Full spacetime of a minimal-uncertainty black hole

Evan Vienneau

Supervisor : Saeed Rastgoo Department of Physics University of Alberta

May 2024

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

$$ds^{2} = -\left(\frac{2GM}{t} - 1\right)^{-1} dt^{2} + \left(\frac{2GM}{t} - 1\right)^$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

$$ds^2 = -\left(\frac{2GM}{t} - 1\right)^{-1} dt^2 + \left(\frac{2GM}{t} - 1\right)^{-1} dt^$$

.

Isometric to Kantowski-Sachs (KS) metric with globally hyperbolic topology $\mathbb{R} \times \mathbb{S}^2$

$$ds^2 = -N(T)^2 dT^2 + g_{rr}(T)dr^2 + g_{\theta\theta}(T)$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

-1 $dr^2 + t^2 d\Omega^2$

[Collins 77']

') $d\theta^2 + g_{\phi\phi} d\phi^2$

Department of Physics University of Alberta

$$ds^2 = -\left(\frac{2GM}{t} - 1\right)^{-1} dt^2 + \left(\frac{2GM}{t} - 1\right)^{-1} dt^$$

Isometric to Kantowski-Sachs (KS) metric with globally hyperbolic topology $\mathbb{R} \times \mathbb{S}^2$

$$ds^{2} = -N(T)^{2}dT^{2} + g_{rr}(T)dr^{2} + g_{\theta\theta}(T)$$

Gravitational Hamiltonian can be written in terms of Ashtekar variables adapted to the KS spacetime

$$\tilde{H} = -\frac{\tilde{N}}{2G\gamma^2} \left[2\tilde{b}\tilde{c}\sqrt{\tilde{p}_c} + \left(\tilde{b}^2 + \gamma^2\right) \right]$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

-1 $dr^{2} + t^{2}d\Omega^{2}$ [Collins 77']

') $d\theta^2 + g_{\phi\phi}d\phi^2$

[Ashtekar & Bojowald 06']

Canonical variable Poisson brackets follow from the symplectic form \bullet

$$\{b, p_b\} = G\gamma \quad \{c, p_c\} =$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Canonical variable Poisson brackets follow from the symplectic form \bullet

$$\{b, p_b\} = G\gamma \qquad \{c, p_c\} =$$

• The KS-adapted Ashtekar variables along with $qq^{ab} = \delta^{ij}\tilde{E}^a_i\tilde{E}^b_j$ yields the metric

$$ds^{2} = -N(T)^{2}dT^{2} + \frac{p_{b}(T)^{2}}{L_{0}^{2}p_{c}(T)}dr^{2} + p_{c}(T)$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

= $2G\gamma$

 $(d\theta^2 + \sin^2\theta d\phi^2)$

Department of Physics University of Alberta

Canonical variable Poisson brackets follow from the symplectic form

$$\{b, p_b\} = G\gamma \qquad \{c, p_c\} =$$

The KS-adapted Ashtekar variables along with $qq^{ab} = \delta^{ij}\tilde{E}^a_i\tilde{E}^b_i$ yields the metric

$$ds^{2} = -N(T)^{2}dT^{2} + \frac{p_{b}(T)^{2}}{L_{0}^{2}p_{c}(T)}dr^{2} + p_{c}(T)$$

We choose a lapse which effectively decouples the canonical variables \bullet

$$N(T) = \frac{\gamma \sqrt{p_c(T)}}{b(T)} \qquad H = -\frac{1}{2G\gamma} [(h + c) - \frac{1}{2G\gamma}]$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

= $2G\gamma$

 $(d\theta^2 + \sin^2\theta d\phi^2)$

 $(b^2 + \gamma^2) \frac{p_b}{h} + 2cp_c$]

Classical Schwarzschild interior - canonical variables

Equations of motion for canonical variables

$$\frac{db}{dT} = \{b, H\} = -\frac{1}{2} \left(b + \frac{\gamma^2}{b} \right)$$
$$\frac{dp_b}{dT} = \{p_b, H\} = \frac{p_b}{2} \left(1 - \frac{\gamma^2}{b^2} \right)$$

$$\frac{dc}{dT} = \{c, H\} = -2c$$

$$\frac{dp_c}{dT} = \{p_c, H\} = 2p_c$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

* In Schwarszchild time $t = e^T$

Deformation of Poisson algebra

- Many theories of quantum gravity predict a deviation from the standard Heisenberg uncertainty principle at high energies/momenta
- Modified Poisson algebra in the classical theory

 $\{b, p_b\} = G\gamma F_1(b, p_b, c, p_c, \beta_b, \beta_c) \quad \{c, p_c\} = 2G\gamma F_2(b, p_b, c, p_c, \beta_b, \beta_c)$

Full spacetime of a minimal uncertainty black hole

[Garay 95'] [Kempf 96'] [Scardigli 99']

Department of Physics University of Alberta

Deformation of Poisson algebra

- Many theories of quantum gravity predict a deviation from the standard Heisenberg uncertainty principle at high energies/momenta
- Modified Poisson algebra in the classical theory

 $\{b, p_b\} = G\gamma F_1(b, p_b, c, p_c, \beta_b, \beta_c) \quad \{c, p_c\} = 2G\gamma F_2(b, p_b, c, p_c, \beta_b, \beta_c)$

Configuration-dependent modification (commonly found in minimal-uncertainty theories)

$$\{b, p_b\} = G\gamma \left(1 + \beta_b b^2\right) \qquad \{c, p_c\} =$$

Full spacetime of a minimal uncertainty black hole

[Garay 95'] [Kempf 96'] [Scardigli 99']

 $= 2G\gamma(1 + \beta_c c^2)$

Deformation of Poisson algebra

- Many theories of quantum gravity predict a deviation from the standard Heisenberg uncertainty principle at high energies/momenta
- Modified Poisson algebra in the classical theory

 $\{b, p_b\} = G\gamma F_1(b, p_b, c, p_c, \beta_b, \beta_c) \quad \{c, p_c\} = 2G\gamma F_2(b, p_b, c, p_c, \beta_b, \beta_c)$

Configuration-dependent modification (commonly found in minimal-uncertainty theories)

$$\{b, p_b\} = G\gamma \left(1 + \beta_b b^2\right) \qquad \{c, p_c\} = 2G\gamma (1 + \beta_c c^2)$$

Implies a minimal-uncertainty relation in the quantum theory \bullet

$$\begin{aligned} [b, p_b] = iG\gamma \left(1 + \beta_b b^2\right) & \longrightarrow & \Delta b \Delta p_b \ge \frac{G\gamma}{2} \left[1 + \beta_b (\Delta b)^2\right] \\ [c, p_c] = i2G\gamma \left(1 + \beta_c c^2\right) & \Delta c \Delta p_c \ge G\gamma \left[1 + \beta_c (\Delta c)^2\right] \end{aligned}$$

• We then re-solve the EOMs for the canonical variables to yield the effective metric

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

[Garay 95'] [Kempf 96'] [Scardigli 99']

Now we have an effective Schwarzschild interior metric with a resolved singularity \bullet

$$ds^{2} = -\frac{\gamma^{2}\tilde{p_{c}}(t)}{t^{2}\tilde{b}(t)^{2}}dt^{2} + \frac{\tilde{p_{b}}(t)^{2}}{L_{0}^{2}\tilde{p_{c}}(t)}dr^{2} + \tilde{p_{c}}(t)(d\theta^{2})$$

But what happens when we extend to the full spacetime? \bullet

$$ds^{2} = \frac{\tilde{p_{b}}(r)^{2}}{L_{0}^{2}\tilde{p_{c}}(r)}dt^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)^{2}}dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)}dr^{2} + \tilde{p_{c}}(r)(\theta^{2} - \frac$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

[Bosso 23']

 $(2 + \sin^2\theta d\phi^2)$

 $+\sin^2\theta d\phi^2$)

Now we have an effective Schwarzschild interior metric with a resolved singularity \bullet

$$ds^{2} = -\frac{\gamma^{2}\tilde{p_{c}}(t)}{t^{2}\tilde{b}(t)^{2}}dt^{2} + \frac{\tilde{p_{b}}(t)^{2}}{L_{0}^{2}\tilde{p_{c}}(t)}dr^{2} + \tilde{p_{c}}(t)(d\theta^{2})$$

But what happens when we extend to the full spacetime? \bullet

$$ds^{2} = \frac{\tilde{p_{b}}(r)^{2}}{L_{0}^{2}\tilde{p_{c}}(r)}dt^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)^{2}}dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)}dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}})dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{\gamma^{2}\tilde{p_{c}$$

Classical limits

$$\lim_{\substack{\beta_b, \beta_c \to 0}} \tilde{g}_{00} = -\left(1 - \frac{R_s}{r}\right)$$
$$\lim_{\substack{\beta_b, \beta_c \to 0}} \tilde{g}_{11} = \left(1 - \frac{R_s}{r}\right)^{-1}$$
$$\lim_{\substack{\beta_b, \beta_c \to 0}} \tilde{g}_{22} = r^2$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

[Bosso 23']

- $(2 + \sin^2\theta d\phi^2)$
- $+\sin^2\theta d\phi^2$)

Now we have an effective Schwarzschild interior metric with a resolved singularity \bullet

$$ds^{2} = -\frac{\gamma^{2}\tilde{p_{c}}(t)}{t^{2}\tilde{b}(t)^{2}}dt^{2} + \frac{\tilde{p_{b}}(t)^{2}}{L_{0}^{2}\tilde{p_{c}}(t)}dr^{2} + \tilde{p_{c}}(t)(d\theta^{2})$$

But what happens when we extend to the full spacetime? \bullet

$$ds^{2} = \frac{\tilde{p_{b}}(r)^{2}}{L_{0}^{2}\tilde{p_{c}}(r)}dt^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)^{2}}dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)}dr^{2} + \tilde{p_{c}}(r)}dr^{2} +$$

Classical limits

$$\lim_{\substack{\beta_b, \beta_c \to 0}} \tilde{g}_{00} = -\left(1 - \frac{R_s}{r}\right)$$
$$\lim_{\substack{\beta_b, \beta_c \to 0}} \tilde{g}_{11} = \left(1 - \frac{R_s}{r}\right)^{-1}$$
$$\lim_{\substack{\beta_b, \beta_c \to 0}} \tilde{g}_{22} = r^2$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

[Bosso 23']

- $(2 + \sin^2\theta d\phi^2)$
- $+\sin^2\theta d\phi^2$)

Now we have an effective Schwarzschild interior metric with a resolved singularity \bullet

$$ds^{2} = -\frac{\gamma^{2}\tilde{p_{c}}(t)}{t^{2}\tilde{b}(t)^{2}}dt^{2} + \frac{\tilde{p_{b}}(t)^{2}}{L_{0}^{2}\tilde{p_{c}}(t)}dr^{2} + \tilde{p_{c}}(t)(d\theta^{2})$$

But what happens when we extend to the full spacetime? \bullet

$$ds^{2} = \frac{\tilde{p_{b}}(r)^{2}}{L_{0}^{2}\tilde{p_{c}}(r)}dt^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)^{2}}dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{1}{r^{2}\tilde{b}(r)})dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{1}{r^{$$

Classical limits Asymptotic limits $\lim_{\substack{\beta_b,\beta_c\to 0}} \tilde{g}_{00} = -\left(1 - \frac{R_s}{r}\right) \qquad \qquad \lim_{r\to\infty} \tilde{g}_{00} = \begin{cases} 0, & Q_b > 0\\ -\infty, & Q_b < 0 \end{cases}$ $\lim_{\substack{\beta_b,\beta\to 0}} \tilde{g}_{11} = \left(1 - \frac{R_s}{r}\right)^{-1} \qquad \qquad \lim_{r\to\infty} \tilde{g}_{11} = \int Q_b, \quad Q_b > 1$ $\lim_{r \to \infty} \tilde{g}_{11} = \begin{cases} Q_b, & Q_b > 1\\ 1, & O_t < 1 \end{cases}$ $\lim_{\beta_b,\beta_c\to 0} \tilde{g}_{22} = r^2$ $Q_b = \operatorname{sgn}\beta_b |\beta_b|\gamma^2 \quad Q_c = \operatorname{sgn}\beta_c |\beta_c|\gamma^2$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

[Bosso 23']

 $^{2} + \sin^{2}\theta d\phi^{2}$

 $+\sin^2\theta d\phi^2$)

Department of Physics University of Alberta

Now we have an effective Schwarzschild interior metric with a resolved singularity \bullet

$$ds^{2} = -\frac{\gamma^{2}\tilde{p_{c}}(t)}{t^{2}\tilde{b}(t)^{2}}dt^{2} + \frac{\tilde{p_{b}}(t)^{2}}{L_{0}^{2}\tilde{p_{c}}(t)}dr^{2} + \tilde{p_{c}}(t)(d\theta^{2})$$

But what happens when we extend to the full spacetime? \bullet

$$ds^{2} = \frac{\tilde{p_{b}}(r)^{2}}{L_{0}^{2}\tilde{p_{c}}(r)}dt^{2} - \frac{\gamma^{2}\tilde{p_{c}}(r)}{r^{2}\tilde{b}(r)^{2}}dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{1}{r^{2}\tilde{b}(r)})dr^{2} + \tilde{p_{c}}(r)(d\theta^{2} - \frac{1}{r^{$$

Classical limits Asymptotic limits $\lim_{r \to \infty} \tilde{g}_{00} = \begin{cases} 0, & Q_b > 0\\ -\infty, & Q_b < 0 \end{cases}$ $\lim_{\beta_b,\beta_c\to 0}\tilde{g}_{00}:$ $\lim_{r \to \infty} \tilde{g}_{11} = \begin{cases} Q_b, & Q_b > 1\\ 1, & Q_b < 1 \end{cases}$ $\lim_{\beta_b,\beta_c\to 0} \tilde{g}_{22} = r^2$ $Q_b = \mathrm{sgn}\beta_b |\beta_b|\gamma^2 \quad Q_c = \mathrm{sgn}\beta_c |\beta_c|\gamma^2$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

[Bosso 23']

 $(2 + \sin^2\theta d\phi^2)$

 $+\sin^2\theta d\phi^2$)

Full spacetime extension - improved (β) scheme

Inspired by similar issues in LQC, we make the quantum parameters momentumlacksquaredependent

$$\beta_b \to \overline{\beta_b} = \frac{L_0^4 \beta_b}{p_b^2} \qquad \qquad \beta_c \to \overline{\beta_c} = \frac{L_0^4}{p_c^4}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Full spacetime extension - improved (β) scheme

Inspired by similar issues in LQC, we make the quantum parameters momentumdependent

$$\beta_b \to \overline{\beta_b} = \frac{L_0^4 \beta_b}{p_b^2} \qquad \qquad \beta_c \to \overline{\beta_c} = \frac{L_0^4}{p_b^4}$$

Re-solve canonical variable EOMs, sub into metric and swap t and r to get exterior metric

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

$\overline{\beta}$ -scheme metric limits and expansions

Classical limits lacksquare

$$\lim_{\beta_b, \beta_c \to 0} g_{00} = -\left(1 - \frac{R_s}{r}\right) \qquad \qquad \lim_{\beta_b, \beta_c \to 0} g_{11} =$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

$\overline{\beta}$ -scheme metric limits and expansions

Classical limits lacksquare

$$\lim_{\beta_b, \beta_c \to 0} g_{00} = -\left(1 - \frac{R_s}{r}\right) \qquad \qquad \lim_{\beta_b, \beta_c \to 0} g_{11} =$$

Asymptotic limits \bullet

$$\lim_{r \to \infty} g_{00} = -1 \quad \lim_{r \to \infty} g_{22} = \infty \qquad \lim_{r \to \infty} g_{11} = 1$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

β -scheme metric limits and expansions

Classical limits \bullet

$$\lim_{\beta_b, \beta_c \to 0} g_{00} = -\left(1 - \frac{R_s}{r}\right) \qquad \qquad \lim_{\beta_b, \beta_c \to 0} g_{11} =$$

Asymptotic limits lacksquare

> $\lim_{r \to \infty} g_{11} = 1$ $\lim_{r \to \infty} g_{00} = -1 \quad \lim_{r \to \infty} g_{22} = \infty$

Asymptotic expansions

$$\begin{split} g_{00}\big|_{r \to \infty} &= -\left(1 - \frac{R_s}{r}\right) - \frac{Q_b}{r^2} + \mathcal{O}\left(\frac{1}{r^3}\right) \\ g_{11}\big|_{r \to \infty} &= \left(1 + \frac{R_s}{r}\right) + \frac{R_s^2}{r^2} + \frac{R_s}{2r^3}\left(2R_s^2 - Q_b\right) + \mathcal{O} \\ g_{22}\big|_{r \to \infty} &= r^2 \end{split}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

β -scheme metric limits and expansions

Classical limits \bullet

$$\lim_{\beta_b, \beta_c \to 0} g_{00} = -\left(1 - \frac{R_s}{r}\right) \qquad \qquad \lim_{\beta_b, \beta_c \to 0} g_{11} =$$

Asymptotic limits ullet

> $\lim_{r \to \infty} g_{11} = 1$ $\lim_{r \to \infty} g_{00} = -1 \quad \lim_{r \to \infty} g_{22} = \infty$

Asymptotic expansions

$$\begin{split} g_{00}\big|_{r \to \infty} &= -\left(1 - \frac{R_s}{r}\right) - \frac{Q_b}{r^2} + \mathcal{O}\left(\frac{1}{r^3}\right) \\ g_{11}\big|_{r \to \infty} &= \left(1 + \frac{R_s}{r}\right) + \frac{R_s^2}{r^2} + \frac{R_s}{2r^3}\left(2R_s^2 - Q_b\right) + \mathcal{O} \\ g_{22}\big|_{r \to \infty} &= r^2 \end{split}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Horizon and entropy

• We can find the position of event horizon by solving $g^{11} = 0$, yielding

$$r_{H} = \sqrt{R_{s}^{2} - Q_{b}} = R_{s} - \frac{1}{2} \frac{Q_{b}}{R_{s}} + \mathcal{O}(Q_{b}^{2})$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Horizon and entropy

• We can find the position of event horizon by solving $g^{11} = 0$, yielding

$$r_{H} = \sqrt{R_{s}^{2} - Q_{b}} = R_{s} - \frac{1}{2}\frac{Q_{b}}{R_{s}} + \mathcal{O}(Q_{b}^{2})$$

- The quantum parameter Q_b is responsible for the horizon radius modification
- The horizon modification implies a modification to the entropy of the BH

$$S_Q = \frac{A}{4\ell_p^2} - \frac{\pi Q_b}{\ell_p^2} = S - \frac{\pi Q_b}{\ell_p^2}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Horizon and entropy

• We can find the position of event horizon by solving $g^{11} = 0$, yielding

$$r_{H} = \sqrt{R_{s}^{2} - Q_{b}} = R_{s} - \frac{1}{2} \frac{Q_{b}}{R_{s}} + \mathcal{O}(Q_{b}^{2})$$

- The quantum parameter Q_b is responsible for the horizon radius modification
- The horizon modification implies a modification to the entropy of the BH

$$S_Q = \frac{A}{4\ell_p^2} - \frac{\pi Q_b}{\ell_p^2} = S - \frac{\pi Q_b}{\ell_p^2}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Krestchmann scalar

The Kretschmann scalar now has all of the desired properties \bullet

$$K\Big|_{r \to \infty} = \frac{12R_s^2}{r^6} + \mathcal{O}\left(\frac{1}{r^7}\right) \qquad \lim_{r \to \infty} K = 0 \qquad \lim_{r \to 0^+} K = K (r=0) = \frac{4}{\sqrt{\rho}}\Big|_{r=0} = \frac{8}{R_s\sqrt{Q_c}}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Effective potential

 Two conserved quantities (energy and angular momentum) associated with the Killing vector fields corresponding to time translation and rotational symmetry

$$E = -g_{\mu\nu}K^{\mu}\frac{dx^{\nu}}{d\lambda} = \sqrt{\frac{\nu}{\rho}}(\sqrt{\nu} - R_{s})\frac{dt}{d\lambda} \qquad L = g_{\mu\nu}R^{\mu}\frac{dx^{\nu}}{d\lambda} = \rho^{\frac{1}{4}}\frac{d\phi}{d\lambda}$$
$$\Xi = -g_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda} = \begin{cases} 0, & \text{null} \\ 1, & \text{timelike} \end{cases}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Effective potential

 Two conserved quantities (energy and angular momentum) associated with the Killing vector fields corresponding to time translation and rotational symmetry

$$\begin{split} E &= -g_{\mu\nu}K^{\mu}\frac{dx^{\nu}}{d\lambda} = \sqrt{\frac{\nu}{\rho}}(\sqrt{\nu} - R_{s})\frac{dt}{d\lambda} \qquad \qquad L = g_{\mu\nu}R^{\mu}\frac{dx^{\nu}}{d\lambda} = \rho^{\frac{1}{4}}\frac{d\phi}{d\lambda} \\ \Xi &= -g_{\mu\nu}\frac{dx^{\mu}}{d\lambda}\frac{dx^{\nu}}{d\lambda} = \begin{cases} 0, & \text{null} \\ 1, & \text{timelike} \end{cases} \end{split}$$

• Yields an EOM for a test particle

$$\begin{split} &\frac{\nu}{r^2} \left(\frac{dr}{d\lambda}\right)^2 + V_{\text{eff}} = \mathfrak{E} \\ &V_{\text{eff}} = -g_{00} \left[\frac{L^2}{g_{22}} + \Xi\right] = \sqrt{\frac{\nu}{\sqrt{\rho}}} \left(\sqrt{\nu} - R_s\right) \\ &\mathfrak{E} = E^2 \end{split}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

$$\left[\frac{L^2}{\rho^{\frac{1}{4}}} + \Xi\right]$$

$$\nu = r^2 + Q_b$$

$$\rho = r^8 + \frac{1}{4}Q_c R_s^2$$

2

Department of Physics University of Alberta

Photon spheres

• Extrema of the null effective potential determine the location of photon spheres

$$r_{ph}^{eff} = \frac{3R_s}{2} - \frac{7Q_b}{9R_s} + \frac{64Q}{6561}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Photon spheres

Extrema of the null effective potential determine the location of photon spheres \bullet

$$r_{ph}^{eff} = \frac{3R_s}{2} - \frac{7Q_b}{9R_s} + \frac{64Q}{6561}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Photon spheres

Extrema of the null effective potential determine the location of photon spheres

• We find similar results for timelike geodesics

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

 V^{Null} and dV^{Null}/dr comparison, with $G = 1, M = 5, \gamma = 0.3, Q_b = 0.1 = Q_c$ $|R_s^2 - Q_b$ d V_{eff-quantum} -Null ₇Null dr8 10 6 4 12 **Stable**

Department of Physics University of Alberta

Singularity resolution can be further explored via the Raychaudhuri equation

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Singularity resolution can be further explored via the Raychaudhuri equation \bullet

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Tides $R_{\mu\nu}k^{\mu}k^{
u}$

Department of Physics University of Alberta

Singularity resolution can be further explored via the Raychaudhuri equation \bullet

$$\frac{d\theta}{d\tau} = -\frac{1}{2}\theta^2 - \sigma_{\mu\nu}\sigma^{\mu\nu} + \omega_{\mu\nu}\omega^{\mu\nu}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

 $-R_{\mu
u}k^{\mu}k^{
u}$

Department of Physics University of Alberta

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Summary

- Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum parameter
- This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour ullet

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Summary

- Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum parameter
- This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour \bullet
- Properties of the effective BH : \bullet
 - Slightly smaller horizon radius (and entropy) than a classical BH
 - One unstable circular orbit in the exterior (slightly closer in than a classical BH photon sphere)
 - One stable circular orbit in the interior
 - Expansion and Raychaudhuri equation are finite across the entire spacetime \bullet

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Summary

- Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum parameter
- This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour
- Properties of the effective BH :
 - Slightly smaller horizon radius (and entropy) than a classical BH
 - One unstable circular orbit in the exterior (slightly closer in than a classical BH photon sphere)
 - One stable circular orbit in the interior
 - Expansion and Raychaudhuri equation are finite across the entire spacetime
- Current / future work :
 - Find rotating solution using the Newman-Janis algorithm
 - Compute full coupled geodesic equations, greybody factors, quasinormal modes, shadow etc.

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Department of Physics University of Alberta

Thank you!

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Backups

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

$$Q_{\mu\nu} = g_{\mu\nu} + k_{\mu}l_{\nu} + k_{\nu}l_{\mu}$$
$$\widehat{B}^{\mu}{}_{\nu} = Q^{\mu}{}_{\alpha}Q^{\beta}{}_{\nu}B^{\alpha}{}_{\beta}$$
$$B^{\mu}{}_{\nu} = \nabla_{\nu}k^{\mu}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

- Singularity resolution can be further explored via the Raychaudhuri equation lacksquare
- Defining the tangent vector field U^{μ} to a timelike geodesic congruence lacksquare

Projection

Deviation

$$B_{\mu\nu} = \nabla_{\mu} U_{\nu}$$

$$\frac{d\theta}{d\tau} = -\frac{1}{3}\theta^2 - \sigma_{\mu\nu}$$

Shear

Expansion

$$\theta = \nabla_{\mu} U^{\mu}$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

Vorticity

$$\omega_{\mu
u} = B_{[\mu
u]}$$

Raychaudhuri

 $_{\nu}\sigma^{\mu\nu} + \omega_{\mu\nu}\omega^{\mu\nu} - R_{\mu\nu}U^{\mu}U^{\nu}$

Symplectic form

$$\mathbf{\Omega} = \frac{1}{8\pi G\gamma} \int_{\mathcal{I}\times\mathbb{S}^2} d^3x dA^i_a(\mathbf{x}) \wedge d\tilde{E}^a_i(\mathbf{y}) \longrightarrow \mathbf{\Omega}$$

Yields the reduced Poisson brackets for the canonical variables b, c, p_b, p_c ullet

$$\{c, p_c\} = 2G\gamma \qquad \{b, p_b\} =$$

The KS-adapted Ashtekar variables along with $qq^{ab} = \delta^{ij} \tilde{E}^a_i \tilde{E}^b_j$ yields the metric •

$$ds^{2} = -N(T)^{2}dT^{2} + \frac{p_{b}(T)^{2}}{L_{0}^{2}p_{c}(T)}dr^{2} + p_{c}(T)$$

We choose a lapse which effectively decouples the canonical variables

$$N(T) = \frac{\gamma \sqrt{p_c(T)}}{b(T)} \qquad H = -\frac{1}{2G\gamma} [(b^2 + \gamma^2)\frac{p_b}{b} + 2cp_c]$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

 $=\frac{1}{2G\gamma}\left(dc\wedge dp_{c}+2db\wedge dp_{b}\right)$

 $2G\gamma$

- $(d\theta^2 + \sin^2\theta d\phi^2)$

Classical Schwarzschild interior - canonical variables

$$ds^{2} = -\frac{\gamma^{2} p_{c}(T)}{b(T)^{2}} dT^{2} + \frac{p_{b}(T)^{2}}{L_{0}^{2} p_{c}(T)} dr^{2} + p_{c}(T)(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

• Equations of motion for canonical variables

$$\frac{db}{dT} = \{b, H\} = -\frac{1}{2}\left(b + \frac{\gamma^2}{b}\right) \qquad \frac{dc}{dT}$$

$$\frac{dp_b}{dT} = \{p_b, H\} = \frac{p_b}{2} \left(1 - \frac{\gamma^2}{b^2}\right) \qquad \frac{dp_c}{dT} = \{p_c, H\} = 2p_c$$

Interpretation of canonical variables follows from these e.o.m and weakly vanishing of the lacksquareHamiltonian constraint

$$A_{x\theta} = A_{x\phi} = 2\pi L_0 \sqrt{g_{xx}g_{\Omega\Omega}} = 2\pi p_b , \quad b = \frac{\gamma}{2} \frac{1}{\sqrt{p_c}} \frac{dp_c}{d\tau} = \frac{\gamma}{\sqrt{\pi}} \frac{d}{d\tau} \sqrt{A_{\theta\phi}}$$
$$A_{\theta\phi} = \pi g_{\Omega\Omega} = \pi p_c , \quad c = \gamma \frac{d}{d\tau} \left(\frac{p_b}{\sqrt{p_c}}\right) = \gamma \frac{d}{d\tau} (L_0 \sqrt{g_{xx}})$$

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

$$= \{c, H\} = -2c$$

Also, note that in the fiducial volume, we can consider three surfaces $S_{x,\theta}$, $S_{x,\phi}$, and $S_{\theta,\phi}$, respectively, bounded by \mathcal{I} and a great circle along a longitude of V_0, \mathcal{I} and the equator of V_0 , and the equator and a longitude with areas [9]

$$A_{x,\theta} = A_{x,\phi} = 2\pi L_0 \sqrt{g_{xx} g_{\Omega\Omega}} = 2$$
$$A_{\theta,\phi} = \pi g_{\Omega\Omega} = \pi p_c,$$

with the volume of the fiducial region $\mathcal{I} \times \mathbb{S}^2$ given by [9]

$$V = \int \mathrm{d}^3 x \sqrt{|\det \tilde{E}|} = 4\pi L \sqrt{g_{xx}} g_{\Omega\Omega} =$$

where $\sqrt{\det |\tilde{E}|} = \sqrt{q}$ with q being the determinant of the spatial metric.

Evan Vienneau

Full spacetime of a minimal uncertainty black hole

(2.22) $2\pi p_b$, (2.23)

- $=4\pi p_b \sqrt{p_c},$ (2.24)