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Prelude: the Husain-Kuchar (HK) model

Given an su(2)-valued triad e) and connection Al (a € {1,...,4})
on a 4d spacetime M, consider the generally covariant action
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where F = dA+ AN A.

Contrast with the 4d Palatini action: s0(3,1)-valued tetrads
replaced with su(2)-valued triads.



Canonical HK

Assuming M =R x ¥, the canonical decomposition of the action

is straightforward:
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where E? = det(e)E? = €°abce,-jkef;ef§, and
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» The theory is non-dynamical: the geometry of ¥ does not
evolve. But not topological: local degrees of freedom exist.
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where E? = det(e)E? = €°abce,-jke{;e§, and
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= -D,Ef ~0 (Gauss)
.= EPFl, ~ 0 (spatial diffeos)

?

No Hamiltonian constraint!

» The theory is non-dynamical: the geometry of ¥ does not
evolve. But not topological: local degrees of freedom exist.

» There's an invertible spatial metric g, = (5,-J-e;e{,,
a,b € {1,2,3}. Thus interesting three-geometries exist.
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Enter HK2.0
Consider the replacement
el — D¢

where D is the covariant derivative with connection A and ¢ is an
su(2)-valued scalar.

The action now decomposes as
S= / dtd>x(E2 AL + B’ — ALG)):;
Ef = @ Dpd/ Do, pi = @ ey D¢ Fi,
with only one constraint, a modified Gauss law with a source:
G = _(DaEia + €ijk¢j5k) ~0

No Hamiltonian and diffeomorphism constraints!
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But whither the constraints?

The theory is generally covariant. But the first-class constraints of
the theory (namely, the Gauss law) generate only SU(2)
transformations of the gauge field A. Where does the remaining
gauge redundancy go?

This is a common occurrence in a large class of generally covariant
theories of connections, e.g. 2+1 gravity, BF theories,
Chern-Simons theory, and so on.

In these theories, for any generator of diffeomorphisms v,
L,A = G-transformations + equations-of-motion terms

where G is the gauge group of the connection A.
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Some appealing features of the model

» Generally covariant gauge theory with local degrees of
freedom that possesses only a Gauss constraint.

> A large solution space in the classical theory. In particular,
solutions to 241 gravity form a proper subspace of solutions
to HK2.0.

» Amenable to quantization via multiple methods; viable toy
model.

» For instance, canonical quantization via LQG methods yields a
Hilbert space of spin network states with a finite number of
charges ¢ sitting at the vertices.

» Would be interesting to look at the spinfoam and group field
theory models of the theory (work currently underway).



Thank you!
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