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o Apply machine learning 2 to improve computations of observables in spin
foams.

o Use a well defined context, spin foam cosmology.

o Compare against established computations 3 to test its effectiveness.

2[Bengio et al., 2021]
3[Frisoni, Gozzini, and Vidotto, 2023; Han et al., 2021; Dona and Frisoni, 2023; Steinhaus,
2024]
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Physical Motivation
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Physical Motivation

o Universe starting with a Big Bang needs initial conditions, knowledge
about the past.

@ Instead, consider a no-boundary initial state with no matter, no space and
no time (nothing).

@ Analogue of a sphere: it encompasses everything, but does not have a
boundary.

@ Quantum tunnelling to observable (almost) homogeneous and isotropic
universe (something). (see Francesca’s talk earlier)

@ Is there a way to express the transition amplitude?
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Spin Foams
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Spin Foams

The nothing to something transition as a 4-simplex.

@ Encode transition amplitude (change) between two boundary 3D spatial
geometries (spin networks).

@ 4-simplex spin foam amplitude as a transition from nothing to something.
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4-simplex

@ Apply it to a cosmological context: fix boundary edges to have the same
spin value j (homogeneity) and impose regularity, being in any node should
not change the "view” (isotropy).

@ The dof are given by the boundary intertwiners (volume fluctuations of the
boundary tetrahedra).

o Number of dof is large but spin quantum numbers are small (full quantum
regime).

o Compute an observable!
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Observables

Observables

8/23



Observables |

@ Dihedral angle operator: external dihedral angle between faces a and b on
the tetrahedron dual to node k (careful, not the usual definition).

@ Notion of local geometry.

@ In the spin basis:

(J, in|cos(0)klj, in) = (i +2}()j—+211')(j +1) (1)

Jj — boundary links (remember homogeneous sector), i — intertwiners and
|j7 I"> = ‘J? ’1> X...Q |./7 IN>
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Observables |1

@ The corresponding expectation value:

(cos(0) =3 Z W (J, in)? (i, in|cos(0)klj, in) (2)

@ where the normalization factor is:

= (Yly) = ZWM : (3)

@ and
W (j, in)? (4)
is the EPRL vertex amplitude given in terms of 15j symbols. (Pietro’s talk
this morning)
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MCMC



In (1) all j assume the same (fixed for each simulation) value.

ix are the only dof, where i, € [0,2j + 1].

Due to the symmetries each vertex is in 1 — 1 correspondence with a
dihedral angle.

For 4-simplex, 5 intertwiners.

Assume 5-dimensional coordinate system, each intertwiner mapped to a
coordinate.

Probability distribution (1) defined on the 5-dim discrete space
(hypergrid), that the MCMC tries to learn.
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GFlowNets
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Advantages

@ Not possible to overtrain. The more visited trajectories the better!

@ Training expenses are compensated by being faster as sampler.

@ Instead of stochastically progressing like MCMC, use visited states to make
educated guess for high probability areas.

o Locating far regions of high probability and alternating among them,
better approximation.
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Results
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Results |

Figure 1: Upper: L1 error, Lower:

j=6, Parametrization = SubTB, Exploration Rate = 0.01, Weighing = geometric-within, A = 0.9
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Results Il

/=6, Parametrization = SubTB, Exploratian Rate = 0.01, Weighing = geometric-uithin, A = 0.9
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Figure 2: Euclidean distance plot for SubTB, exploration: rate 0.01, weighing:
geometric-within, A: 0.9.
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Discussion
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Discussion |

o Different philosophies.

o GFlowNet searches for the most important, therefore, mostly contributing
peaks. MCMC tries to learn the whole simulation (thus, better L1 error for
MCMC, but further from the value).

o GFlowNet performs better in cases where the peaks are far apart (more
complicated).
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Discussion |l

@ Hybrid algorithm for more complicated cases: GFlowNet to locate the
peaks, MCMC to learn the corresponding, underlying distribution.

o GFlowNet was run with limited parameters. Run more tests.

@ Maybe not the correct problem: initially for building drug molecules.
Apply GFlowNets in problems involving constructive actions eg building
new states from old ones.
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@ Apply machine learning to improve computations of observables in spin
foams.

@ Use a well defined context, spin foam cosmology.

o Compare against established computations to test its effectiveness.
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