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Register radiation at null boundary

Why null boundaries?

* Take ADM initial data. Constraints
H, = D, (K- h"K), # = K K — K*— OR[h]
generate gauge redundancies.

 |nitialdataon X, %,, %, ... provide gauge
equivalent representation of same physical state.

Similar logic: [Suvat Raju’s talk]

- Push gauge evolution to its extreme.

- Pick ¥ , as unique representative of entire gauge orbit.

- Register radiation at null surface boundary.
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Given such data, Einstein’s equations and
torsionless equation impose two constraints
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Impulsive null initial data

Replace smooth profile by series of step
functions

- Algebra local along null rays, but ultra-local in angular
directions. LQG topogical excitations not at all exotic.

- Neither IR nor UV cutoff. Physical duration itself a
guantum observable.

- Each pulse represents a quasi-local graviton.

- Quantize each pulse, then glue many such pulses back together.
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Solving the constraints for impulsive data

d

Constant U(1) dressed shear: 7 o, =0
Double role of shear
12 - Euclidean angle in Raychaudhuri equation
Q% = — 20,6,Q°
d%?

- Boost angle in holonomy equation

d% - Role of y-parameter: mixing the two (recall A = I'+yK)
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Algebra of kinematical observables

Kinematical phase space of a single pulse
- Two angle-dependent Heisenberg charges (edge modes)

- T*SL(2,R) radiative modes + edge modes for the
holonomy equation

Highly non-linear relation to geometric data

=\ — . /Db
Q% + Q% = 16ayG (L + aa) th(z\/‘;) ~ V aa

Q% — Q%_ — 167[yG (L - b[_Q) [ — eyln(tan(%)/ 205>JS
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{L@).c@)} = -i6%(|2) c(@),
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Physical states lie in the kernel of a constraint

- Simple recurrence relation cab = J/L, aa. bb)

- Constraint commutes with SL(2,R) Casimir
\

- Physical states characterized by the value of the Casimir. L laader operator
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L*— ¢t = (Q2 — Q1)+
871G | 4y? i
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Y



Critical shear

The sign of the SL(2,R) Casimir determines two QG phases



Critical shear

The sign of the SL(2,R) Casimir determines two QG phases

- L* > c¢: discrete series representations, the U(1) generator L is bounded from
below. Recurrence relations terminate. Shear boundead.



Critical shear

The sign of the SL(2,R) Casimir determines two QG phases

- L* > c¢: discrete series representations, the U(1) generator L is bounded from
below. Recurrence relations terminate. Shear boundead.

- L? < c¢: continuous series representations, the U(1) generator L is unbounded from
below. Recurrence relations do not terminate. Shear unbounded.



Critical shear

The sign of the SL(2,R) Casimir determines two QG phases

- L* > c¢: discrete series representations, the U(1) generator L is bounded from
below. Recurrence relations terminate. Shear boundead.

- L? < c¢: continuous series representations, the U(1) generator L is unbounded from
below. Recurrence relations do not terminate. Shear unbounded.

- Critical shear o

crit

separates the two phases. Connection to LQC? [Param's talk]



Critical shear

The sign of the SL(2,R) Casimir determines two QG phases

- L* > ce: discrete series representations, the U(1) generator L is bounded from
below. Recurrence relations terminate. Shear boundead.

- L? < c¢: continuous series representations, the U(1) generator L is unbounded from
below. Recurrence relations do not terminate. Shear unbounded.

- Critical shear o

crit

separates the two phases. Connection to LQC? [Param's talk]

1 (Q% — Q2)?
4 y2(Q4 + Q2)? + 4Q7Q2
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Planck luminosity

When do we go from discrete to continuous representations?

- Assuming there is a semi-classical limit, we can apply the formula
for the SL(2,R) Casimir at null infinity

- Translate parameters of the pulse into Bondi frame
- Use 1/r-expansion to evaluate critical shear at .7,

- Bondi mass loss formula gives critical luminosity

. <L
L rir. = : <J; d’Q|60 P = ——
. AxG 5 Crit. ]/2 + ]



Summary and conclusion
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Summary and Discussion

* Non-perturbative quantisation of impulsive null initial data.

- Quantum geometry includes radiative data and corner data (area quanta + shape/shear modes).

- Planck power separates discrete and continuous SL(2,R) representations.

- Above &y, states contain caustics. Contradicts implicit assumption in our argument of smooth ., above the
Planck power.

* Does classical GR apply when one Planck energy quantum is radiated away during one
Planck unit of time?

» Conjectures:

- Planck power places an upper bound on semi-classical states (built-in UV cutoff) in non-perturbative QG.

- Planck power plays for QG in D = 4 same role as Planck mass in D = 3.



