Wolfgang Wieland, www.wmwieland.eu FAU Erlangen-Nuremberg

Quantum Geometry of the Light Cone

LOOPS'24, 10-05-2024 Florida Atlantic University Fort Lauderdale, FL USA

> [ww, arXiv:2402.12578] [ww, arXiv:2401.17491] [ww, JHEP 2021, arXiv:2104.05803] [ww, Class. Quant. Grav 34 2017, arXiv:1704.07391] [ww, Ann. Henri Poincaré 18 (2017), arXiv:1706.00479]

A simple Observation

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

The Planck power can appear in classical GR.

$$
\mathcal{L}_{P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^{5}}{G} \approx 3{,}63 \times 10^{52} \,\text{W}
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f$ (scale-independent observables)

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{D-4} \sigma^{2D+2}}{G^{D-2}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f$ (scale-independent observables)

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{D-4} \sigma^{2D+2}}{G^{D-2}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f$ (scale-independent observables)

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{D-4} \sigma^{2D+2}}{G^{D-2}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

$$
\mathcal{L}_{GW} \sim \frac{G}{c^5} (\ddot{T})^2 \sim \frac{G}{c^5} (M\omega^3)^2
$$

$$
\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{Q}{c^5}
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

> *Emission can only happen as long as:* $R \leq 2GM/c^2$

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f$ (scale-independent observables)

M,*ω R*

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{D-4} \sigma^{2D+2}}{G^{D-2}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

$$
\mathcal{L}_{GW} \sim \frac{G}{c^5} (\ddot{T})^2 \sim \frac{G}{c^5} (M\omega^3)^2
$$

$$
\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{C}{c^5}
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

The Planck power can appear in classical GR.

 $\mathscr{L}_{peak} = \mathscr{L}_{P} \times f$ (scale-independent observables)

Emission can only happen as long as: $R \leq 2GM/c^2$

M,*ω R*

$$
\mathcal{L}_{\text{GW}} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{L}
$$

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{D-4} \sigma^{2D+2}}{G^{D-2}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

$$
\mathcal{L}_{GW} \sim \frac{G}{c^5} (\ddot{T})^2 \sim \frac{G}{c^5} (M\omega^3)^2
$$

$$
\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{C}{c^5}
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

The Planck power can appear in classical GR.

 $\mathcal{L}_{peak} = \mathcal{L}_{P} \times f(\text{scale-independent observables})$ ℒ*peak* GW150914 $\approx 3.6 \times 10^{49}$ W

Emission can only happen as long as: $R \leq 2GM/c^2$

M,*ω R*

$$
\mathcal{L}_{\text{GW}} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{L}
$$

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

$$
\mathcal{L}_{GW} \sim \frac{G}{c^5} (\ddot{T})^2 \sim \frac{G}{c^5} (M\omega^3)^2
$$

$$
\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{C}{c^5}
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

Opportunity for new phenomenology. Reminiscent of relative locality and QG in $D = 2 + 1$, where $m_p = c^2/G$.

The Planck power can appear in classical GR.

 $\mathcal{L}_{peak} = \mathcal{L}_{P} \times f$ (scale-independent observables) ℒ*peak* GW150914 $\approx 3.6 \times 10^{49}$ W

Emission can only happen as long as: $R \leq 2GM/c^2$

M,*ω R*

$$
\mathcal{L}_{\rm GW} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{L}
$$

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

$$
\mathcal{L}_{GW} \sim \frac{G}{c^5} (\ddot{T})^2 \sim \frac{G}{c^5} (M\omega^3)^2
$$

$$
\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{Q}{c^5}
$$

In $D = 4$ spacetime dimensions, the Planck power is independent of \hbar .

Opportunity for new phenomenology. Reminiscent of relative locality and QG in $D = 2 + 1$, where $m_{\rm P} = c^2/G$.

The Planck power can appear in classical GR.

 $\mathcal{L}_{peak} = \mathcal{L}_{P} \times f$ (scale-independent observables) ℒ*peak* GW150914 $\approx 3.6 \times 10^{49}$ W

Emission can only happen as long as: $R \leq 2GM/c^2$

M,*ω R*

$$
\mathcal{L}_{GW} \sim \frac{c^5}{G} \left(\frac{GM}{c^2 R}\right)^5 \lesssim \mathcal{L}
$$

$$
\mathcal{L}_{\rm P} = \frac{\hbar^{\frac{D-4}{D-2}} c^{\frac{2D+2}{D-2}}}{G^{\frac{2}{D-2}}} = \frac{c^5}{G} \approx 3{,}63 \times 10^{52} \,\rm W
$$

$$
\mathcal{L}_{GW} \sim \frac{G}{c^5} (\ddot{T})^2 \sim \frac{G}{c^5} (M\omega^3)^2
$$

$$
\bar{E}_{kin} = -\frac{1}{2} \bar{E}_{pot} \Rightarrow M\omega^2 R^2 \sim \frac{C}{c^5}
$$

[Misner, Thorne Wheeler]

[Freidel, Livine, Girelli, Smolin, Kowalski-Glikmann, Amelino-Camelia, …, Corichi, Ashtekar, Varadarajan, …]

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

$$
\mathcal{L} \lesssim \mathcal{L}_{\rm P} = \frac{c^5}{G} \approx 3.63 \times 10^{52} \,\rm W
$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

$$
\mathcal{L} \lesssim \mathcal{L}_{\rm P} = \frac{c^5}{G} \approx 3.63 \times 10^{52} \,\rm W
$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

Comments:

- For dimensional reasons, bound can only appear in $D = 4$.

$$
\mathcal{L} \lesssim \mathcal{L}_{\rm P} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W
$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

- For dimensional reasons, bound can only appear in $D = 4$.
- If it exists, and since G is in the denominator, impossible to see in perturbative gravity.

$$
\mathcal{L} \lesssim \mathcal{L}_{\rm P} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W
$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

- For dimensional reasons, bound can only appear in $D = 4$. - If it exists, and since G is in the denominator, impossible to
- see in perturbative gravity.
- Yet point of caution: No good reason for such a bound from the perspective of the physics at null infinity.

$$
\mathcal{L} \lesssim \mathcal{L}_{\rm P} = \frac{c^5}{G} \approx 3,63 \times 10^{52} \,\rm W
$$

This talk: Quantum gravity could place a bound on gravitational wave luminosity. Conjecture based on new results.

- For dimensional reasons, bound can only appear in $D = 4$. - If it exists, and since G is in the denominator, impossible to
- see in perturbative gravity.
- Yet point of caution: No good reason for such a bound from the perspective of the physics at null infinity.

$$
\mathcal{L}_{Bondi} = \frac{c^5}{4\pi G} \oint_{S_2} d^2\Omega \left| \dot{\sigma}^{(0)} \right|^2
$$

free

$$
\mathcal{L} \lesssim \mathcal{L}_{\rm P} = \frac{c^5}{G} \approx 3.63 \times 10^{52} \,\rm W
$$

How to explore such a bound

Why null boundaries?

• Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
	- Push gauge evolution to its extreme.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
	- Push gauge evolution to its extreme.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
	- Push gauge evolution to its extreme.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
	- Push gauge evolution to its extreme.
	- Pick Ψ_{μ} as unique representative of entire gauge orbit.

- Take ADM initial data. Constraints $\mathcal{H}_a = D_b(K^{ab} - h^{ab}K)$, $\mathcal{H} = K_{ab}K^{ab} - K^2 - (3)$ generate gauge redundancies.
- Initial data on $\Sigma_1, \Sigma_2, \Sigma_3, \dots$ provide gauge equivalent representation of same physical state.
	- Push gauge evolution to its extreme.
	- Pick Ψ_{μ} as unique representative of entire gauge orbit.
	- Register radiation at null surface boundary.

space

• Register radiative modes at null boundary

• Register radiative modes at null boundary

- Register radiative modes at null boundary
- Besides radiation, we have corner data

modes/quantum

reference frames

- Register radiative modes at null boundary
- Besides radiation, we have corner data
modes/quantum reference frames

- Register radiative modes at null boundary
- Besides radiation, we have corner data

modes/quantum reference frames

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead

reference frames

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead
	- Choice of parametrisation of state space

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead
	- Choice of parametrisation of state space
	- Equip state space with symplectic structure **Equipers** (Sachs, Ashtekar, Lewandowski,

reference frames

Freidel, Ciambelli, Leigh, Reisenberger, Geiller, Pranzetti, Chandrasekaran, Flanaghan, Prabhu, Oliveri, Pranzetti, Speziale, ww, …]

reference frames

- Register radiative modes at null boundary
- Besides radiation, we have corner data
- Three steps ahead
	- Choice of parametrisation of state space
	- Equip state space with symplectic structure
	- Truncation + quantisation

Step 1: Null surface geometry

• Signature $(0 + +)$ metric

• Signature $(0 + +)$ metric

 $\varphi^*_{\hat{\mathcal{N}}} g_{ab} = q_{ab} = \delta_{ij}$ $e^{i}{}_{a}e^{j}$ *b*

• Signature $(0 + +)$ metric

 $\varphi^*_{\hat{\mathcal{N}}} g_{ab} = q_{ab} = \delta_{ij}$ $e^{i}{}_{a}e^{j}$ *b*

• Parametrisation of the co-dyad

• Signature $(0 + +)$ metric

$$
\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i_{\ a} e^j_{\ b}, \quad i, j
$$

$$
e^i = \Omega S_m^{i}{}^{(o)} e^m
$$

- Parametrisation of the co-dyad
	- Conformal factor Ω

• Signature $(0 + +)$ metric

$$
\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i_{\ a} e^j_{\ b}, \quad i, j
$$

$$
e^i = \Omega S_m^{i}{}^{(o)} e^m
$$

- Parametrisation of the co-dyad
	- Conformal factor Ω
	- Shape modes: holonomy *S* ∈ *SL*(2,ℝ)

• Signature $(0 + +)$ metric

- Parametrisation of the co-dyad
	- Conformal factor Ω
	- Shape modes: holonomy *S* ∈ *SL*(2,ℝ)
	- Fiducial background structure: null direction ℓ^a : $\pi_*\ell^a = 0$, co-dyad $({}^{(o)}e^1, {}^{(o)}e^2) = (d\vartheta, \sin \vartheta d\varphi)$. $\sigma^{(o)}e^{1}, \sigma^{(o)}e^{2}\bigr) = (d\vartheta, \sin\vartheta \, d\varphi)$

$$
\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i_{\ a} e^j_{\ b}, \quad i, j
$$

$$
e^i = \Omega S^i{}_m{}^{(o)} e^m
$$

 $= 1,2$

• Signature $(0 + +)$ metric

- Parametrisation of the co-dyad
	- Conformal factor Ω
	- Shape modes: holonomy *S* ∈ *SL*(2,ℝ)
	- Fiducial background structure: null direction ℓ^a : $\pi_*\ell^a = 0$, co-dyad $({}^{(o)}e^1, {}^{(o)}e^2) = (d\vartheta, \sin \vartheta d\varphi)$. $\sigma^{(o)}e^{1}, \sigma^{(o)}e^{2}\bigr) = (d\vartheta, \sin\vartheta \, d\varphi)$

$$
\varphi_{\mathcal{N}}^* g_{ab} = q_{ab} = \delta_{ij} e^i_{\ a} e^j_{\ b}, \quad i, j
$$

$$
e^i = \Omega S^i{}_m{}^{(o)} e^m
$$

 $= 1,2$

[ww 2017]

• We look at abstract null boundary with initial and final cuts

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$
\left|\frac{\partial_{\mathcal{U}}^{b} \nabla_{b} \partial_{\mathcal{U}}^{a}}{\partial_{\xi}}\right|_{\mathcal{N}} = -\frac{1}{2} (\Omega^{-2} \frac{d}{d\mathcal{U}} \Omega^{2}) \partial_{\mathcal{U}}^{a}
$$

$$
\left|\frac{\partial \mathcal{U}}{\partial \xi_{\pm}}\right|_{\mathcal{L}} = \pm 1
$$

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$
\left|\frac{\partial_{\mathcal{U}}^{b} \nabla_{b} \partial_{\mathcal{U}}^{a}}{\partial_{\xi}}\right|_{\mathcal{N}} = -\frac{1}{2} (\Omega^{-2} \frac{d}{d\mathcal{U}} \Omega^{2}) \partial_{\mathcal{U}}^{a}
$$

$$
\left|\frac{\partial \mathcal{U}}{\partial \xi_{\pm}}\right|_{\mathcal{L}} = \pm 1
$$

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$
\left|\frac{\partial_{\mathcal{U}}^{b} \nabla_{b} \partial_{\mathcal{U}}^{a}}{\partial_{\xi}}\right|_{\mathcal{N}} = -\frac{1}{2} (\Omega^{-2} \frac{d}{d\mathcal{U}} \Omega^{2}) \partial_{\mathcal{U}}^{a}
$$

$$
\left|\frac{\partial \mathcal{U}}{\partial \xi_{\pm}}\right|_{\mathcal{L}} = \pm 1
$$

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

$$
\left|\frac{\partial_{\mathcal{U}}^{b} \nabla_{b} \partial_{\mathcal{U}}^{a}}{\partial_{\xi}}\right|_{\mathcal{N}} = -\frac{1}{2} (\Omega^{-2} \frac{d}{d\mathcal{U}} \Omega^{2}) \partial_{\mathcal{U}}^{a}
$$

$$
\left|\frac{\partial \mathcal{U}}{\partial \xi_{\pm}}\right|_{\mathcal{L}} = \pm 1
$$

- Affinity proportional to expansion.

- We look at abstract null boundary with initial and final cuts
- Choice of teleological clock

- Affinity proportional to expansion.
- On phase space, $\delta \mathcal{U} \neq 0$.

$$
\left|\frac{\partial_{\mathcal{U}}^{b} \nabla_{b} \partial_{\mathcal{U}}^{a}}{\partial_{\xi}}\right|_{\mathcal{N}} = -\frac{1}{2} (\Omega^{-2} \frac{d}{d\mathcal{U}} \Omega^{2}) \partial_{\mathcal{U}}^{a}
$$

$$
\left|\frac{\partial \mathcal{U}}{\partial \xi_{\pm}}\right|_{\mathcal{L}} = \pm 1
$$

Given such data, Einstein's equations and torsionless equation impose two constraints

Given such data, Einstein's equations and torsionless equation impose two constraints

$$
\frac{d^2}{d\mathcal{U}^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$

Given such data, Einstein's equations and torsionless equation impose two constraints

Ω² = − 2*σσ*¯Ω² *Raychaudhuri equation:* $G_{ab}\ell^a\ell^b=0$

$$
\frac{d^2}{d\mathcal{U}^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

Given such data, Einstein's equations and torsionless equation impose two constraints

Raychaudhuri equation: $G_{ab}\ell^a\ell^b=0$

$$
\frac{d^2}{d\mathcal{U}^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

$$
\frac{\mathrm{d}}{\mathrm{d}\mathscr{U}}S = \left(\varphi J + \left(\sigma \bar{X} + \bar{\sigma} X\right)\right)S
$$

Given such data, Einstein's equations and torsionless equation impose two constraints

Raychaudhuri equation: $G_{ab}\ell^a\ell^b=0$

$$
\frac{d^2}{d^2\ell^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

$$
\frac{d}{d\mathcal{U}}S = (\varphi J + (\sigma \bar{X} + \bar{\sigma} X))S
$$
_{shear}

Given such data, Einstein's equations and torsionless equation impose two constraints

Raychaudhuri equation: $G_{ab}\ell^a\ell^b=0$

$$
\frac{d^2}{d^2\ell^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

$$
\frac{d}{d\mathcal{U}}S = (\varphi J + (\sigma \bar{X} + \bar{\sigma} X))S
$$
_{shear}

Given such data, Einstein's equations and torsionless equation impose two constraints

Raychaudhuri equation: $G_{ab}\ell^a\ell^b=0$

$$
\frac{d^2}{d^2\ell^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

$$
\frac{d}{d\mathcal{U}}S = (\varphi J + (\sigma \bar{X} + \bar{\sigma} X))S
$$
_{shear}

Transport equation: - φ is a U(1) connection on

Given such data, Einstein's equations and torsionless equation impose two constraints

Raychaudhuri equation: $G_{ab}\ell^a\ell^b=0$

$$
\frac{d^2}{d^2\ell^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

$$
\frac{d}{d\mathcal{U}}S = (\varphi J + (\sigma \bar{X} + \bar{\sigma} X))S
$$
_{shear}

Transport equation: - φ is a U(1) connection on - J, *X*, *X*¯ *are* (2,ℝ) *generators*

Given such data, Einstein's equations and torsionless equation impose two constraints

Raychaudhuri equation: $G_{ab}\ell^a\ell^b=0$

> *Transport equation: - φ is a U(1) connection on - J*, *X*, *X*¯ *are* (2,ℝ) *generators* $-[J, X] = -2iX, \quad [X, \bar{X}] = iJ$

$$
\frac{d^2}{d^2\ell^2}\Omega^2 = -2\sigma\bar{\sigma}\Omega^2
$$
 Rayc

$$
\frac{d}{d\mathcal{U}}S = (\varphi J + (\sigma \bar{X} + \bar{\sigma} X))S
$$
_{shear}

Step 2: Null symplectic structure

Boundary symplectic structure for *γ*-action

Boundary symplectic structure for *γ*-action

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

$$
\Big) +
$$

$v_o \Omega^2 \operatorname{Tr}((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}) +$

 $\Omega^2 + 2\sigma_I\bar{\sigma}_I\Omega^2$) .

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial \mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr} (J d S S^{-1})
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr} ((\sigma_I \bar{X} - \frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o) d \mathcal{U} \left(\frac{d^2}{d \mathcal{U}^2} \Omega^2\right)
$$

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

Corner phase space: initial data for Raychaudhuri equation

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr}\left(J d S S^{-1}\right) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d\mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr}\left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}\right)
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d\mathcal{U} \wedge d^2 v_o d\mathcal{U}\left(\frac{d^2}{d\mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2\right).
$$

^I)+

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ_I

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr}\left(J d S S^{-1}\right) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d\mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr}\left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}\right)
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d\mathcal{U} \wedge d^2 v_o d\mathcal{U}\left(\frac{d^2}{d\mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2\right).
$$

^I)+
Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

 $+$

 $v_o \Omega^2 \operatorname{Tr}((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}) +$

 $\Omega^2 + 2\sigma_I\bar{\sigma}_I\Omega^2$) .

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ *^I* - *dressed* D-differential

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial \mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr} (J d S S^{-1})
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr} ((\sigma_I \bar{X} - \frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o) d \mathcal{U} \left(\frac{d^2}{d \mathcal{U}^2} \Omega^2\right)
$$

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = pdq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

 $\Omega^2 + 2\sigma_I\bar{\sigma}_I\Omega^2$) .

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ *^I* - *dressed* D-differential $D = d - d \mathcal{U} \frac{d}{dt}$ $d\mathcal{U}$

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial \mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr} (J d S S^{-1}) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr} ((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o d \mathcal{U} \left(\frac{d^2}{d \mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2\right).
$$

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = p dq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

 $\binom{I-1}{I}$ +

- *dressed* D-differential
	- $D = d d \mathcal{U}$ $d\mathcal{U}$
- *- U*(1)*-interaction picture for σ^I*

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ *^I*

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial\mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr}\left(J d S S^{-1}\right) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d\mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr}\left((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}\right)
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d\mathcal{U} \wedge d^2 v_o d\mathcal{U}\left(\frac{d^2}{d\mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2\right).
$$

Boundary symplectic structure for *γ*-action

Symplectic potential $\Theta = pdq$ determines classical ($\hbar \rightarrow 0$) algebra of observables.

$$
S[A, e] = \frac{1}{16\pi G} \int_{\mathcal{M}} \left(\ast (e_{\alpha} \wedge e_{\beta}) - \frac{1}{\gamma} (e_{\alpha} \wedge e_{\beta}) \right) \wedge F^{\alpha\beta}[A]
$$

 $\Omega^2 + 2\sigma_I\bar{\sigma}_I\Omega^2$) .

- *dressed* D-differential
	- $=\mathbb{d}-\mathbb{d}\mathcal{U}\frac{\mathbb{d}}{\mathbb{d}^2}$ d
- *- U*(1)*-interaction picture for σ^I*

Clock momentum: Raychaudhuri constraint coupling $σ_I$ and $Ω$.

Corner phase space: initial data for Raychaudhuri equation

Free radiative data: shear σ *^I*

$$
\Theta_{\mathcal{N}} = -\frac{1}{16\pi\gamma G} \int_{\partial \mathcal{N}} d^2 v_o \Omega^2 \operatorname{Tr} (J d S S^{-1}) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o \Omega^2 \operatorname{Tr} ((\sigma_I \bar{X} + \bar{\sigma}_I X) \mathbb{D} S_I S_I^{-1}) +
$$

$$
-\frac{1}{8\pi G} \int_{\mathcal{N}} d \mathcal{U} \wedge d^2 v_o d \mathcal{U} \left(\frac{d^2}{d \mathcal{U}^2} \Omega^2 + 2\sigma_I \bar{\sigma}_I \Omega^2\right).
$$

Step 3: Quantum impulsive null geometries

Replace smooth profile by series of step functions

Replace smooth profile by series of step functions

 \mathcal{N} Replace smooth profile by series of step functions - Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic.

Replace smooth profile by series of step functions

- Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic.
- Neither IR nor UV cutoff. Physical duration itself a quantum observable.

Replace smooth profile by series of step functions

- Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic.
- Neither IR nor UV cutoff. Physical duration itself a quantum observable.
- Each pulse represents a quasi-local graviton.

 $\sqrt{2/}$ Replace smooth profile by series of step functions - Algebra local along null rays, but ultra-local in angular directions. LQG topogical excitations not at all exotic. - Neither IR nor UV cutoff. Physical duration itself a

-
- quantum observable.
- Each pulse represents a quasi-local graviton.
- Quantize each pulse, then glue many such pulses back together.

Constant $U(1)$ dressed shear: $\frac{d}{d\theta}$ d $\sigma_{\!I} = 0$

Constant $U(1)$ dressed shear: $\frac{d}{d\theta}$ d $\sigma_{\!I} = 0$

Double role of shear

$$
\frac{d^2}{d\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2
$$

$$
\frac{d}{d\mathcal{U}} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I
$$

Constant
$$
U(1)
$$
 dressed shear: $\frac{d}{d\mathcal{U}}\sigma_{I} = 0$

Double role of shear

$$
\frac{d^2}{d\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2
$$
\n
$$
\frac{d}{d\mathcal{U}} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I
$$

Iidean angle in Raychaudhuri equation

Double role of shear

$$
\frac{d^2}{d\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2
$$
 = Boc

$$
\frac{d}{d\mathcal{U}} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I
$$

Iidean angle in Raychaudhuri equation

ost angle in holonomy equation

Double role of shear

$$
\frac{d^2}{d\mathcal{U}^2} \Omega^2 = -2\sigma_I \bar{\sigma}_I \Omega^2
$$
 = Boo

$$
\frac{d}{d\mathcal{U}} S_I = (\sigma_I \bar{X} + \bar{\sigma}_I X) S_I
$$
 = Boe

- lidean angle in Raychaudhuri equation
- ost angle in holonomy equation
- P e of *γ*-parameter: mixing the two (recall $A = \Gamma + \gamma K$)

Kinematical phase space of a single pulse

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)

 $\{a(\mathbf{z}), \bar{a}(\mathbf{z}')\} = i \delta^{(2)}(\mathbf{z} | \mathbf{z}'),$ $\left\{b(\mathbf{z}), \bar{b}(\mathbf{z}')\right\} = \mathrm{i} \delta^{(2)}(\mathbf{z} | \mathbf{z}'),$

Kinematical phase space of a single pulse

(**z** | **z**′), $\left\{b(\mathbf{z}), \bar{b}(\mathbf{z}')\right\} = \mathrm{i} \delta^{(2)}(\mathbf{z} | \mathbf{z}'),$ $\{c(\mathbf{z}), \bar{c}(\mathbf{z}')\} = 2 \, \mathrm{i} \, \delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}') L(\mathbf{z}),$ $\{L(\mathbf{z}), c(\mathbf{z}')\} = -i \delta^{(2)}(\mathbf{z} | \mathbf{z}') c(\mathbf{z}),$

- Two angle-dependent Heisenberg charges (edge modes)
- $T^* SL(2,\mathbb{R})$ radiative modes + edge modes for the $\begin{cases} a(\mathbf{z}), \bar{a}(\mathbf{z}') = \mathrm{i} \, \delta^{(2)} \ a(\mathbf{z}), \bar{a}(\mathbf{z}') = \mathrm{i} \, \delta^{(2)} \end{cases}$ holonomy equation

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)
- $T^* SL(2,\mathbb{R})$ radiative modes + edge modes for the $\begin{cases} a(\mathbf{z}), \bar{a}(\mathbf{z}') = \mathrm{i} \, \delta^{(2)} \ a(\mathbf{z}), \bar{a}(\mathbf{z}') = \mathrm{i} \, \delta^{(2)} \end{cases}$ holonomy equation

(**z** | **z**′), $\left\{b(\mathbf{z}), \bar{b}(\mathbf{z}')\right\} = \mathrm{i} \delta^{(2)}(\mathbf{z} | \mathbf{z}'),$ $\{c(\mathbf{z}), \bar{c}(\mathbf{z}')\} = 2 \, \mathrm{i} \, \delta^{(2)}(\mathbf{z} \,|\, \mathbf{z}') L(\mathbf{z}),$ $\{L(\mathbf{z}), c(\mathbf{z}')\} = -i \delta^{(2)}(\mathbf{z} | \mathbf{z}') c(\mathbf{z}),$ $\{c(z), U(z')\} = XU(z) \delta^{(2)}(z|z'),$ $\{L(z), U(z')\} = -\frac{1}{2}JU(z)\,\delta^{(2)}(z\,|z')$.

Kinematical phase space of a single pulse

- Two angle-dependent Heisenberg charges (edge modes)
- **-** T ^{*}*SL*(2,ℝ) radiative modes + edge modes for the holonomy equation

Highly non-linear relation to geometric data

$$
\{a(\mathbf{z}), \bar{a}(\mathbf{z}')\} = \mathbf{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}'),
$$

$$
\{b(\mathbf{z}), \bar{b}(\mathbf{z}')\} = \mathbf{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}'),
$$

$$
\{c(\mathbf{z}), \bar{c}(\mathbf{z}')\} = 2\mathbf{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}')L
$$

$$
\{L(\mathbf{z}), c(\mathbf{z}')\} = -\mathbf{i}\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}')c
$$

$$
\{c(\mathbf{z}), U(\mathbf{z}')\} = XU(\mathbf{z})\,\delta^{(2)}(\mathbf{z}\,|\,\mathbf{z}')
$$

$$
\Omega_{-}^{2} + \Omega_{+}^{2} = 16\pi\gamma G \left(L + a\bar{a} \right)
$$

$$
\Omega_{-}^{2} - \Omega_{+}^{2} = 16\pi\gamma G \left(L + b\bar{b} \right)
$$

$$
U = e^{\gamma \ln \left(L - b\bar{b} \right)}
$$

$$
\overline{\sigma}\overline{\sigma} = \sqrt{\frac{b}{\bar{a}a}}
$$

$$
\gamma \ln \left(\tan \left(\sqrt{2\sigma} \overline{\sigma} \right) / \sqrt{2\sigma} \overline{\sigma} \right) J_{S_{-}}
$$

Physical states lie in the kernel of a constraint

Physical states lie in the kernel of a constraint

- Simple recurrence relation

 $c \overline{a} \overline{b} = f_{\gamma}(L, \overline{a}a, \overline{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation
- Constraint commutes with *SL*(2,ℝ) Casimir

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation
- Constraint commutes with *SL*(2,ℝ) Casimir
- Physical states characterized by the value of the Casimir.

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

Physical states lie in the kernel of a constraint

- Simple recurrence relation
- Constraint commutes with *SL*(2,ℝ) Casimir
- Physical states characterized by the value of the Casimir.

 $2^2 - \Omega_+^2)^2 +$

 $(2\sqrt{\sigma\bar{\sigma}})\Omega_{+}^{2}\Omega_{-}^{2}-\frac{1}{2}$ 2 $(\Omega_{+}^2 + \Omega_{-}^2)^2 \tan^2(\sqrt{2\sigma\bar{\sigma}})$

$$
L^{2} - c\bar{c} = \frac{1}{8\pi G} \left[\frac{1}{4\gamma^{2}} (\Omega_{-}^{2} - \frac{1}{\gamma^{2}} \sinh^{2} (2\sqrt{\sigma}\bar{\sigma})) \right]
$$

 $c \bar{a} \bar{b} = f_{\gamma}(L, \bar{a}a, \bar{b}b)$

The sign of the *SL*(2,ℝ) Casimir determines two QG phases

- $L^2 > c\bar{c}$: discrete series representations, the $U(1)$ generator L is bounded from below. Recurrence relations terminate. Shear bounded.

- $L^2 > c\bar{c}$: discrete series representations, the $U(1)$ generator L is bounded from below. Recurrence relations terminate. Shear bounded.
- $L^2 < c\bar{c}$: continuous series representations, the $U(1)$ generator L is unbounded from below. Recurrence relations do not terminate. Shear unbounded.

- $L^2 > c\bar{c}$: discrete series representations, the $U(1)$ generator L is bounded from below. Recurrence relations terminate. Shear bounded.
- $L^2 < c\bar{c}$: continuous series representations, the $U(1)$ generator L is unbounded from below. Recurrence relations do not terminate. Shear unbounded.
- Critical shear σ_{crit} separates the two phases. Connection to LQC? [Param's talk]

- $L^2 > c\bar{c}$: discrete series representations, the $U(1)$ generator L is bounded from below. Recurrence relations terminate. Shear bounded.
- $L^2 < c\bar{c}$: continuous series representations, the $U(1)$ generator L is unbounded from below. Recurrence relations do not terminate. Shear unbounded.
- Critical shear σ_{crit} separates the two phases. Connection to LQC? [Param's talk]

$$
|\sigma_{crit.}|^2 = \frac{1}{4} \frac{(\Omega_-^2 - \Omega_+^2)^2}{\gamma^2 (\Omega_+^2 + \Omega_-^2)^2 + 4\Omega_+^2 \Omega_-^2} + \mathcal{O}(|\sigma_{crit}|^3)
$$

- Assuming there is a semi-classical limit, we can apply the formula for the *SL*(2,ℝ) Casimir at null infinity

- Assuming there is a semi-classical limit, we can apply the formula for the *SL*(2,ℝ) Casimir at null infinity
- Translate parameters of the pulse into Bondi frame

- Assuming there is a semi-classical limit, we can apply the formula for the *SL*(2,ℝ) Casimir at null infinity
- Translate parameters of the pulse into Bondi frame
- Use $1/r$ -expansion to evaluate critical shear at \mathscr{I}_+

Planck luminosity

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula for the *SL*(2,ℝ) Casimir at null infinity
- Translate parameters of the pulse into Bondi frame
- Use $1/r$ -expansion to evaluate critical shear at \mathscr{I}_+
- Bondi mass loss formula gives critical luminosity *^u*−(*ϑ*, *^φ*)

Planck luminosity

- Assuming there is a semi-classical limit, we can apply the formula for the *SL*(2,ℝ) Casimir at null infinity
- Translate parameters of the pulse into Bondi frame
- Use $1/r$ -expansion to evaluate critical shear at \mathscr{I}_+
- Bondi mass loss formula gives critical luminosity

When do we go from discrete to continuous representations?

$$
\mathscr{L}_{crit.} = \frac{c^5}{4\pi G} \oint_{S_2} d^2S
$$

Summary and conclusion

FAU^2 focus workshop on quantum black holes and the relation to asymptotic infinity

Erlangen 25.06.-27.06.24

ECAP Laboratory

• Non-perturbative quantisation of impulsive null initial data.

- Non-perturbative quantisation of impulsive null initial data.
	- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).

• Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous *SL*(2,ℝ) representations.

• Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous *SL*(2,ℝ) representations.
- Above ${\mathscr L}_{\rm P}$, states contain caustics. Contradicts implicit assumption in our argument of smooth ${\mathscr I}_+$ above the Planck power.

• Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous *SL*(2,ℝ) representations.
- Above ${\mathscr L}_{\rm P}$, states contain caustics. Contradicts implicit assumption in our argument of smooth ${\mathscr I}_+$ above the Planck power.
- Planck unit of time?

• Does classical GR apply when one Planck energy quantum is radiated away during one

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous *SL*(2,ℝ) representations.
- Above ${\mathscr L}_{\rm P}$, states contain caustics. Contradicts implicit assumption in our argument of smooth ${\mathscr I}_+$ above the Planck power.
- Planck unit of time?
- Conjectures:

• Non-perturbative quantisation of impulsive null initial data.

• Does classical GR apply when one Planck energy quantum is radiated away during one

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous *SL*(2,ℝ) representations.
- Above ${\mathscr L}_{\rm P}$, states contain caustics. Contradicts implicit assumption in our argument of smooth ${\mathscr I}_+$ above the Planck power.
- Planck unit of time?
- Conjectures:
	-

• Non-perturbative quantisation of impulsive null initial data.

• Does classical GR apply when one Planck energy quantum is radiated away during one

- Planck power places an upper bound on semi-classical states (built-in UV cutoff) in non-perturbative QG.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).
- Planck power separates discrete and continuous *SL*(2,ℝ) representations.
- Above ${\mathscr L}_{\rm P}$, states contain caustics. Contradicts implicit assumption in our argument of smooth ${\mathscr I}_+$ above the Planck power.
- Planck unit of time?
- Conjectures:
	-
	- Planck power places an upper bound on semi-classical states (built-in UV cutoff) in non-perturbative QG. - Planck power plays for QG in $D = 4$ same role as Planck mass in $D = 3$.

• Non-perturbative quantisation of impulsive null initial data.

• Does classical GR apply when one Planck energy quantum is radiated away during one