Geometry of the black-to-white hole transition

Farshid Soltani

Based on work with M. Han and C. Rovelli

LOOPs'24, 7 May 2024

Oppenheimer–Snyder collapse

Interior of the star (FLRW metric):

$$
\text{d} s^2=-\,\text{d} t^2+a^2(t)\big[\text{d} r^2+r^2\text{d}\Omega^2\big]
$$

Exterior of the star (Schwarzschild metric):

$$
\mathrm{d} s^2 = -(1-2m/r)\,\mathrm{d} t^2 + \frac{\mathrm{d} r^2}{(1-2m/r)} + r^2 \mathrm{d}\Omega^2
$$

Quantum region of a black hole spacetime

Quantum gravitational effects cannot be neglected in:

- Region A: Planckian curvature near classical singularity
- Region B: physics of the horizon at the end of the evaporation
- Region C: quantum gravity regime of the collapsing matter

Interior of the star (region C)

Classical case

 $\mathrm{d} \mathrm{s}^2{=}-\mathrm{d} T^2{+}a^2(T) (\mathrm{d} R^2 + R^2\,\mathrm{d}\Omega^2)$ $\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3}\rho \quad \longrightarrow \quad a(T) = \left(\frac{9mT^2}{2R^3}\right)^{1/3}$ 4 3 $\overline{2}$ $=a_{\text{cl}}(T)$ $\mathbf{1}$ \mathcal{I} -2 $\overline{2}$ -4

Planck units $(c = G = \hbar = 1)$

Quantum case

Interior of the star (region C)

Planck units $(c = G = \hbar = 1)$

Classical case Quantum case

$$
\frac{\dot{a}^2}{a^2} = \frac{8\pi}{3}\rho\bigg(1-\frac{\rho}{\rho_c}\bigg)
$$

$$
A = \frac{3}{2\pi\rho_c}
$$

$$
a(T) = \bigg(\frac{9mT^2 + Am}{2R_{\rm star}^3}\bigg)^{1/3}
$$

Kelly, Santacruz, Wilson-Ewing (2020)

Exterior of the star (region A)

Classical case

$$
\mathrm{d} \mathrm{s}^2 {=} - f(r) \, \mathrm{d} t^2 + f^{-1}(r) \, \mathrm{d} r^2 + r^2 \, \mathrm{d} \Omega^2
$$

$$
f(r) = 1 - \frac{2m}{r}
$$

$$
r_\mathrm{h} = 2m
$$

Beware: the isometry of the black hole interior with the Kantowski-Sachs spacetime cannot be used here!

Exterior of the star (region A)

Quantum case
$$
\left(A = \frac{3}{2\pi\rho_c} \ll m^2 \right)
$$

$$
\mathrm{d} \mathrm{s}^2 {=} - f(r) \, \mathrm{d} t^2 + f^{-1}(r) \, \mathrm{d} r^2 + r^2 \, \mathrm{d} \Omega^2
$$

$$
f(r)=1-\frac{2m}{r}+\frac{Am^2}{r^4}
$$

$$
r_+=2m+O({\overline A}/m)
$$

$$
r_{-}=\sqrt[3]{Am/2}\,+O\Big(A^{2/3}/m^{1/3}\Big)
$$

Kelly, Santacruz, Wilson-Ewing (2020) Lewandowski, Ma, Yang, Zhang (2023) Bobula and Pawlowski (2023)

Shockwave??

$$
\mathrm{d} s^2 = -\mathrm{d} t_{\mathrm{PG}}^2 + \left(\mathrm{d} r + N^{r}(t_{\mathrm{PG}}, r) \, \mathrm{d} t_{\mathrm{PG}} \right)^2 + r^2 \mathrm{d} \Omega^2
$$

$$
N^r(t_{\text{PG}},r) = \begin{cases} -\frac{6r t_{\text{PG}}}{9t_{\text{PG}}^2 + A} & r \leq r_b \\ \sqrt{1 - f(r)} & r > r_b \end{cases}
$$

Discontinuity
Physical shockwave

Kelly, Santacruz, Wilson-Ewing (2020)

Shockwave??

$$
\mathrm{d} s^2 = -\mathrm{d} t_{\mathrm{PG}}^2 + \left(\mathrm{d} r + N^{r}(t_{\mathrm{PG}}, r) \, \mathrm{d} t_{\mathrm{PG}} \right)^2 + r^2 \mathrm{d} \Omega^2
$$

$$
N^{r}(t_{\text{PG}}, r) = \begin{cases} -\frac{6r t_{\text{PG}}}{9t_{\text{PG}}^{2} + A} & r \leq r_{b} \\ \sqrt{1 - f(r)} & r > r_{b} \end{cases}
$$

Discontinuity
Physical shockwave
Coordinate artifact!!
Kelly, Santacruz, Wilson-Ewing (2020) Fazzini, Rovelli, FS (2023)

6

Haggard and Rovelli (2015)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

Han, Rovelli, FS (2023)

 U_{α} U_{β} β_U σ_L V_a

Farshid Soltani - Geometry of the black-to-white hole transition - 8

Han, Rovelli, FS (2023)

What happens inside region B?

What do we expect to find inside region B?

● Effective metric whose dynamics can be studied perturbatively

Deep quantum geometry where classical concept of metric lose any meaning

Effective metric scenario

- There is a natural extension of the black-to-white metric inside of region B **[Han, Rovelli, FS (2023)]**
- It provides a proof of concept for the existence of a regular effective metric in region B

Behavior of r=const. surfaces

trapped regions

Conclusions

- The black-to-white hole transition is a natural scenario for the end of the evaporation of a black hole
- A concrete effective metric describing the black-to-white hole spacetime and its non-singular interior has been constructed
- The metric discontinuity in PG coordinates of the quantum OS spacetime can be seen as a coordinate artifact
- There is a natural extension of the black-to-white hole metric inside of region B

Spin foam framework **Han, Rovelli, FS (2023)**

● The black-to-white hole geometry depends on 4 parameters: $(m, \mathcal{T}, v_\alpha, v_\beta)$

Spin foam framework

Christodoulou, D'Ambrosio, Martin-Dussaud, Rovelli, FS (2021) FS, Rovelli, Martin-Dussaud (2021)

- The black-to-white hole geometry depends on 4 parameters: $(m, \mathcal{T}, v_{\alpha}, v_{\beta})$
- A discretization Γ of the boundary can be defined starting from the 3d induced geometry and a Hilbert space \mathcal{H}_{Γ} assigned to it
- A coherent state $\Psi(m, \mathcal{T}, v_\alpha, v_\beta)$ peaked on the boundary geometry can be defined in \mathcal{H}_{Γ}

Spin foam framework

Christodoulou, D'Ambrosio, Martin-Dussaud, Rovelli, FS (2021) FS, Rovelli, Martin-Dussaud (2021)

- The black-to-white hole geometry depends on 4 parameters: $(m, \mathcal{T}, v_\alpha, v_\beta)$
- A discretization Γ of the boundary can be defined starting from the 3d induced geometry and a Hilbert space \mathcal{H}_{Γ} assigned to it
- A coherent state $\Psi(m, \mathcal{T}, v_\alpha, v_\beta)$ peaked on the boundary geometry can be defined in \mathcal{H}_{Γ}
- A spinfoam describing the quantum transition can be constructed
- The EPRL-KKL transition amplitude $W(m, \mathcal{T}, v_{\alpha}, v_{\beta})$ can be computed

Investigations of the transition amplitude

● Analytical investigation of the EPRL transition amplitude for the Haggard-Rovelli spacetime gives

$$
p \sim \, e^{- \alpha \, m^2/m_{\rm pl}^2} \, , \qquad \tau \sim \, m \, e^{\alpha \, m^2/m_{\rm pl}^2}
$$

[Christodoulou and D'Ambrosio (2018)] [Christodoulou, D'Ambrosio, Theofilis (2023)]

● These results have been recently confirmed numerically

[Frisoni (2023)]

Investigations of the transition amplitude

● Analytical investigation of the EPRL transition amplitude for the Haggard-Rovelli spacetime gives

$$
p \sim \, e^{- \alpha \, m^2/m_{\rm pl}^2} \, , \qquad \tau \sim \, m \, e^{\alpha \, m^2/m_{\rm pl}^2}
$$

[Christodoulou and D'Ambrosio (2018)] [Christodoulou, D'Ambrosio, Theofilis (2023)]

● These results have been recently confirmed numerically

[Frisoni (2023)]

● Numerical investigation of the spin foam amplitude for only region B

f Han, Qu, Zhang (2024)]