R})$ Casimir at null infinity

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula for the $SL(2,\mathbb{R})$ Casimir at null infinity
- Translate parameters of the pulse into Bondi frame

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula for the $SL(2,\mathbb{R})$ Casimir at null infinity
- Translate parameters of the pulse into Bondi frame
- Use 1/r-expansion to evaluate critical shear at \mathscr{F}_+

Planck luminosity

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula for the $SL(2,\mathbb{R})$ Casimir at null infinity
- Translate parameters of the pulse into Bondi frame
- Use 1/r-expansion to evaluate critical shear at \mathscr{I}_+
- Bondi mass loss formula gives critical luminosity

Planck luminosity

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula for the $SL(2,\mathbb{R})$ Casimir at null infinity
- Translate parameters of the pulse into Bondi frame
- Use 1/r-expansion to evaluate critical shear at \mathscr{I}_+
- Bondi mass loss formula gives critical luminosity

$$\mathscr{L}_{crit.} = \frac{c^5}{4\pi G} \oint_{S_2} d^2 G$$

Summary and conclusion

Erlangen 25.06.-27.06.24

ECAP Laboratory

FAU^2 focus workshop on quantum black holes and the relation to asymptotic infinity

Non-perturbative quantisation of impulsive null initial data.

- Non-perturbative quantisation of impulsive null initial data. •
 - Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).

Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous $SL(2,\mathbb{R})$ representations.

Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous $SL(2,\mathbb{R})$ representations.
- Above \mathscr{L}_{P} , states contain caustics. Contradicts implicit assumption in our argument of smooth \mathscr{I}_{+} above the Planck power.

Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous $SL(2,\mathbb{R})$ representations.
- Above \mathscr{L}_P , states contain caustics. Contradicts implicit assumption in our argument of smooth \mathscr{I}_+ above the Planck power.
- Does classical GR apply when one Planck Planck unit of time?

Does classical GR apply when one Planck energy quantum is radiated away during one

Non-perturbative quantisation of impulsive null initial data. •

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes). -----
- Planck power separates discrete and continuous $SL(2,\mathbb{R})$ representations. —
- Above $\mathscr{L}_{\mathbf{P}}$, states contain caustics. Contradicts implicit assumption in our argument of smooth \mathscr{I}_+ above the Planck power.
- Planck unit of time?
- Conjectures:

Does classical GR apply when one Planck energy quantum is radiated away during one

Non-perturbative quantisation of impulsive null initial data. •

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous $SL(2,\mathbb{R})$ representations. —
- Above $\mathscr{L}_{\mathbf{P}}$, states contain caustics. Contradicts implicit assumption in our argument of smooth \mathscr{I}_{+} above the Planck power.
- Planck unit of time?
- Conjectures:

Does classical GR apply when one Planck energy quantum is radiated away during one

- Planck power places an upper bound on semi-classical states (built-in UV cutoff) in non-perturbative QG.

Non-perturbative quantisation of impulsive null initial data. •

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous $SL(2,\mathbb{R})$ representations. —
- Above $\mathscr{L}_{\mathbf{P}}$, states contain caustics. Contradicts implicit assumption in our argument of smooth \mathscr{I}_{+} above the Planck power.
- Planck unit of time?
- Conjectures:

 - Planck power places an upper bound on semi-classical states (built-in UV cutoff) in non-perturbative QG. - Planck power plays for QG in D = 4 same role as Planck mass in D = 3.

Does classical GR apply when one Planck energy quantum is radiated away during one