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Prelude: the Husain-Kuchar (HK) model

Given an su(2)-valued triad e ia and connection Ai
a (a ∈ {1, ..., 4})

on a 4d spacetime M, consider the generally covariant action

S =
1

2

∫
M
d4x Tr(e ∧ e ∧ F )

where F = dA+ A ∧ A.

Contrast with the 4d Palatini action: so(3, 1)-valued tetrads
replaced with su(2)-valued triads.



Canonical HK

Assuming M = R× Σ, the canonical decomposition of the action
is straightforward:

S =

∫
dt

∫
Σ
d3x(Ẽ a

i Ȧ
i
a − Ai

0G̃i − (e i0E
a
i )C̃a)

where Ẽ a
i = det(e)E a

i = ϵ̃0abcϵijke
j
be

k
c , and

G̃i = −DaẼ
a
i ≈ 0 (Gauss)

C̃a = Ẽb
i F

i
ab ≈ 0 (spatial diffeos)

No Hamiltonian constraint!

▶ The theory is non-dynamical: the geometry of Σ does not
evolve. But not topological: local degrees of freedom exist.

▶ There’s an invertible spatial metric gab = δije
i
ae

j
b,

a, b ∈ {1, 2, 3}. Thus interesting three-geometries exist.
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i Ȧ
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Enter HK2.0

Consider the replacement

e ia → Daϕ
i

where D is the covariant derivative with connection A and ϕ is an
su(2)-valued scalar.

The action now decomposes as

S =

∫
dtd3x(Ẽ a

i Ȧ
i
a + p̃i ϕ̇

i − Ai
0G̃i );

Ẽ a
i = ϵ̃abcϵijkDbϕ

jDcϕ
k , p̃i = ϵ̃abcϵijkDaϕ

jF k
bc

with only one constraint, a modified Gauss law with a source:

G̃i = −(DaẼ
a
i + ϵijkϕ

j p̃k) ≈ 0

No Hamiltonian and diffeomorphism constraints!
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But whither the constraints?

The theory is generally covariant. But the first-class constraints of
the theory (namely, the Gauss law) generate only SU(2)
transformations of the gauge field A. Where does the remaining
gauge redundancy go?

This is a common occurrence in a large class of generally covariant
theories of connections, e.g. 2+1 gravity, BF theories,
Chern-Simons theory, and so on.

In these theories, for any generator of diffeomorphisms v ,

LvA = G -transformations + equations-of-motion terms

where G is the gauge group of the connection A.
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Some appealing features of the model

▶ Generally covariant gauge theory with local degrees of
freedom that possesses only a Gauss constraint.

▶ A large solution space in the classical theory. In particular,
solutions to 2+1 gravity form a proper subspace of solutions
to HK2.0.

▶ Amenable to quantization via multiple methods; viable toy
model.

▶ For instance, canonical quantization via LQG methods yields a
Hilbert space of spin network states with a finite number of
charges ϕ sitting at the vertices.

▶ Would be interesting to look at the spinfoam and group field
theory models of the theory (work currently underway).
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Thank you!
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