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Classical Schwarzschild interior

—1
ds® = — (2(’;M 1) dt® + (2(,;1\4 1) dr? + t?dQ)?
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Classical Schwarzschild interior

—1
ds® = — (2(’;M 1) dt® + (2(,;1\4 1) dr? + t?dQ)?
[Collins 77’]

e Isometric to Kantowski-Sachs (KS) metric with globally hyperbolic topology R X S?

ds® = —N(T)?dT? + g, (T)dr® + goo(T)d6? + gpgdd?

Evan Vienneau Department of Physics University of Alberta

Full spacetime of a minimal uncertainty black hole 2/15



Classical Schwarzschild interior

—1
ds® = — (2(’;M 1) dt® + (2(,;1\4 1) dr? + t?dQ)?
[Collins 77’]

e Isometric to Kantowski-Sachs (KS) metric with globally hyperbolic topology R X S?

ds® = —N(T)?dT? + g, (T)dr® + goo(T)d6? + gpgdd?

e Gravitational Hamiltonian can be written in terms of Ashtekar variables adapted to the

KS spacetime
[Ashtekar & Bojowald 06’]

N [.- - Py
2bé\/5. + (b2+72) b
2Gy?% | De.

H =
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Classical Schwarzschild interior

e Canonical variable Poisson brackets follow from the symplectic form

{bvpb} — G,Y {Ca pC} — 2G7
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Classical Schwarzschild interior

e Canonical variable Poisson brackets follow from the symplectic form
{bvpb} — G,Y {Ca pC} — 2G7

. The KS-adapted Ashtekar variables along with gg®’ = 5’71??1?]1? yields the metric

Pb(T)2

ds> = — N(T)*dT? +
Lgp(T)

dr? + p (T)(d6? + sin* Od¢?)
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Classical Schwarzschild interior

e Canonical variable Poisson brackets follow from the symplectic form
{bapb} — G’Y {Ca pC} — 2G7

. The KS-adapted Ashtekar variables along with gg®’ = 5’71??1?]1? yields the metric

Pb(T)2
Lgp(T)

 \We choose a lapse which effectively decouples the canonical variables

ds’> = — N(T)*dT? + dr? + p (T)(d6? + sin* Od¢?)

B ( B 1 7 2pb |
N(T) = bT) H = 2Gy[(b +V)b F2cp,]
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Classical Schwarzschild interior - canonical variables

 Equations of motion for canonical variables

db 1 y?
—={bH} =——| b+ —
dTl 2 b
dp, Pp }’2
—_— = ,H = — 1——
T Py, H} ) < 12
dc

— ={c,H} =—-2c

dl

dp

C = JHY =2
o7 W H} =2p,

*In Schwarszchild time r = ¢
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Deformation of Poisson algebra

 Many theories of quantum gravity predict a deviation from the standard Heisenberg
uncertainty principle at high energies/momenta [Garay 95']

[Kempf 96°]
[Scardigli 99’]

{bapb} — G’yFl(bJ?b) C, Pc; /Bba /BC) {CapC} — ZG,YFZ (bapba C, Pc;, ﬁba ﬁc)

 Modified Poisson algebra in the classical theory
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Deformation of Poisson algebra

 Many theories of quantum gravity predict a deviation from the standard Heisenberg

uncertainty principle at high energies/momenta [Garay 95]
| | [Kempf 96°]
 Modified Poisson algebra in the classical theory [Scardigli 997]

{bapb} — G"/Fl(b,pb, C, Pc; /Bba /BC) {C7p6} — ZG,YFZ (bapba C, Pc;, ﬁba ﬁc)

e Configuration-dependent modification (commonly found in minimal-uncertainty
theories)

{b,pp} =G~ (1 + Bpb?) {¢,pe} = 2\G7(1 + Bec?)
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Deformation of Poisson algebra

 Many theories of quantum gravity predict a deviation from the standard Heisenberg

uncertainty principle at high energies/momenta [Garay 95]
| [Kempf 96°]
 Modified Poisson algebra in the classical theory [Scardigli 997]

{bapb} — G"/Fl(b,pb, C, Pc; /Bba /BC) {C7p6} — ZG,YFZ (bapba C, Pc;, ﬁba ﬁc)

e Configuration-dependent modification (commonly found in minimal-uncertainty

theories) \ ,
{b,pp} =G~ (1 + Bpb?) {¢,pc} = 2Gy(1 + Bec?)
 Implies a minimal-uncertainty relation in the quantum theory
o Gy
:b, pb: =iGy (1 + Bbbz) . AbAp, 27 1+ Bp(Ab)?]
c,pc] =12G"y (1 =+ 5c02) AcAp. >Gr [1 4 6C(Ac)2]

 \We then re-solve the EOMs for the canonical variables to yield the effective metric
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Full spacetime extension

[Bosso 23]
* Now we have an effective Schwarzschild interior metric with a resolved singularity

yzﬁc(t) dt2 | ﬁb(t>2

dS 2 — — | —
£2b(1)? L3p. (1)

dr? + p.(t)(d6? + sin® Od¢?)

 But what happens when we extend to the full spacetime?
e Dy(r)? 2 y°pr)

= ————dr* + p.(r)(d6?* + sin* Od¢?)
Tt ’
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Full spacetime extension

[Bosso 23]
* Now we have an effective Schwarzschild interior metric with a resolved singularity

yzﬁc(t) dt2 | ﬁb(t>2

dS 2 — — | —
£2b(1)? L3p. (1)

dr? + p.(t)(d6? + sin® Od¢?)

 But what happens when we extend to the full spacetime?
e Dy(r)? 2 y°pr)

= ————dr* + p.(r)(d6?* + sin* Od¢?)
Lgp(r) r2b(r)> F /

e Classical limits

. RS
ﬁb’ﬁc_)o r

R -1
ﬂb’ﬁc_)O r

:Bb’ﬁc_)o
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Full spacetime extension
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Full spacetime extension

[Bosso 23]
* Now we have an effective Schwarzschild interior metric with a resolved singularity

}/zﬁc(t) dt2 | ﬁb(t>2

dS 2 — — | —
£2b(1)? L3p. (1)

dr? + p.(t)(d6? + sin® Od¢?)

 But what happens when we extend to the full spacetime?

~ o) )~
r r
ds? = L b(N) ai* =~ {96( )dr2+p”c(r)(d92+ sin” Odg?)
Lsp.(r) r2b(r)?
e Classical limits e Asymptotic limits * Krestchmann scalar
1. ~ 1 RS 1 ~ 09 Qb > O K 1
1m = — Yy — 1m = —
B,.5.—0 S00 r r— 0 500 -0, O, <0 A
-1
. W K, , > 1
e AL (1 _ _) A
PpP-=0 r r— 00 1, Qb <1
Prbe=0 Qb = sgnBy|Bsly? Qc = sgnfe|Be|y”
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Full spacetime extension

[Bosso 23]
* Now we have an effective Schwarzschild interior metric with a resolved singularity

yzﬁc(t) dt2 | ﬁb(t>2

dS 2 — — | —
£2b(1)? L3p. (1)

dr? + p.(t)(d6? + sin® Od¢?)

 But what happens when we extend to the full spacetime?

~ o) )~
r r
ds? = L b(N) ai* =~ {%( )dr2+ﬁc(r)(d92+ sin” Odg?)
Lsp.(r) r2b(r)?
e Classical limits e Asymptotic limits * Krestchmannsealar
R, 0, 0O, >0 1
lim g,0=—}1+— lim gy = Ko —
B,.5.—0 S00 ( r ) r— 0 S0y {—oo, 0, <0 =
-1
. W K, : > 1
e AL (1 _ _) N
PpP-=0 r r— o0 1, Qb <1
Prbe=0 Qb = sgnBy|Bsly? Qc = sgnfe|Be|y”
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Full spacetime extension - improved () scheme

* Inspired by similar issues in LQC, we make the quantum parameters momentum-
dependent
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Full spacetime extension - improved () scheme

* Inspired by similar issues in LQC, we make the quantum parameters momentum-
dependent

- _ Lop, —_ Lyp
ﬁb%ﬂbz 2 IBC_)IBC_ 26
pb C

 Re-solve canonical variable EOMs, sub into metric and swap t and r to get exterior
metric

Improved canonical variables with G =1, M =5,y =0.3, 0, = 0.1 = O, Improved metric components with G =1, M = 5 v = 0 3,0,=01=0.,
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p-scheme metric limits and expansions

e Classical limits

R, R\’
lim =— (1 lim =1
By, Be—0 gOO ( T ) By, Be—0 g1 ( T >
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p-scheme metric limits and expansions

e (Classical limits
R R\ !
lim —— (1 > lim — (1 >
By, Be—0 gOO ( T ) By, Bc—0 gll ( T >

 Asymptotic limits

lim Joo = — 1 im Joo =00 lim Jd11 =1
T—00 r—00 T—>00
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p-scheme metric limits and expansions

e (Classical limits
R R\ !
lim —— (1 > lim — (1 >
By, Be—0 gOO ( T ) By, Bc—0 gll ( T >

 Asymptotic limits

lim Joo = — 1 im Joo =00 lim Jd11 =1
T—00 r—00 T—>00

* Asymptotic expansions

s @ 1
r—)oo:_(]'—_) ,r2b | O(T_3>

goo
r
R, Rg | R, 0 1
911 300 — (1 | " ) | 7“2 | 27’3 (ZRS — Qb) + 0 <—4)
922, o =T
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p-scheme metric limits and expansions

e (Classical limits
R R\ !
lim —— (1 > lim — (1 >
By, Be—0 gOO ( T > By, Bc—0 gll ( T >

 Asymptotic limits

lim Joo = — 1 im Joo =00 lim Jd11 =1
r—00 r—>00 r—00

* Asymptotic expansions

s @ 1
r—)oo:—(]'—_) T.Zb | O(T_B)

goo
r
R, Rg | R, 0 1
911 300 — (1 | " ) | 7“2 | 27‘3 (2R3 — Qb) + O <—4)
922, o =T
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Horizon and entropy

e \We can find the position of event horizon by solving g“ = 0, yielding

'H = Rz_szRs

S

0(Q;)

2 R

S
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Horizon and entropy

e \We can find the position of event horizon by solving g“ = 0, yielding

1 0,
2 R,

m=1/R* - 0, =R, o0}

e The quantum parameter Q, is

responsible for the horizon
radius modification

 The horizon modification
implies a modification to the
entropy of the BH

- A Ty B Qb
SQ_M; Iz = o Iz
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Horizon and entropy

e \We can find the position of event horizon by solving g“ = 0, yielding

1 O,

er\/Rsz_szRs R
s

e The quantum parameter Q, is

responsible for the horizon
radius modification

 The horizon modification
implies a modification to the
entropy of the BH

A ’/TQb

= e T e Iz

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

0(Q;)

Horizon comparison, with G =1, M =5,y =0.3, 0, = 0.1 = Q.
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Krestchmann scalar

e The Kretschmann scalar now has all of the desired properties

12R; 1 lim K =0 im K=K (r=0)= —| =—2>
— — = m K=K(r=0)=— =
K}r—mo o 76 O (7“7> r—0o0 r—0+ ( ) \/)5 r—0 R/ Qe
Kretschmann Scalar comparison, with G =1, M =5,y =0.3, 0, = 0.1 = Q.
2000————F——————T T 7T
:. | KQquantum
1500 ” .: """ Kclassical I
1000k S | ;
. o
i 7: i
500 || : -
| B
o s
O" 3 I 3 2 I 3 3 4 3 3 3 6 3 3 3 8 3 3 2 10 3 3 3 1"2
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Effective potential

 Two conserved quantities (energy and angular momentum) associated with the Killing
vector fields corresponding to time translation and rotational symmetry

dx" U dt dx" Ldg
E=—g,K'— = |2/ - R)— = o R - 48P
S \ﬁ(\/; 7 SR v Ta

g
P
T

dxt dx” 0, null
T AN AN T )1, timelike
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Effective potential

 Two conserved quantities (energy and angular momentum) associated with the Killing
vector fields corresponding to time translation and rotational symmetry

dx" U dt dx" Ldg
E=—g,K'— = |2/ - R)— = o R - 48P
S \ﬁ(\/; 7 SR v Ta

g
P
T

dxt dx” 0, null
T AN AN T )1, timelike

* Yields an EOM for a test particle
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Photon spheres

e Extrema of the null effective potential determine the location of photon spheres

3R, 70, 640,
pho— 2 9R ~ 6561R3

\)
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Photon spheres

e Extrema of the null effective potential determine the location of photon spheres

3R 70, 640,
' T2 T 9R. " 6561R3

VN”" and d VN“"/dr comparison, with G=1,M =5,y =0.3,0, =0.1 = 0O,

0.0010 -

0.0005

0.0000

-0.0005F

Unstable
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Photon spheres

e Extrema of the null effective potential determine the location of photon spheres

3R, 70, 640

’ﬂ

pelf — ¢
|
' T2 TR 6561R3
VNuII and d VNuII/dr comparison, with G=1, M =5, y = 0.3, 0, = 0.1 = O, NI and d VN””/dr comparison, with G =1, M =5,y =0.3,0, = 0.1 = Q,
4 — — ———e
| Interlor B
0.0010} 3: S S E
L \ :‘ “—‘ ',',' \_‘ N%:z: E
0.0005} : Do s

0.0000

-0.0005F

7Null
Null d Ieff-quantum

Unstable Stable

 We find similar results for timelike geodesics
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Expansion and Raychaudhuri equation

e Singularity resolution can be further explored via the Raychaudhuri equation
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Expansion and Raychaudhuri equation

e Singularity resolution can be further explored via the Raychaudhuri equation

Expansion Shear Vorticity Tides
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Expansion and Raychaudhuri equation

e Singularity resolution can be further explored via the Raychaudhuri equation

Expansion Vorticity Tides

Raychaudhuri

dd 1 2 v v v
o= —50 — 00" + wwt — R kMK
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Expansion and Raychaudhuri equation

d B
6 and — classical vs. quantum, withG =1, M =5,y=0.3,0,=01=0,., E=10

dA
250 ‘ Null Null
9Null eNuII d 9Quantum d QCIassicaI
— YQuantum T~ Classical ~~~~~ — .. 77 )
dA dA
200 |
:
N ¢ T — T - - - - 1
- - v - - [
- | s : ! &
150 :' - , - : Q}
- - P - 1 |
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- - i | B 1
100 - , | b , T
- - " P - 1 |
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- - i P - , ~
DS ' ol ‘ : i T
50 - :_ " B I' N \‘v‘i : -
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Summary

 Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum
parameter

* This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour
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Summary

Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum
parameter

This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour

 Properties of the effective BH :

Slightly smaller horizon radius (and entropy) than a classical BH
One unstable circular orbit in the exterior (slightly closer in than a classical BH photon sphere)

One stable circular orbit in the interior
Expansion and Raychaudhuri equation are finite across the entire spacetime
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Summary

 Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum

parameter

* This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour

 Properties of the effective BH :
Slightly smaller horizon radius (and entropy) than a classical BH

One stable circular orbit in the interior

e Current/ future work :

* Find rotating solution using the Newman-Janis algorithm

One unstable circular orbit in the exterior (slightly closer in than a classical BH photon sphere)

Expansion and Raychaudhuri equation are finite across the entire spacetime

e Compute full coupled geodesic equations, greybody factors, quasinormal modes, shadow etc.

Evan Vienneau
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Thank you!
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Backups
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Q,uv = 8uv T+ kulv 4= kvl/,c

§Mu _— Qua QﬁvBaﬁ

B*, = V,k*

Evan Vienneau Department of Physics University of Alberta

Full spacetime of a minimal uncertainty black hole



Expansion and Raychaudhuri equation

e Singularity resolution can be further explored via the Raychaudhuri equation

e Defining the tangent vector field U* to a timelike geodesic congruence

Projection Shear Vorticity
1
P,m/ = 8w T U,qu O = B(,uv) — EQP/MJ Wy = B[MV]
Deviation
B, =V,U, Raychaudhuri
Y 10" w0 — R, UM
dr 3 He H He
Expansion
0 = Vﬂ U#
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Classical Schwarzschild interior

e Symplectic form

1 . - 1
Q= d>zdA E° g
S /_’szz rdAl (x) NdE!(y) —> e (de A dp. + 2db A dpy)

* Yields the reduced Poisson brackets for the canonical variables b, ¢, p,, p.

e, p.} =2Gy b, pp} = 2Gy

. The KS-adapted Ashtekar variables along with gg®’ = 5’71??1?]’? yields the metric

T 2
ds? = — N(T)’dT? 1 pzb( ) dr* + p (T)(d6?* + sin” Odg?)
Lopc(T)
 We choose a lapse which effectively decouples the canonical variables
7/ PAT) 1
N(T) = v H = [(b2+;/2)pb F2cp,]
b(T) 2Gy b
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Classical Schwarzschild interior - canonical variables

r’pT) . py(T)

ds* = dT” 1 dr* + p(T)(dO* + sin” Od¢*
b(TY? 12T pT) ¢°)
e Equations of motion for canonical variables
AP de
ar T2 b o~ \eH =2
dl?b Pp y? ap,
JHY = ] —— = {p..H} =2p,
ar = Pt = 2( b2 ar = et =2p

e |nterpretation of canonical variables follows from these e.0.m and weakly vanishing of the
Hamiltonian constraint

y 1 dp. vy d
Ax@ — yp = 27ZLO\/gxngQ — Zﬂpb , b= ) = \/

p. dr \/_ dt
A _ _ d Pp
0p = TEQQ = 7P, C—}’E ? —}’—( o@)
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Classical Schwarzschild interior - canonical variables

Also, note that in the fiducial volume, we can consider three surfaces S, g, S 4, and
So.4, respectively, bounded by Z and a great circle along a longitude of V), Z and the
equator of V5, and the equator and a longitude with areas |9]

Azg = Azg =2 Lo/ Gzzg00 = 2T, (2.22)
Ap.g =Tgaa = TP, (2.23)

with the volume of the fiducial region Z x S* given by [9]

V = /d3az\/| det E| = 4T L\/Grzgn = ATPby/Pes (2.24)

where \/ det |E| = /q with ¢ being the determinant of the spatial metric.
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