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Introduction

Closed: Ωk < 0

Flat: Ωk = 0

Open: Ωk > 0

Constraints on curvature from Planck:

[Planck 2018 VI. Cosmological parameters]
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Introduction

I Primordial curvature perturbations modelled by a power law spectrum.

I Evolution of cosmological perturbations in the ΛCDM model described by
Boltzmann equations that include curvature terms.

I Predictions for CMB compared with observations.
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Spatial curvature is then bounded by : |Ωk| . 0.005.
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Introduction

Power spectrum of temperature
fluctuations [Planck 2018]

Reconstruction of power spectrum of primordial
perturbations [Hunt and Sarkar, JCAP 12 (2015) 052]

I Predictions fit observations for small angular scales.

I Anomalies observed for large angular scales.
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Introduction

Physical mechanisms leading to large scale anomalies? Spatial curvature.
[Bonga, Gupt and NY, JCAP 1610 (2016) 031 and JCAP 1705 (2017) 021]
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Introduction

Physical mechanisms leading to large scale anomalies? Quantum gravity effects.
[Agullo, Morris PRD 92 (2015); Agullo, Bolliet, Sreenath PRD 97 (2018)]

pivot, or reference wave number whose physical value at
present is k!/aðttodayÞ ¼ 0.002 Mpc−1. We will, however,
compute PRðkÞ for values of k smaller than kmin, because
these modes, although not directly observable in the CMB,
may indirectly affect the observable power spectrum once
non-Gaussianity are taken into account [39].
In order to better understand the form of the power

spectrum, it is convenient to define the rescaled mode
functions vkðηÞ≡ aðηÞφkðηÞ. The wave equation (3.19),
when written in terms of vk, takes the form

v00kðηÞ þ ðk2 þ fðηÞÞvkðηÞ ¼ 0; ð4:1Þ

where fðηÞ≡ aðηÞ2AðηÞ − a00
a ðηÞ ¼ a2ðA − R

6Þ, and RðηÞ is
the Ricci scalar of the effective spacetime geometry. The
potential A was defined in (2.22). It is clear from this
equation that whenever k2 ≫ jfðηÞj, the solutions are
simple oscillatory functions with time independent fre-
quency equal to k. On the contrary, vkðηÞ will have a more
complicated behavior when k2 ≲ jfðηÞj. In particular, when
the function fðηÞ becomes negative, the oscillatory behav-
ior of these modes changes to an exponentially varying
amplitude, that results in a modulation of the amplitude of
vkðηÞ and consequently of the power spectrum.
During the inflationary era, fðηÞ remains approximately

constant and is proportional to the Ricci scalar R, or the
square of the Hubble radius. This value sets up the wave
number scale for which amplification of perturbations takes
place. Similarly, the amplification of perturbations around
the time of bounce can be characterized in terms of the
physical scale associated with the bounce. This scale is
given by the value of the function fðηÞ at the bounce, which
is approximately equal to a2 R

6 evaluated at that time
[see the definition of fðηÞ above, and take into account
that A is of the same order as R/6 around the bounce].
Therefore, we define the bounce scale kLQC as kLQC≡
aðηBÞ

ffiffiffiffiffiffiffiffiffiffi
RB/6

p
≈ aðηBÞ

ffiffiffiffiffiffiffiffi
κρB

p
, where the subscript B indi-

cates quantities evaluated at the bounce. Qualitatively, we
expect the power spectrum to be significantly affected by
the bounce for modes with k≲ kLQC. On the other hand, the
bounce is expected to have little effect on k ≫ kLQC, since
these modes are “too ultraviolet to feel the bounce”.
In Fig. 1 we show the LQC power spectrum PRðkÞ for

scalar perturbations computed using the settings specified
at the beginning of this section. The scale invariant infla-
tionary prediction is recovered for k ≫ kLQC. In contrast,
for k≲ kLQC there is an extra contribution coming from the
propagation of perturbations across the bounce. This
contribution breaks scale invariance, and makes PRðkÞ
to grow significantly for small wave numbers. As discussed
in Sec. IV F, all other choices of initial data for perturba-
tions explored in this paper produce a power spectrum that
grows for k≲ kLQC. Note, however, that there exist other
choices in the literature for which the spectrum is

suppressed, rather than enhanced, on these scales
[68–70]. We do not consider such states in the analysis
presented here.

B. The bispectrum

The numerical evaluation of the bispectrum requires
more effort than what is needed to compute non-
Gaussianity during inflation. The first reason is that,
in the inflationary era, only the terms in the third order
Hamiltonian (2.23) that are leading order in the slow-roll
parameters need to be considered. This provides a
significant simplification of the Hamiltonian, which,
after integration by parts, reduces to a single term
[36]. The second reason is that the background geometry
during slow-roll inflation is very close to be described by
de Sitter geometry. This makes an analytical approxima-
tion for the modes φkðηÞ available, which in turn allows
for an analytical calculation of the bispectrum. All these
simplifications cannot be used in our case because, first
of all, before inflation the slow-roll approximation is no
longer valid. And secondly, in our problem the spacetime
goes through a contracting phase, followed by a bounce,
a preinflationary phase on which the kinetic energy of the
scalar field is converted to potential energy, and finally
an inflationary phase. In each of these phases the scale
factor behaves in a quite different manner and, as a

FIG. 1. Power spectrum for comoving curvature perturbations
for ϕB ¼ 7.62MPl, and ρB ¼ 1M4

Pl. Gray dots indicate the
numerical value of PR for individual values of k. The black
curve denotes the average of the gray points. As expected, the
spectrum is scale invariant for k ≫ kLQC. The effects from the
bounce appear for k ≲ kLQC. For the value of ϕB used in this plot,
the number of e-folds between the bounce and horizon exit for the
pivot scale k⋆, is, NB⋆ ¼ 12.3. This number is large enough to
make the effects created by the bounce to be redshifted to super-
Hubble scales at the present time (recall that the observable
window is approximately k ∈ ½k!/10; 1000k!'Þ. Sections IV C
and IV D contain plots of PR for other values of ϕB and ρB for
which the enhancement of the power spectrum occurs for
observable scales (see also [66]).
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Introduction

Primordial power spectrum predicted by
loop quantum cosmology for a closed universe?

Quantum gravity effects in the pre-inflationary regime + spatial curvature.
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Background dynamics

I Modified Friedmann equation in the presence of spatial curvature (LQC)
[Ashtekar, Pawlowski,Singh, Vandersloot PRD 75 (2007); Motaharfar, Singh PRD 104 (2021)]

H2 =
8πG

3
(ρ− ρmin)

[
1− ρ− ρmin

ρc

]
, ρc = 3/(8πGγ2λ2)

' 8πG

3
ρ− 1

a2
, (ρ� ρc)

I Single scalar field, Starobinsky potential.

φ̈+ 3Hφ̇+
dV

dφ
= 0

I Initial conditions: Initial time t∗, during inflation (k∗ = 0.002 Mpc−1).

a∗, φ∗ and φ̇∗ determined from observational estimates for As, ns and the
duration of inflation from t∗ until the end of inflation.
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Background dynamics
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Background evolution near the onset of inflation for distinct initial conditions at t∗
(N = 0) in a flat and a closed universe.
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Background dynamics
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Scalar perturbations and primordial power spectrum

Dynamics of scalar modes

I ADM formalism for the gravitational field coupled to the scalar field.

I Hamiltonian expressed in terms of background quantities and linear perturbations,
keeping terms up to second order in the perturbations.

I Choice of gauge: Spatially spherical gauge, analogous to spatially flat gauge.
Scalar cosmological perturbations described by field perturbations δφ.

I Initial conditions set before the bounce. 4-th order adiabatic vacuum.

I Perturbations evolved until the end of inflation and translated to comoving
curvature perturbations R.
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Scalar perturbations and primordial power spectrum

Field and momentum
perturbations:

δφ =

∞∑
n=2

∑
lm

fnlmQnlm

δπ̃φ =

∞∑
n=2

∑
lm

πfnlmQnlm
√

Ω

[
(n

2 − 1)/r
2
0 → k

2
]

Quadratic
Hamiltonian: H

(2)
n`m =

c1(n)

2
(πfnlm)2+

c2(n)

2
(fnlm)2

Equation of motion:
f̈ − ċ1

c1
ḟ + c1c2f = 0

End of inflation: R = −H
φ̇0

δφ → PR ∝ (δφ)2
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Scalar perturbations and primordial power spectrum
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Conclusion

1 Analysis of effective dynamics for backgrounds that satisfy observational
constraints on inflation, for a closed universe in loop quantum cosmology. For
non-negligible spatial curvatures, there can be a classical bounce (small interval of
curvatures) or a quantum bounce (generically).

2 The duration of the inflationary regime is determined by the spatial curvature.
Larger curvatures correspond to shorter inflationary regimes.

3 Quadratic Hamiltonian and equations of motion determined for linear scalar
perturbations in closed universes in the spatially spherical gauge.

4 Primordial power spectrum of scalar perturbations at the end of inflation was
numerically determined. Considerable corrections are present for observable modes
even for curvatures |Ωk| ∼ 10−6.
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