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Classical Schwarzschild interior

 ds2 = − ( 2GM
t

− 1)
−1

dt2 + ( 2GM
t

− 1) dr2 + t2dΩ2

• Gravitational Hamiltonian can be written in terms of Ashtekar variables adapted to the 
KS spacetime

[Collins 77’]

[Ashtekar & Bojowald 06’]

• Isometric to Kantowski-Sachs (KS) metric with globally hyperbolic topology                ℝ × 𝕊2
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• Canonical variable Poisson brackets follow from the symplectic form
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Classical Schwarzschild interior

• The KS-adapted Ashtekar variables along with    yields the metricqqab = δijẼa
i Ẽb

j

ds2 = − N(T)2dT2 +
pb(T)2

L2
0 pc(T)

dr2 + pc(T)(dθ2 + sin2 θdϕ2)

Classical Schwarzschild interior

• Canonical variable Poisson brackets follow from the symplectic form
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Classical Schwarzschild interior

• The KS-adapted Ashtekar variables along with    yields the metricqqab = δijẼa
i Ẽb

j

ds2 = − N(T)2dT2 +
pb(T)2

L2
0 pc(T)

dr2 + pc(T)(dθ2 + sin2 θdϕ2)

• We choose a lapse which effectively decouples the canonical variables

N(T) =
γ pc(T)

b(T)
H = −

1
2Gγ

[(b2 + γ2)
pb

b
+ 2cpc]

Classical Schwarzschild interior

• Canonical variable Poisson brackets follow from the symplectic form
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Classical Schwarzschild interior - canonical variables

db
dT

= {b, H} = −
1
2 (b +

γ2

b )
dpb

dT
= {pb, H} =

pb

2 (1 −
γ2

b2 )
dc
dT

= {c, H} = − 2c

dpc

dT
= {pc, H} = 2pc

• Equations of motion for canonical variables

* In Schwarszchild time t = eT

Classical Schwarzschild interior - canonical variables
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• Many theories of quantum gravity predict a deviation from the standard Heisenberg 
uncertainty principle at high energies/momenta

• Modified Poisson algebra in the classical theory

Deformation of Poisson algebra
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[Scardigli 99’]
[Kempf 96’]
[Garay 95’]



University of AlbertaDepartment of PhysicsEvan Vienneau

Full spacetime of a minimal uncertainty black hole

Introduction Background Results Conclusion

• Many theories of quantum gravity predict a deviation from the standard Heisenberg 
uncertainty principle at high energies/momenta

• Modified Poisson algebra in the classical theory

• Configuration-dependent modification (commonly found in minimal-uncertainty 
theories)

Deformation of Poisson algebra

5/15

[Scardigli 99’]
[Kempf 96’]
[Garay 95’]



University of AlbertaDepartment of PhysicsEvan Vienneau

Full spacetime of a minimal uncertainty black hole

Introduction Background Results Conclusion

• Many theories of quantum gravity predict a deviation from the standard Heisenberg 
uncertainty principle at high energies/momenta

• Modified Poisson algebra in the classical theory

• Implies a minimal-uncertainty relation in the quantum theory

• We then re-solve the EOMs for the canonical variables to yield the effective metric

• Configuration-dependent modification (commonly found in minimal-uncertainty 
theories)

Deformation of Poisson algebra

5/15

[Scardigli 99’]
[Kempf 96’]
[Garay 95’]
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Full spacetime extension

• Now we have an effective Schwarzschild interior metric with a resolved singularity

ds2 = −
γ2 p̃c(t)
t2b̃(t)2

dt2 +
p̃b(t)2

L2
0 p̃c(t)

dr2 + p̃c(t)(dθ2 + sin2 θdϕ2)

• But what happens when we extend to the full spacetime?

ds2 =
p̃b(r)2

L2
0 p̃c(r)

dt2 −
γ2 p̃c(r)
r2b̃(r)2

dr2 + p̃c(r)(dθ2 + sin2 θdϕ2)

Full spacetime extension

6/15

[Bosso 23’]
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• Asymptotic limits

lim
r→∞

g̃00 = {0, Qb > 0
−∞, Qb < 0

lim
r→∞

g̃11 = {Qb, Qb > 1
1, Qb < 1

• Krestchmann scalar

K ∝
1
r4

• Now we have an effective Schwarzschild interior metric with a resolved singularity
[Bosso 23’]

• But what happens when we extend to the full spacetime?
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Full spacetime extension - improved ( ) schemeβ

βb → βb =
L4

0 βb

p2
b

βc → βc =
L4

0 βc

p2
c

• Inspired by similar issues in LQC, we make the quantum parameters momentum-
dependent

Full spacetime extension - improved ( ) schemeβ
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Full spacetime extension - improved ( ) schemeβ

βb → βb =
L4

0 βb

p2
b

βc → βc =
L4

0 βc

p2
c

SHOW THE IMPROVED GUP 

MODIFIED VARIABLES

AND ALSO THE METRIC 
COMPONENTS

• Re-solve canonical variable EOMs, sub into metric and swap t and r to get exterior 
metric

Full spacetime extension - improved ( ) schemeβ

7/15

• Inspired by similar issues in LQC, we make the quantum parameters momentum-
dependent
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• Classical limits
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• We can find the position of event horizon by solving  , yieldingg11 = 0

rH = R2
s − Qb = Rs −

1
2

Qb

Rs
+ 𝒪(Q2

b)

Horizon and entropy

9/15
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Kretschmann scalar

• The Kretschmann scalar now has all of the desired properties

Krestchmann scalar
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Effective potentialEffective potential

11/15

E = − gμνKμ dxν

dλ
=

ν
ρ

( ν − Rs)
dt
dλ

L = gμνRμ dxν

dλ
= ρ

1
4

dϕ
dλ

• Two conserved quantities (energy and angular momentum) associated with the Killing 
vector fields corresponding to time translation and rotational symmetry
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Effective potential

• Yields an EOM for a test particle

Effective potential

11/15

E = − gμνKμ dxν

dλ
=

ν
ρ

( ν − Rs)
dt
dλ

L = gμνRμ dxν

dλ
= ρ

1
4

dϕ
dλ

• Two conserved quantities (energy and angular momentum) associated with the Killing 
vector fields corresponding to time translation and rotational symmetry



• Extrema of the null effective potential determine the location of photon spheres
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Photon spheres

reff
ph =

3Rs

2
−

7Qb

9Rs
+

64Qc

6561R5
s

Photon spheres
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Photon spheres
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ph =

3Rs
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−

7Qb

9Rs
+

64Qc

6561R5
s

Unstable

Exterior

Photon spheres



• Extrema of the null effective potential determine the location of photon spheres
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Photon spheres

reff
ph =

3Rs

2
−

7Qb

9Rs
+

64Qc

6561R5
s

StableUnstable

Exterior Interior

Photon spheres

• We find similar results for timelike geodesics 
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• Singularity resolution can be further explored via the Raychaudhuri equation

Expansion and Raychaudhuri equation
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Expansion and Raychaudhuri equation

Tides 
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• Singularity resolution can be further explored via the Raychaudhuri equation

Shear Expansion Vorticity 

Raychaudhuri

Expansion and Raychaudhuri equation

Tides 
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Expansion and Raychaudhuri equationExpansion and Raychaudhuri equation

• SHOW EXPANSION AND RAYCHAUDHURI PLOTS
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SummarySummary

• Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum 
parameter


• This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour
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SummarySummary

• Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum 
parameter


• This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour


• Properties of the effective BH :


• Slightly smaller horizon radius (and entropy) than a classical BH

• One unstable circular orbit in the exterior (slightly closer in than a classical BH photon sphere)

• One stable circular orbit in the interior

• Expansion and Raychaudhuri equation are finite across the entire spacetime
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cSummary

• Found the full spacetime of a minimal-uncertainty BH with a momentum-dependent quantum 
parameter


• This prescription yields the correct asymptotic limits and Krestchmann scalar behaviour


• Properties of the effective BH :


• Slightly smaller horizon radius (and entropy) than a classical BH

• One unstable circular orbit in the exterior (slightly closer in than a classical BH photon sphere)

• One stable circular orbit in the interior

• Expansion and Raychaudhuri equation are finite across the entire spacetime


• Current / future work :


• Find rotating solution using the Newman-Janis algorithm

• Compute full coupled geodesic equations, greybody factors, quasinormal modes, shadow etc.
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Expansion and Raychaudhuri equation
• Singularity resolution can be further explored via the Raychaudhuri equation


• Defining the tangent vector field  to a timelike geodesic congruenceUμ

σμν = B(μν) −
1
3

θPμν

Shear 

θ = ∇μUμ

Expansion

ωμν = B[μν]

Vorticity 

dθ
dτ

= −
1
3

θ2 − σμνσμν + ωμνωμν − RμνUμUν

Raychaudhuri

Projection

Pμν = gμν + UμUν

Deviation

Bμν = ∇μUν
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Classical Schwarzschild interior

• Symplectic form 

• Yields the reduced Poisson brackets for the canonical variables b,  c,  pb,  pc

{c, pc} = 2Gγ {b, pb} = 2Gγ

• The KS-adapted Ashtekar variables along with    yields the metricqqab = δijẼa
i Ẽb

j

ds2 = − N(T)2dT2 +
pb(T)2

L2
0 pc(T)

dr2 + pc(T)(dθ2 + sin2 θdϕ2)

• We choose a lapse which effectively decouples the canonical variables

N(T) =
γ pc(T)

b(T)
H = −

1
2Gγ

[(b2 + γ2)
pb

b
+ 2cpc]
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ds2 = −
γ2pc(T )
b(T )2

dT2 +
pb(T )2

L2
0 pc(T )

dr2 + pc(T )(dθ2 + sin2 θdϕ2)

Aθϕ = πgΩΩ = πpc ,

b =
γ
2

1
pc

dpc

dτ
=

γ

π

d
dτ

Aθϕ

c = γ
d
dτ ( pb

pc ) = γ
d
dτ

(L0 gxx)

Axθ = Axϕ = 2πL0 gxxgΩΩ = 2πpb ,

db
dT

= {b, H} = −
1
2 (b +

γ2

b )
dpb

dT
= {pb, H} =

pb

2 (1 −
γ2

b2 )

dc
dT

= {c, H} = − 2c

dpc

dT
= {pc, H} = 2pc

• Equations of motion for canonical variables

• Interpretation of canonical variables follows from these e.o.m and weakly vanishing of the 
Hamiltonian constraint
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db
dT

= {b, H} = −
1
2 (b +

γ2

b )
dpb

dT
= {pb, H} =

pb

2 (1 −
γ2

b2 )


