Diffeomorphism Covariance and the Quantum Schwarzschild Interior

Published on *Universe 2024, 10(2), 89*. [\[3](#page-25-0)]

Rafael Guolo Dias

with Jonathan Engle and Ian Bornhoeft

Florida Atlantic University

LOOPS'24, May 2024

Rafael G. Dias **[Diffeomorphism Covariance and the Quantum Schwarzschild Interior](#page-25-1)** LOOPS'24, May 2024

4.000.00

 $\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \times\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \times\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\}$

 $2Q$

Goal:

To derive a family of dynamics for the Schwarzschild interior model by requesting the quantum framework to be covariant under residual diffeomorphisms.

1 [Introduction](#page-2-0)

2 [Diffeomorphism Covariance and Quantization](#page-6-0)

3 [Literature](#page-15-0)

4 [Conclusion](#page-24-0)

 298

K ロ ▶ K 個 ▶ K ミ ▶ K ミ

- Background independence (diffeomorphism covariance) is a key feature of the formulation of General Relativity.
- **Loop Quantum Gravity (LQG) is built based on this principle.**
- **DED** Loop Quantum Cosmology (LQC) applies quantization techniques analogous to LQG to symmetry-reduced models, but does not require diffeomorphism covariance a priori.
- Engle & Vilensky (2018,2019) show for homogeneous isotropic LQC and Bianchi I models that a
	- uniqueness can be achieved by requiring the Hamiltonian to have a minimal number of terms.
- Requiring the same for Schwarzschild interior model contributes to reduce ambiguities in its construction.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

- Background independence (diffeomorphism covariance) is a key feature of the formulation of General Relativity.
- **Loop Quantum Gravity (LQG) is built based on this principle.**
- **DED** Loop Quantum Cosmology (LQC) applies quantization techniques analogous to LQG to symmetry-reduced models, but does not require diffeomorphism covariance a priori.
- **Engle & Vilensky (2018,2019) show for homogeneous isotropic LQC and Bianchi I models that a** family of dynamics can be derived from residual diffeomorphism covariance [[5](#page-25-2), [6](#page-25-3)],
	- uniqueness can be achieved by requiring the Hamiltonian to have a minimal number of terms.
- Requiring the same for Schwarzschild interior model contributes to reduce ambiguities in its construction.

 Ω

イロト イ押 トイヨ トイヨト

Really fast-track Kantowski-Sachs

Homogeneous model with spatial section of topology $S^2 \times \mathbb{R}$, equivalent to Schwarzschild, and geometry described by pairs (b, p_b) and (c, p_c) , such that

$$
\{b, p_b\} = G\gamma \text{ and } \{c, p_c\} = 2G\gamma,
$$

$$
ds^2 = -N^2 d\tau^2 + \frac{p_b^2}{|p_c|L_0^2} dx^2 + |p_c| d\Omega^2,
$$

$$
V = 4\pi |p_b| \sqrt{|p_c|}.
$$

Ashtekar-Barbero variables:

$$
A_a^1 = -b \sin \theta \partial_a \phi, \qquad E_1^a = -\frac{p_b}{L_0} \phi^a
$$

$$
A_a^2 = b \partial_a \theta, \qquad E_2^a = \frac{p_b}{L_0} \sin \theta \theta^a
$$

$$
A_a^3 = \frac{c}{L_0} \partial_a x + \cos \theta \partial_a \phi, \qquad E_3^a = p_c \sin \theta x^a
$$

$$
H_{c\ell}[N] = -\frac{V^{n+1}}{8\pi G\gamma^2} \operatorname{sgn} p_b \left[\frac{b^2 + \gamma^2}{p_c} + \frac{2bc}{p_b} \right]
$$

 Ω

メロトメ 倒 トメ ミトメ 毛

Really fast-track Kantowski-Sachs

Homogeneous model with spatial section of topology $S^2 \times \mathbb{R}$, equivalent to Schwarzschild, and geometry described by pairs (b, p_b) and (c, p_c) , such that

$$
\{b, p_b\} = G\gamma \text{ and } \{c, p_c\} = 2G\gamma,
$$

$$
ds^2 = -N^2 d\tau^2 + \frac{p_b^2}{|p_c|L_0^2} dx^2 + |p_c| d\Omega^2,
$$

$$
V = 4\pi |p_b| \sqrt{|p_c|}.
$$

Ashtekar-Barbero variables:

$$
\begin{aligned} A^1_a &= -b \sin \theta \partial_a \phi, & E^a_1 &= -\frac{p_b}{L_0} \phi^a \\ A^2_a &= b \partial_a \theta, & E^a_2 &= \frac{p_b}{L_0} \sin \theta \theta^a \\ A^3_a &= \frac{c}{L_0} \partial_a x + \cos \theta \partial_a \phi, & E^a_3 &= p_c \sin \theta x^a \end{aligned}
$$

Hamiltonian Constraint (with choice of lapse $N = V^n$)

$$
H_{c\ell}[N] = -\frac{V^{n+1}}{8\pi G\gamma^2} \operatorname{sgn} p_b \left[\frac{b^2 + \gamma^2}{p_c} + \frac{2bc}{p_b} \right]
$$

 Ω

.

メロトメ 御 トメ ミトメ 毛

Covariance equation

Residual diffeomorphisms: group of transformations preserving the form of (A, E) .

$$
\mathcal{L}_{\vec{v}} A_a^i(t) = \dot{A}_a^i = \frac{\partial A_a^i}{\partial b} \dot{b}(t) + \frac{\partial A_a^i}{\partial c} \dot{c}(t)
$$

$$
\mathcal{L}_{\vec{v}} E_i^a(t) = \dot{E}_i^a = \frac{\partial E_i^a}{\partial p_b} \dot{p}_b(t) + \frac{\partial E_i^a}{\partial p_c} \dot{p}_c(t)
$$

Flow equations result in

$$
\dot{b} = 0 \qquad , \qquad \dot{p}_b = p_b \qquad , \qquad \dot{c} = c \qquad , \qquad \dot{p}_c = 0
$$

and the Hamiltonian transforms as

$$
\dot{H}_{c\ell} = (n+1)H_{c\ell}.
$$

Transformations are non-canonical

-
- Nevertheless, variables can be cast in a related form

$$
\dot{F} = \frac{p_b}{\gamma G} \left\{ b, F \right\} - \frac{c}{2\gamma G} \left\{ p_c, F \right\}.
$$

■ Covariance equation for *H* (choosing the Weyl ordering for quantizing products):

$$
(n+1)\hat{H}=\frac{1}{2i\gamma\ell_p^2}\left\{\hat{p}_b\left[\hat{b},\hat{H}\right]+\left[\hat{b},\hat{H}\right]\hat{p}_b\right\}-\frac{1}{4i\gamma\ell_p^2}\left\{\hat{c}\left[\hat{p}_c,\hat{H}\right]+\left[\hat{p}_c,\hat{H}\right]\hat{c}\right\}.
$$

 Ω

イロト イ御 トイ ヨ トイ ヨ

Covariance equation

Residual diffeomorphisms: group of transformations preserving the form of (A, E) .

$$
\mathcal{L}_{\vec{v}} A_a^i(t) = \dot{A}_a^i = \frac{\partial A_a^i}{\partial b} \dot{b}(t) + \frac{\partial A_a^i}{\partial c} \dot{c}(t)
$$

$$
\mathcal{L}_{\vec{v}} E_i^a(t) = \dot{E}_i^a = \frac{\partial E_i^a}{\partial p_b} \dot{p}_b(t) + \frac{\partial E_i^a}{\partial p_c} \dot{p}_c(t)
$$

Flow equations result in

$$
\dot{b} = 0
$$
, $\dot{p}_b = p_b$, $\dot{c} = c$, $\dot{p}_c = 0$

and the Hamiltonian transforms as

$$
\dot{H}_{c\ell} = (n+1)H_{c\ell}.
$$

- Transformations are non-canonical
	- We cannot directly apply the canonical recipe $\dot{F}=\{\Lambda,F\}\Rightarrow \dot{\hat{F}}=\frac{1}{i\hbar}\left[\hat{F},\hat{\Lambda}\right].$
	- Nevertheless, variables can be cast in a related form

$$
\dot{F} = \frac{p_b}{\gamma G} \left\{ b, F \right\} - \frac{c}{2 \gamma G} \left\{ p_c, F \right\}.
$$

Govariance equation for \hat{H} (choosing the Weyl ordering for quantizing products):

$$
(n+1)\hat{H}=\frac{1}{2i\gamma\ell_p^2}\left\{\hat{p}_b\left[\hat{b},\hat{H}\right]+\left[\hat{b},\hat{H}\right]\hat{p}_b\right\}-\frac{1}{4i\gamma\ell_p^2}\left\{\hat{c}\left[\hat{p}_c,\hat{H}\right]+\left[\hat{p}_c,\hat{H}\right]\hat{c}\right\}.
$$

 Ω

メロメメ 倒 メメ ミメメ 毛

Covariance equation

Residual diffeomorphisms: group of transformations preserving the form of (A, E) .

$$
\mathcal{L}_{\vec{v}} A_a^i(t) = \dot{A}_a^i = \frac{\partial A_a^i}{\partial b} \dot{b}(t) + \frac{\partial A_a^i}{\partial c} \dot{c}(t)
$$

$$
\mathcal{L}_{\vec{v}} E_i^a(t) = \dot{E}_i^a = \frac{\partial E_i^a}{\partial p_b} \dot{p}_b(t) + \frac{\partial E_i^a}{\partial p_c} \dot{p}_c(t)
$$

Flow equations result in

$$
\dot{b} = 0 \qquad , \qquad \dot{p}_b = p_b \qquad , \qquad \dot{c} = c \qquad , \qquad \dot{p}_c = 0
$$

and the Hamiltonian transforms as

$$
\dot{H}_{c\ell} = (n+1)H_{c\ell}.
$$

■ Transformations are non-canonical

- We cannot directly apply the canonical recipe $\dot{F}=\{\Lambda,F\}\Rightarrow \dot{\hat{F}}=\frac{1}{i\hbar}\left[\hat{F},\hat{\Lambda}\right].$
- Nevertheless, variables can be cast in a related form

$$
\dot{F} = \frac{p_b}{\gamma G} \left\{ b, F \right\} - \frac{c}{2 \gamma G} \left\{ p_c, F \right\}.
$$

Govariance equation for \hat{H} (choosing the Weyl ordering for quantizing products):

$$
(n+1)\hat{H} = \frac{1}{2i\gamma\ell_p^2} \left\{ \hat{p}_b \left[\hat{b}, \hat{H} \right] + \left[\hat{b}, \hat{H} \right] \hat{p}_b \right\} - \frac{1}{4i\gamma\ell_p^2} \left\{ \hat{c} \left[\hat{p}_c, \hat{H} \right] + \left[\hat{p}_c, \hat{H} \right] \hat{c} \right\}.
$$

 Ω

メロトメ 倒 トメ ヨ トメ ヨト

 \blacksquare Covariance equation for \hat{H} :

$$
(n+1)\hat{H} = \frac{1}{2i\gamma\ell_p^2}\left\{\hat{p}_b\left[\hat{b},\hat{H}\right] + \left[\hat{b},\hat{H}\right]\hat{p}_b\right\} - \frac{1}{4i\gamma\ell_p^2}\left\{\hat{c}\left[\hat{p}_c,\hat{H}\right] + \left[\hat{p}_c,\hat{H}\right]\hat{c}\right\}.
$$

- 1 *b* and *c* are not properly defined in the Bohr Hilbert space arising from loop quantization (only
- **2** Impose of preservation of the Bohr Hilbert space of LQC $+$ hermiticity and parity symmetries of
-
-

$$
H = |p_b|^{n+1} a_0 \operatorname{sgn}(p_b p_c) + |p_b|^{n+1} \sum_{k=1}^{M} \left(a_k \operatorname{sgn}(p_b p_c) \cos(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|}\right) \right)
$$

+ $b_k \operatorname{sgn}(p_b) \cos(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|}\right) + c_k \operatorname{sgn}(p_c) \sin(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|}\right)$
+ $d_k \sin(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|}\right)$

 Ω

 \blacksquare Covariance equation for \hat{H} :

$$
(n+1)\hat{H} = \frac{1}{2i\gamma\ell_p^2} \left\{ \hat{p}_b \left[\hat{b}, \hat{H} \right] + \left[\hat{b}, \hat{H} \right] \hat{p}_b \right\} - \frac{1}{4i\gamma\ell_p^2} \left\{ \hat{c} \left[\hat{p}_c, \hat{H} \right] + \left[\hat{p}_c, \hat{H} \right] \hat{c} \right\}.
$$

- 1 *b* and *c* are not properly defined in the Bohr Hilbert space arising from loop quantization (only exponentials), so first find the general solution for the matrix elements $\left\langle p''_b, p''_c \right\rangle$ $\hat{H} \left| p'_b, p'_c \right\rangle$ in the  standard Schrödinger representation, and use completeness of momentum basis to obtain the action of the \hat{H} on a general state $|p_b^\prime, p_c^\prime\rangle$,
- **2** Impose of preservation of the Bohr Hilbert space of LQC + hermiticity and parity symmetries of
- 3 *Physical assumption*: quantization is resultant from the fact that holonomies can only be shrank to a
-

$$
H = |p_b|^{n+1} a_0 \operatorname{sgn}(p_b p_c) + |p_b|^{n+1} \sum_{k=1}^{M} \left(a_k \operatorname{sgn}(p_b p_c) \cos(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|} \right) \right)
$$

+ $b_k \operatorname{sgn}(p_b) \cos(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|} \right) + c_k \operatorname{sgn}(p_c) \sin(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|} \right)$
+ $d_k \sin(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|} \right)$

∽≏∩

 \blacksquare Covariance equation for \hat{H} :

$$
(n+1)\hat{H} = \frac{1}{2i\gamma\ell_p^2} \left\{ \hat{p}_b \left[\hat{b}, \hat{H} \right] + \left[\hat{b}, \hat{H} \right] \hat{p}_b \right\} - \frac{1}{4i\gamma\ell_p^2} \left\{ \hat{c} \left[\hat{p}_c, \hat{H} \right] + \left[\hat{p}_c, \hat{H} \right] \hat{c} \right\}.
$$

- 1 *b* and *c* are not properly defined in the Bohr Hilbert space arising from loop quantization (only exponentials), so first find the general solution for the matrix elements $\left\langle p''_b, p''_c \right\rangle$ $\hat{H} \left| p'_b, p'_c \right\rangle$ in the  standard Schrödinger representation, and use completeness of momentum basis to obtain the action of the \hat{H} on a general state $|p_b^\prime, p_c^\prime\rangle$,
- **2** Impose of preservation of the Bohr Hilbert space of LQC $+$ hermiticity and parity symmetries of (b, p_b) and (c, p_c) ,
- 3 *Physical assumption*: quantization is resultant from the fact that holonomies can only be shrank to a
- ⁴ Define the *classical analogue (effective Hamiltonian) H* of the operator *H*ˆ as the preimage under

$$
H = |p_b|^{n+1} a_0 \operatorname{sgn}(p_b p_c) + |p_b|^{n+1} \sum_{k=1}^M \left(a_k \operatorname{sgn}(p_b p_c) \cos(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|} \right) \right)
$$

+ $b_k \operatorname{sgn}(p_b) \cos(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|} \right) + c_k \operatorname{sgn}(p_c) \sin(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|} \right)$
+ $d_k \sin(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|} \right)$)

 200

 \blacksquare Covariance equation for \hat{H} :

$$
(n+1)\hat{H} = \frac{1}{2i\gamma\ell_p^2} \left\{ \hat{p}_b \left[\hat{b}, \hat{H} \right] + \left[\hat{b}, \hat{H} \right] \hat{p}_b \right\} - \frac{1}{4i\gamma\ell_p^2} \left\{ \hat{c} \left[\hat{p}_c, \hat{H} \right] + \left[\hat{p}_c, \hat{H} \right] \hat{c} \right\}.
$$

- 1 *b* and *c* are not properly defined in the Bohr Hilbert space arising from loop quantization (only exponentials), so first find the general solution for the matrix elements $\left\langle p''_b, p''_c \right\rangle$ $\hat{H} \left| p'_b, p'_c \right\rangle$ in the  standard Schrödinger representation, and use completeness of momentum basis to obtain the action of the \hat{H} on a general state $|p_b^\prime, p_c^\prime\rangle$,
- **2** Impose of preservation of the Bohr Hilbert space of LQC + hermiticity and parity symmetries of (b, p_b) and (c, p_c) ,
- **3** *Physical assumption*: quantization is resultant from the fact that holonomies can only be shrank to a minimum area Δ , which is dependent only on the absolute values of the momentum variables,
- ⁴ Define the *classical analogue (effective Hamiltonian) H* of the operator *H*ˆ as the preimage under

$$
H = |p_b|^{n+1} a_0 \operatorname{sgn}(p_b p_c) + |p_b|^{n+1} \sum_{k=1}^M \left(a_k \operatorname{sgn}(p_b p_c) \cos(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|} \right) \right)
$$

+ $b_k \operatorname{sgn}(p_b) \cos(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|} \right) + c_k \operatorname{sgn}(p_c) \sin(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|} \right)$
+ $d_k \sin(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|} \right)$)

 Ω

(ロ) (何) (ヨ) (ヨ

 \blacksquare Covariance equation for \hat{H} :

$$
(n+1)\hat{H} = \frac{1}{2i\gamma\ell_p^2} \left\{ \hat{p}_b \left[\hat{b}, \hat{H} \right] + \left[\hat{b}, \hat{H} \right] \hat{p}_b \right\} - \frac{1}{4i\gamma\ell_p^2} \left\{ \hat{c} \left[\hat{p}_c, \hat{H} \right] + \left[\hat{p}_c, \hat{H} \right] \hat{c} \right\}.
$$

- 1 *b* and *c* are not properly defined in the Bohr Hilbert space arising from loop quantization (only exponentials), so first find the general solution for the matrix elements $\left\langle p''_b, p''_c \right\rangle$ $\hat{H} \left| p'_b, p'_c \right\rangle$ in the  standard Schrödinger representation, and use completeness of momentum basis to obtain the action of the \hat{H} on a general state $|p_b^\prime, p_c^\prime\rangle$,
- **2** Impose of preservation of the Bohr Hilbert space of LQC + hermiticity and parity symmetries of (b, p_b) and (c, p_c) ,
- 3 *Physical assumption*: quantization is resultant from the fact that holonomies can only be shrank to a minimum area Δ , which is dependent only on the absolute values of the momentum variables,
- ⁴ Define the *classical analogue (effective Hamiltonian) H* of the operator *H*ˆ as the preimage under quantization map.

$$
H = |p_b|^{n+1} a_0 \operatorname{sgn}(p_b p_c) + |p_b|^{n+1} \sum_{k=1}^{M} \left(a_k \operatorname{sgn}(p_b p_c) \cos(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|}\right) \right)
$$

+ $b_k \operatorname{sgn}(p_b) \cos(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|}\right) + c_k \operatorname{sgn}(p_c) \sin(A_k(|p_c|)b) \cos\left(B_k(|p_c|) \frac{c}{|p_b|}\right)$
+ $d_k \sin(A_k(|p_c|)b) \sin\left(B_k(|p_c|) \frac{c}{|p_b|}\right)$

Classical asymptotic behavior

E Expanding *H* for the limit of low curvatures $(b, c \rightarrow 0)$, and matching terms of same order with H_{cl} , result in a system of equations to find a family of Hamiltonians, depending on the parameter *M* chosen

$$
\mathcal{O}(1): \qquad -\frac{(4\pi)^n}{2G}|p_c|^{\frac{n-1}{2}} = a_0 + \sum_{k=1}^M a_k
$$

$$
\mathcal{O}(b): \qquad 0 = \sum_{k=1}^M c_k A_k
$$

$$
\mathcal{O}(c): \qquad 0 = \sum_{k=1}^M b_k B_k
$$

$$
\mathcal{O}(bc): \qquad -\frac{(4\pi)^n}{G\gamma^2}|p_c|^{\frac{n+1}{2}} = \sum_{k=1}^M d_k A_k B_k
$$

$$
\mathcal{O}(b^2): \qquad \frac{(4\pi)^n}{G\gamma^2}|p_c|^{\frac{n-1}{2}} = \sum_{k=1}^M a_k A_k^2
$$

$$
\mathcal{O}(c^2): \qquad 0 = \sum_{k=1}^M a_k B_k^2
$$

 $2Q$

メロトメ 倒 トメ ミトメ 毛

Minimality matching literature

⁶ Minimality: Requiring Hamiltonian to have a minimum number of shifts (*M* = 2) results in

$$
H = -\frac{V^{n+1} \operatorname{sgn}(b)}{8\pi G \gamma^2 p_c} \left(\gamma^2 + 2p_c \operatorname{sgn} p_b \frac{\sin(A_1 b)}{A_1} \frac{\sin\left(B_1 \frac{c}{|p_b|}\right)}{B_1} + \frac{4 \sin^2\left(\frac{A_2}{2}b\right)}{A_2^2} \right),
$$

where A_1, A_2, B_1 are arbitrary functions of $|p_c|$ only.

-
-
-

Minimality matching literature

⁶ Minimality: Requiring Hamiltonian to have a minimum number of shifts (*M* = 2) results in

$$
H = -\frac{V^{n+1} \operatorname{sgn}(b)}{8\pi G \gamma^2 p_c} \left(\gamma^2 + 2p_c \operatorname{sgn} p_b \frac{\sin(A_1 b)}{A_1} \frac{\sin\left(B_1 \frac{c}{|p_b|}\right)}{B_1} + \frac{4 \sin^2\left(\frac{A_2}{2}b\right)}{A_2^2} \right),
$$

where A_1, A_2, B_1 are arbitrary functions of $|p_c|$ only.

- → Given the presence of the ratio $\frac{c}{|p_b|}$, formulations based on μ_0 prescription are not covariant under residual diffeomorphisms (as expected).
- \rightarrow Choosing the $\bar{\mu}$ prescription $\left(A_1 = \sqrt{\frac{\Delta}{|p_c|}}, B_1 = \sqrt{|p_c|\Delta}, A_2 = 2A_1\right) \Rightarrow H$ <u>matches</u> Chiou (2008) [\[4\]](#page-25-4) for $n = 1$ (harmonic time gauge), and Joe & Singh (2015) [[7](#page-25-5)] for $n = 0$ (proper time).
-

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Minimality matching literature

6 Minimality: Requiring Hamiltonian to have a minimum number of shifts $(M = 2)$ results in

$$
H = -\frac{V^{n+1} \operatorname{sgn}(b)}{8\pi G \gamma^2 p_c} \left(\gamma^2 + 2p_c \operatorname{sgn} p_b \frac{\sin(A_1 b)}{A_1} \frac{\sin\left(B_1 \frac{c}{|p_b|}\right)}{B_1} + \frac{4 \sin^2\left(\frac{A_2}{2}b\right)}{A_2^2} \right),
$$

where A_1, A_2, B_1 are arbitrary functions of $|p_c|$ only.

- → Given the presence of the ratio $\frac{c}{|p_b|}$, formulations based on μ_0 prescription are not covariant under residual diffeomorphisms (as expected).
- \rightarrow Choosing the $\bar{\mu}$ prescription $\left(A_1 = \sqrt{\frac{\Delta}{|p_c|}}, B_1 = \sqrt{|p_c|\Delta}, A_2 = 2A_1\right) \Rightarrow H$ <u>matches</u> Chiou (2008) [\[4\]](#page-25-4) for $n = 1$ (harmonic time gauge), and Joe & Singh (2015) [[7](#page-25-5)] for $n = 0$ (proper time).
- *→* It is worth to stress that minimality is not a physical requirement: it selects a unique result and does not allow different possible dynamics of the full theory to be represented.

イロト イ部 トイモト イモト

Ashtekar, Olmedo & Singh (2018): The most well-developed and physically viable model proposed so far in the literature ($[1, 2]$ $[1, 2]$ $[1, 2]$ $[1, 2]$ + Ashtekar's lecture on Summer School)

Conditions:

- ¹ Regularizing loops enclose a physical area equal the area gap ∆ *at the transition surface that replaces the classical singularity*
- 2 Parameters δ_b and δ_c of regularization are Dirac observables (constant on dynamical trajectories),

-
-
-
-

 Ω

Ashtekar, Olmedo & Singh (2018): The most well-developed and physically viable model proposed so far in the literature ($[1, 2]$ $[1, 2]$ $[1, 2]$ $[1, 2]$ + Ashtekar's lecture on Summer School)

Conditions:

- ¹ Regularizing loops enclose a physical area equal the area gap ∆ *at the transition surface that replaces the classical singularity*
- 2 Parameters δ_b and δ_c of regularization are Dirac observables (constant on dynamical trajectories),

Consequences:

- \checkmark Expansion and shear diverge at the horizon just as in classical GR.
- \checkmark Transition surface always occurs in a regime where quantum gravity effects are expected to be relevant (Kretschmann scalar *∼* Planck scale),
- ✓ Radii and Komar masses of trapped and anti-trapped surfaces nearly symmetric.
- \checkmark Extension of the analysis to the exterior of the black hole.

 Ω

イロト イ押 トイヨ トイヨト

Comments on AOS Model

- *★ Attention point:* polymerized version of the classical lapse $N_{cl} = \frac{\gamma}{b}\,{\rm sgn}\,(p_c)\sqrt{|p_c|}$
	- \checkmark Simplifies the solution by decoupling (b, p_b) and (c, p_c) components;

$$
H_{c\ell}[N] = -\frac{1}{2G\gamma} \left(p_b \left(b + \frac{\gamma^2}{b} \right) + 2cp_c \right) = H_b[N_{c\ell}] + H_c[N_{c\ell}].
$$

Polymerized version replaces $\frac{1}{b}$ by $f(b) = \frac{\delta_b}{\sin(\delta_b b)}$, keeping the decouple.

- -
- -
	-
	-

$$
b_n := \frac{2\mu^2}{\pi} \int_0^{\pi/\mu} \frac{\sin(n\mu b)}{\sin(\mu b)} db = \begin{cases} 2\mu & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases} . \tag{1}
$$

イロト イ御 トイモ トイモト

Comments on AOS Model

- *★ Attention point:* polymerized version of the classical lapse $N_{cl} = \frac{\gamma}{b}\,{\rm sgn}\,(p_c)\sqrt{|p_c|}$
	- Simplifies the solution by decoupling (b, p_b) and (c, p_c) components;

$$
H_{c\ell}[N] = -\frac{1}{2G\gamma} \left(p_b \left(b + \frac{\gamma^2}{b} \right) + 2cp_c \right) = H_b[N_{c\ell}] + H_c[N_{c\ell}].
$$

Polymerized version replaces $\frac{1}{b}$ by $f(b) = \frac{\delta_b}{\sin(\delta_b b)}$, keeping the decouple.

- \times *δb* depends only on (b, p_b) and $δ_c$ only on (c, p_c) , thus *H* is not covariant under residual diffeomorphisms;
	- ✓ however, key physical predictions calculated so far are invariant under residual diffeomorphisms *→* good motivation to seek an effective Hamiltonian that is exactly covariant under residual diffeomorphisms, even if it is more mathematically complex.
- -
	-
	-

$$
b_n := \frac{2\mu^2}{\pi} \int_0^{\pi/\mu} \frac{\sin(n\mu b)}{\sin(\mu b)} db = \begin{cases} 2\mu & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases} . \tag{1}
$$

メロトメ 倒 トメ ヨ トメ ヨト

Comments on AOS Model

- *★ Attention point:* polymerized version of the classical lapse $N_{cl} = \frac{\gamma}{b}\,{\rm sgn}\,(p_c)\sqrt{|p_c|}$
	- Simplifies the solution by decoupling (b, p_b) and (c, p_c) components;

$$
H_{c\ell}[N] = -\frac{1}{2G\gamma} \left(p_b \left(b + \frac{\gamma^2}{b} \right) + 2cp_c \right) = H_b[N_{c\ell}] + H_c[N_{c\ell}].
$$

Polymerized version replaces $\frac{1}{b}$ by $f(b) = \frac{\delta_b}{\sin(\delta_b b)}$, keeping the decouple.

- \times *δ*_{*b*} depends only on (b, p_b) and δ_c only on (c, p_c) , thus *H* is not covariant under residual diffeomorphisms;
	- ✓ however, key physical predictions calculated so far are invariant under residual diffeomorphisms *→* good motivation to seek an effective Hamiltonian that is exactly covariant under residual diffeomorphisms, even if it is more mathematically complex.
- \times *f*(*b*) needs an infinite number of terms to be quantized in \mathcal{H}_{Bohr} :
	- \blacksquare Casting $f(b)$ into countable linear combination of shift operators requires its decomposition into a Fourier series;
	- ² *f*(*b*) is not absolutely integrable *→* Fourier series exists only in the distributional sense, with infinite number of non-zero terms;
	- **3** interpreting it as the distribution defined by its Cauchy principal value, the Fourier series includes only sine terms, with coefficients

$$
b_n := \frac{2\mu^2}{\pi} \int_0^{\pi/\mu} \frac{\sin(n\mu b)}{\sin(\mu b)} db = \begin{cases} 2\mu & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases} \tag{1}
$$

メロトメ 伊 トメ ミトメ ミト

Comments on AOS Model

- *★ Attention point:* polymerized version of the classical lapse $N_{cl} = \frac{\gamma}{b}\,{\rm sgn}\,(p_c)\sqrt{|p_c|}$
	- \checkmark Simplifies the solution by decoupling (b, p_b) and (c, p_c) components;

$$
H_{c\ell}[N] = -\frac{1}{2G\gamma} \left(p_b \left(b + \frac{\gamma^2}{b} \right) + 2cp_c \right) = H_b[N_{c\ell}] + H_c[N_{c\ell}].
$$

Polymerized version replaces $\frac{1}{b}$ by $f(b) = \frac{\delta_b}{\sin(\delta_b b)}$, keeping the decouple.

- \times *δ*_{*b*} depends only on (b, p_b) and δ_c only on (c, p_c) , thus *H* is not covariant under residual diffeomorphisms;
	- ✓ however, key physical predictions calculated so far are invariant under residual diffeomorphisms *→* good motivation to seek an effective Hamiltonian that is exactly covariant under residual diffeomorphisms, even if it is more mathematically complex.
- \times *f*(*b*) needs an infinite number of terms to be quantized in \mathcal{H}_{Bohr} :
	- \blacksquare Casting $f(b)$ into countable linear combination of shift operators requires its decomposition into a Fourier series;
	- ² *f*(*b*) is not absolutely integrable *→* Fourier series exists only in the distributional sense, with infinite number of non-zero terms;
	- **3** interpreting it as the distribution defined by its Cauchy principal value, the Fourier series includes only sine terms, with coefficients

$$
b_n := \frac{2\mu^2}{\pi} \int_0^{\pi/\mu} \frac{\sin(n\mu b)}{\sin(\mu b)} db = \begin{cases} 2\mu & \text{for } n \text{ odd} \\ 0 & \text{for } n \text{ even} \end{cases} \tag{1}
$$

メロメメ 倒す メミメメ ミメー

 \times Infinite dimensional ambiguity: $\frac{1}{b}$ could be quantized as *any* periodic function asymptotic to $\frac{1}{b}$ when $b \rightarrow 0$ (with similar process).

n Requiring Diffeomorphism Covariance:

- \checkmark allows to derive the quantum dynamics of the framework:
- \checkmark mitigates ambiguities related to regularizing prescription:
- \checkmark matches literature proposals when minimality is required:

2 AOS model:

- lapse decoupling the components lead to attention points;
- **g** given the great results so far, there is good motivation to seek an effective Hamiltonian that is exactly covariant under residual diffeomorphisms, even if it is more mathematically complex.

Thank You!

Questions, suggestions, job offers??

 Ω

 $\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \times\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\} \times\left\{ \left\vert \mathbf{f}\right\vert \mathbf{f}\right\}$

[References](#page-25-1)

References

- 1. Ashtekar, A., Olmedo, J. & Singh, P. Quantum extension of the Kruskal spacetime. *Phys. Rev. D* **98,** 126003. arXiv: [1806.02406 \[gr-qc\]](https://arxiv.org/abs/1806.02406) (2018).
- 2. Ashtekar, A., Olmedo, J. & Singh, P. in (ed Bambi, C.) 235–282 (Springer Nature Singapore, 2023). arXiv: [2301.01309 \[gr-qc\]](https://arxiv.org/abs/2301.01309).
- 3. Bornhoeft, I. W., Dias, R. G. & Engle, J. S. Diffeomorphism Covariance and the Quantum Schwarzschild Interior. *Universe* **10.** issn: 2218-1997. <https://www.mdpi.com/2218-1997/10/2/89> (2024).
- 4. Chiou, D.-W. Phenomenological dynamics of loop quantum cosmology in Kantowski-Sachs spacetime. *Phys. Rev. D* **78,** 044019. arXiv: [0803.3659 \[gr-qc\]](https://arxiv.org/abs/0803.3659) (2008).
- 5. Engle, J. & Vilensky, I. Deriving loop quantum cosmology dynamics from diffeomorphism invariance. *Phys. Rev. D* **98,** 023505. arXiv: [1802.01543 \[gr-qc\]](https://arxiv.org/abs/1802.01543) (2018).
- 6. Engle, J. & Vilensky, I. Uniqueness of minimal loop quantum cosmology dynamics. *Phys. Rev. D* **100,** 121901. arXiv: [1902.01386 \[gr-qc\]](https://arxiv.org/abs/1902.01386) (2019).
- 7. Joe, A. & Singh, P. Kantowski-Sachs spacetime in loop quantum cosmology: bounds on expansion and shear scalars and the viability of quantization prescriptions. *Class. Quant. Grav.* **32,** 015009. arXiv: [1407.2428 \[gr-qc\]](https://arxiv.org/abs/1407.2428) (2015).

 $2Q$

K ロト K 御 ト K 君 ト K 君 K