Carrollian Stretched

Horizons

Geometry, Dynamics, and Phase Space

(2211.06415, 2405.xxxxx with Laurent Freidel)

Puttarak Jai-akson

RIKEN ITHEMS

May 10, 2024

(2211.06415, 2405.xxxxx with Laurent Freidel)

(2211.06415, 2405.xxxxx with Laurent Freidel)

 We revisit the fluid-gravity/membrane paradigm from the Carrollian geometry perspective (i.e., provide a Carrollian notion to a timelike surface)

(2211.06415, 2405.xxxxx with Laurent Freidel)

 We revisit the fluid-gravity/membrane paradigm from the Carrollian geometry perspective (i.e., provide a Carrollian notion to a timelike surface)

(2211.06415, 2405.xxxxx with Laurent Freidel)

 We revisit the fluid-gravity/membrane paradigm from the Carrollian geometry perspective (i.e., provide a Carrollian notion to a timelike surface)

• Historically, Carrollian physics occurs as a $c \to 0$ limit of relativity [Levy-Leblond, Sen Gupta '65]

(2211.06415, 2405.xxxxx with Laurent Freidel)

• We revisit the fluid-gravity/membrane paradigm from the Carrollian geometry perspective (i.e., provide a Carrollian notion to a timelike surface)

- Historically, Carrollian physics occurs as a $c \to 0$ limit of relativity [Levy-Leblond, Sen Gupta '65]
- It has now found its place in general relativity, especially in situations involving null boundaries (BH, infinities)

(2211.06415, 2405.xxxxx with Laurent Freidel)

 We revisit the fluid-gravity/membrane paradigm from the Carrollian geometry perspective (i.e., provide a Carrollian notion to a timelike surface)

- Historically, Carrollian physics occurs as a $c \to 0$ limit of relativity [Levy-Leblond, Sen Gupta '65]
- It has now found its place in general relativity, especially in situations involving null boundaries (BH, infinities)

This talk

- Carrollian Stretched Horizon
- Embedding in a spacetime
- Dynamics
- Symplectic structure
- Symmetries and Charges

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

Stretched Carrollian Structure (sCarroll): (v^i, k_i, h_{ii}, ρ)

- Vertical vector v^l pointing along fibers
- Metric h_{ii}
- Ruling k_i with $v^i k_i = 1$
- Stretching $\rho = -\frac{1}{2}h_{ij}v^iv^j$

Timelike generalization and modern language of Levy-Leblond '64, Ashtekar '78 -'24, Henneaux '81, Dautcourt '97, Duval-Gibbons-Horvarthy '14, and others]

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

Stretched Carrollian Structure (sCarroll): (v^i, k_j, h_{ij}, ρ)

- Vertical vector v^i pointing along fibers
- Metric h_{ij}
- Ruling k_i with $v^i k_i = 1$
- Stretching $\rho = -\frac{1}{2}h_{ij}v^iv^j$

[Timelike generalization and modern language of Levy-Leblond '64, Ashtekar '78 - '24, Henneaux '81, Dautcourt '97, Duval-Gibbons-Horvarthy '14, and others]

Horizontal projector:
$$q_i{}^j=\delta_i{}^j-k_iv^j$$
 with $v^iq_i{}^j=q_i{}^jk_j=0$

$$h_{ij} = q_{ij} - 2\rho k_i k_j$$

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

Stretched Carrollian Structure (sCarroll): (v^i, k_j, h_{ij}, ρ)

- Vertical vector v^i pointing along fibers
- Metric h_{ij}
- Ruling k_i with $v^i k_i = 1$
- Stretching $\rho = -\frac{1}{2}h_{ij}v^iv^j$

[Timelike generalization and modern language of Levy-Leblond '64, Ashtekar '78 - '24, Henneaux '81, Dautcourt '97, Duval-Gibbons-Horvarthy '14, and others]

$$h_{ij} = q_{ij} - 2\rho k_i k_j$$

Expansion tensor:
$$\theta_{(ij)} = \frac{1}{2} \mathcal{L}_{v} q_{ij} = \sigma_{ij} + \frac{1}{2} \theta q_{ij}$$

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

Stretched Carrollian Structure (sCarroll): (v^i, k_j, h_{ij}, ρ)

- Vertical vector v^i pointing along fibers
- Metric h_{ij}
- Ruling k_i with $v^i k_i = 1$
- Stretching $\rho = -\frac{1}{2}h_{ij}v^iv^j$

[Timelike generalization and modern language of Levy-Leblond '64, Ashtekar '78 - '24, Henneaux '81, Dautcourt '97, Duval-Gibbons-Horvarthy '14, and others]

$$h_{ij} = q_{ij} - 2\rho k_i k_j$$

Expansion tensor:
$$\theta_{(ij)} = \frac{1}{2} \mathcal{L}_{v} q_{ij} = \sigma_{ij} + \frac{1}{2} \theta q_{ij}$$

Acceleration & Vorticity: $dk = -(k \land \varphi + w)$

$$\epsilon_{\mathcal{H}} = k \wedge \epsilon_{\mathcal{S}}$$

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

Stretched Carrollian Structure (sCarroll): (v^i, k_j, h_{ij}, ρ)

- Vertical vector v^i pointing along fibers
- Metric h_{ij}
- Ruling k_i with $v^i k_i = 1$
- Stretching $\rho = -\frac{1}{2}h_{ij}v^iv^j$

[Timelike generalization and modern language of Levy-Leblond '64, Ashtekar '78 - '24, Henneaux '81, Dautcourt '97, Duval-Gibbons-Horvarthy '14, and others]

$$h_{ij} = q_{ij} - 2\rho k_i k_j$$

Expansion tensor:
$$\theta_{(ij)} = \frac{1}{2} \mathcal{L}_{v} q_{ij} = \sigma_{ij} + \frac{1}{2} \theta q_{ij}$$

Acceleration & Vorticity: $dk = -(k \wedge \varphi + w)$

sCarrollian connection: $D_i h_{jk} = - (\mathsf{K}_{ij} k_k + \mathsf{K}_{ik} k_j)$ such that $(D_i + \omega_i) \epsilon_{\mathscr{H}} = 0$

$$\omega_i = k_j D_i v^j = \kappa k_i + \mathsf{p}_i$$

$$\epsilon_{\mathcal{H}} = k \wedge \epsilon_{\mathcal{S}}$$

 $\mathcal{H}=3D$ timelike surface with a Carrollian structure ($\pi:\mathcal{H}\to\mathcal{S}$ where \mathcal{S} is a 2-sphere) [Ciambelli-Leigh-Marteau-Petropoulos '19]

Stretched Carrollian Structure (sCarroll): (v^i, k_i, h_{ii}, ρ)

- Vertical vector v^l pointing along fibers
- Metric h_{ii}
- Ruling k_i with $v^i k_i = 1$
- Stretching $\rho = -\frac{1}{2}h_{ij}v^iv^j$

language of Levy-Leblond '64, Ashtekar '78 -'24, Henneaux '81, Dautcourt '97, Duval-Gibbons-Horvarthy '14, and others]

$$h_{ij} = q_{ij} - 2\rho k_i k_j$$

Expansion tensor:
$$\theta_{(ij)} = \frac{1}{2} \mathcal{L}_{v} q_{ij} = \sigma_{ij} + \frac{1}{2} \theta q_{ij}$$

Acceleration & Vorticity: $dk = -(k \wedge \varphi + w)$

$$\epsilon_{\mathcal{H}} = k \wedge \epsilon_{\mathcal{S}}$$

Frame
$$q_{ij}=e_i^{\ A}e_j^{\ B}q_{AB}$$

$$e_A^{\ i}e_i^{\ B}=\delta_A^B$$

sCarrollian connection: $D_i h_{jk} = - (K_{ij} k_k + K_{ik} k_j)$ such that $(D_i + \omega_i) \epsilon_{\mathscr{H}} = 0$

$$\omega_i = k_j D_i v^j = \kappa k_i + \mathsf{p}_i$$

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

$$\mathsf{T}_i{}^j := \mathsf{N}_i{}^j - \mathsf{N}\delta_i^j$$

[Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Generalized News Tensor: $N_i^{\ j} := D_i v^j + 2\rho(D_i k_k) q^{kj}$

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

$$\mathsf{T}_i{}^j := \mathsf{N}_i{}^j - \mathsf{N}\delta_i^j$$

[Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Generalized News Tensor: $N_i^{\ j} := D_i v^j + 2\rho(D_i k_k) q^{kj}$

Fluid Decomposition:

$$\mathsf{T}_i{}^j = -k_i \left(\mathsf{E} v^j + \mathsf{J}^j\right) + \mathsf{p}_i v^j + \left(\mathsf{S}_i{}^j + \mathsf{P} q_i{}^j\right) \qquad \text{[Ciambelli-Marteau et al '18-'19, PJ-Freidel '22]}$$

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

$$\mathsf{T}_i{}^j := \mathsf{N}_i{}^j - \mathsf{N}\delta_i^j$$

[Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Generalized News Tensor: $N_i^{\ j} := D_i v^j + 2\rho(D_i k_k) q^{kj}$

Fluid Decomposition:

$$\mathsf{T}_{i}^{j} = -k_{i} \left(\mathsf{E} v^{j} + \mathsf{J}^{j}\right) + \mathsf{p}_{i} v^{j} + \left(\mathsf{S}_{i}^{j} + \mathsf{P} q_{i}^{j}\right) \qquad \text{[Ciambelli-Marteau et al '18-'19, PJ-Freidel '22]}$$
 energy heat momentum viscous stress pressure

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

$$\mathsf{T}_i{}^j := \mathsf{N}_i{}^j - \mathsf{N}\delta_i^j$$

[Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Generalized News Tensor: $N_i^j := D_i v^j + 2\rho(D_i k_k) q^{kj}$

Fluid Decomposition:

$$\mathsf{T}_{i}^{j} = -k_{i} \left(\mathsf{E} v^{j} + \mathsf{J}^{j}\right) + \mathsf{p}_{i} v^{j} + \left(\mathsf{S}_{i}^{j} + \mathsf{P} q_{i}^{j}\right) \qquad \text{[Ciambelli-Marteau et al '18-'19, PJ-Freidel '22]}$$
 energy heat momentum viscous stress pressure

Dual Expansion Tensor: $\overline{\theta}_{ij}=q_i^{\ k}q_j^{\ l}D_kk_l$ decomposes as $\overline{\theta}_{(ij)}=\overline{\sigma}_{ij}-\frac{1}{2}\overline{\theta}q_{ij}$

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

$$\mathsf{T}_i{}^j := \mathsf{N}_i{}^j - \mathsf{N}\delta_i^j$$

[Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Generalized News Tensor: $N_i^j := D_i v^j + 2\rho(D_i k_k) q^{kj}$

Fluid Decomposition:

$$\mathsf{T}_{i}^{\ j} = -\,k_{i}\,\big(\mathsf{E}v^{j} + \mathsf{J}^{j}\big) + \mathsf{p}_{i}v^{j} + \big(\mathsf{S}_{i}^{\ j} + \mathsf{P}q_{i}^{\ j}\big) \qquad \text{[Ciambelli-Marteau et al '18-'19, PJ-Freidel '22]}$$
 energy heat momentum viscous stress pressure

Dual Expansion Tensor: $\overline{\theta}_{ij} = q_i^{\ k} q_j^{\ l} D_k k_l$ decomposes as $\overline{\theta}_{(ij)} = \overline{\sigma}_{ij} - \frac{1}{2} \overline{\theta} q_{ij}$

ullet The Einstein equations, pulling-back to the stretched horizon \mathcal{H} , is the conservation laws for the sCarrollian stress tensor

sCarrollian Stress Tensor: A timelike generalization of (null) Carrollian stress tensor

A Carrollian version of Brown-York stress tensor

$$\mathsf{T}_i{}^j := \mathsf{N}_i{}^j - \mathsf{N}\delta_i^j$$

[Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Generalized News Tensor: $N_i^j := D_i v^j + 2\rho(D_i k_k) q^{kj}$

Fluid Decomposition:

$$\mathsf{T}_{i}{}^{j} = -k_{i} \left(\mathsf{E} v^{j} + \mathsf{J}^{j}\right) + \mathsf{p}_{i} v^{j} + \left(\mathsf{S}_{i}{}^{j} + \mathsf{P} q_{i}{}^{j}\right) \qquad \text{[Ciambelli-Marteau et al '18-'19, PJ-Freidel '22]}$$
 energy heat momentum viscous stress pressure

Dual Expansion Tensor: $\overline{\theta}_{ij} = q_i^{\ k} q_j^{\ l} D_k k_l$ decomposes as $\overline{\theta}_{(ij)} = \overline{\sigma}_{ij} - \frac{1}{2} \overline{\theta} q_{ij}$

- ullet The Einstein equations, pulling-back to the stretched horizon \mathcal{H} , is the conservation laws for the sCarrollian stress tensor
- The quantities $(E, P, J^i, p_i, S_i^j, \overline{\theta})$ are conjugate canonical momenta to the sCarroll structure of the Einstein gravity phase space when pulled-back to \mathcal{H}

3

A family of sCarroll structures $\left(v^i(r), k_j(r), h_{ij}(r), \rho(r)\right)$

A family of sCarroll structures $\left(v^i(r), k_j(r), h_{ij}(r), \rho(r)\right)$

Foliation: $J_r: \mathcal{H} \to \mathcal{M}$ such that $\mathcal{H}_r = J_r(\mathcal{H})$ are causal (null, timelike) surfaces, and $\mathcal{H}_0 = \mathcal{N}$ is a null boundary

A family of sCarroll structures $\left(v^i(r), k_j(r), h_{ij}(r), \rho(r)\right)$

Foliation: $j_r:\mathcal{H}\to\mathcal{M}$ such that $\mathcal{H}_r=j_r(\mathcal{H})$ are causal (null, timelike) surfaces, and $\mathcal{H}_0=\mathcal{N}$ is a null boundary

Normal: $n_a = \nabla_a r$ [Rigging structure: Mars-Senovilla '93]

Rigging: $k^a = \partial_r j^a$, with $k^a n_a = 1$ and $g_{ab} k^a k^b = 0$

Projector: $\Pi_a{}^b = \delta_a^b - n_a k^b$ such that $\Pi_a{}^b n_b = k^a \Pi_a{}^b = 0$

A family of sCarroll structures $\left(v^i(r), k_j(r), h_{ij}(r), \rho(r)\right)$

Foliation: $j_r:\mathcal{H}\to\mathcal{M}$ such that $\mathcal{H}_r=j_r(\mathcal{H})$ are causal (null, timelike) surfaces, and $\mathcal{H}_0=\mathcal{N}$ is a null boundary

Normal: $n_a = \nabla_a r$ [Rigging structure: Mars-Senovilla '93]

Rigging: $k^a = \partial_r j^a$, with $k^a n_a = 1$ and $g_{ab} k^a k^b = 0$

Projector: $\Pi_a{}^b = \delta_a^b - n_a k^b$ such that $\Pi_a{}^b n_b = k^a \Pi_a{}^b = 0$

Equivalence between Stretched Horizon perspective and sCarrollian perspective

$$(n_a, k^a, g_{ab}) \Longrightarrow (v^a, k_a, h_{ab}, \rho)$$

A family of sCarroll structures $\left(v^i(r), k_j(r), h_{ij}(r), \rho(r)\right)$

Foliation: $J_r: \mathcal{H} \to \mathcal{M}$ such that $\mathcal{H}_r = J_r(\mathcal{H})$ are causal (null, timelike) surfaces, and $\mathcal{H}_0 = \mathcal{N}$ is a null boundary

Normal: $n_a = \nabla_a r$ [Rigging structure: Mars-Senovilla '93]

Rigging: $k^a = \partial_r j^a$, with $k^a n_a = 1$ and $g_{ab} k^a k^b = 0$

Projector: $\Pi_a{}^b = \delta_a^b - n_a k^b$ such that $\Pi_a{}^b n_b = k^a \Pi_a{}^b = 0$

Equivalence between Stretched Horizon perspective and sCarrollian perspective

$$(n_a, k^a, g_{ab}) \Longrightarrow (v^a, k_a, h_{ab}, \rho)$$

When the stretching $\rho = {\rm constant}$, which is always possible by rescaling: $n_a \to {\rm e}^\phi n_a$ and $k^a \to {\rm e}^{-\phi} k^a$, we have the relation

$$\Pi_i^{\ a} G_a^{\ b} n_b = D_j \mathsf{T}_i^{\ j}$$

The Einstein equations projected onto ${\mathscr H}$ is the conservation laws of sCarrollian stress tensor

[Donnay-Marteau '19, Chandrasekaran-Speranza '20, Chandrasekaran-Flanagan-Shehzad-Speranza '21, PJ-Freidel '22]

$$\mathsf{T}_i{}^j = -\,k_i \left(\mathsf{E} v^j + \mathsf{J}^j\right) + \mathsf{p}_i v^j + \left(\mathsf{S}_i{}^j + \mathsf{P} q_i{}^j\right) \quad \text{and} \quad \overline{\theta} = q^{ij} D_i k_j = \partial_r \ln \sqrt{q}$$

$$\mathsf{T}_i{}^j = -\,k_i\left(\mathsf{E} v^j + \mathsf{J}^j\right) + \mathsf{p}_i v^j + \left(\mathsf{S}_i{}^j + \mathsf{P} q_i{}^j\right) \quad \text{and} \quad \overline{\theta} = q^{ij} D_i k_j = \partial_r \ln \sqrt{q}$$

Canonical Symplectic Potential

$$\Theta_{\mathcal{H}}^{\text{can}} = -\int_{\mathcal{H}} \left(\left(\mathsf{E} v^a + \mathsf{J}^a \right) \delta k_a + \mathsf{p}_a \delta v^a - \frac{1}{2} (\mathsf{S}^{ab} + \mathsf{P} q^{ab}) \delta q_{ab} + \overline{\theta} \delta \rho \right) \epsilon_{\mathcal{H}}$$

$$\mathsf{T}_i{}^j = -\,k_i\left(\mathsf{E} v^j + \mathsf{J}^j\right) + \mathsf{p}_i v^j + \left(\mathsf{S}_i{}^j + \mathsf{P} q_i{}^j\right) \quad \text{and} \quad \overline{\theta} = q^{ij} D_i k_j = \partial_r \ln \sqrt{q}$$

Canonical Symplectic Potential

$$\Theta_{\mathcal{H}}^{\text{can}} = -\int_{\mathcal{H}} \left(\left(\mathsf{E} v^a + \mathsf{J}^a \right) \delta k_a + \mathsf{p}_a \delta v^a - \frac{1}{2} (\mathsf{S}^{ab} + \mathsf{P} q^{ab}) \delta q_{ab} + \overline{\theta} \delta \rho \right) \epsilon_{\mathcal{H}}$$

Intrinsic but derivable from the Einstein-Hilbert gravity, by fixing the rigging structure to be a background structure ($\delta n_a = 0$, $\delta k^a = 0$)

$$\Theta_{\mathcal{H}}^{\mathrm{EH}} = \Theta_{\mathcal{H}}^{\mathrm{can}} + \delta \mathsf{B}_{\mathcal{H}} + \vartheta_{\partial\mathcal{H}}$$

Boundary Action:
$$B_{\mathcal{H}} = \int_{\mathcal{H}} N\epsilon_{\mathcal{H}}$$

Corner Potential:
$$\vartheta_{\partial\mathcal{H}} = -\frac{1}{2}\int_{\partial\mathcal{H}} \delta v^a l_a \epsilon_{\mathcal{H}}$$

[sCarrollian generalization to many works: Hayward '93, Ashtekar '00, Lewandowski '04, Lehner-Myers-Poisson-Sorkin '16, Parattu-Chakraborty-Padmanabhan '16, De Paoli-Speziale '17, Freidel-Hopfmuller '16-'18, Adami-Grumiller-Sheikh-Jabbari-Taghiloo-Yavartanoo-Zwikel '21, Chandrasekaran-Speranza '21, Chandrasekaran-Flanagan-Shehzad-Speranza '21, Freidel-PJ '22, Odak-Rignon-Bret-Speziale '23, Chandrasekaran-Flanagan '23, Ciambelli-Freidel-Leigh '23, Freidel-Riello '24]

Symmetries

Symmetries

Diffeomorphsim preserving background structure is parameterized by (T, X^A, R, W, Z^A) , spacetime functions obeying some 1st order transverse evolutions

Symmetries

Diffeomorphsim preserving background structure is parameterized by (T, X^A, R, W, Z^A) , spacetime functions obeying some 1st order transverse evolutions

- Time Translation: T
- Horizontal Diff: $X^a = X^A e_A^{\ a}$
- Transverse Translation: $\xi^a_\perp = Rk^a$
- Rescaling: $\xi^a = rWk^a$
- Shifts: $Z^a = Z^A e_A^{\ a}$

Diffeomorphsim preserving background structure is parameterized by (T, X^A, R, W, Z^A) , spacetime functions obeying some 1st order transverse evolutions

• Time Translation: T Tangential to \mathscr{H} : $\xi^a_{||} = Tv^a + X^a$

• Horizontal Diff: $X^a = X^A e_A^a$ Transform sCarrollian tensors covariantly

• Transverse Translation: $\xi^a_\perp = Rk^a$

• Rescaling: $\xi^a = rWk^a$

• Shifts: $Z^a = Z^A e_A^{\ a}$

Diffeomorphsim preserving background structure is parameterized by (T, X^A, R, W, Z^A) , spacetime functions obeying some 1st order transverse evolutions

- Time Translation: T
- Horizontal Diff: $X^a = X^A e_A^a$
- Transverse Translation: $\xi^a_\perp = Rk^a$
- Rescaling: $\xi^a = rWk^a$

Symmetries of sCarroll structure, preserving h_{ii}

• Shifts:
$$Z^a = Z^A e_A^{\ a}$$

$$\delta_W v^a = W v^a$$
 $\delta_W k_a = -W k_a$ $\delta_W \rho = 2W \rho$

$$\delta_Z v^a = -2\rho Z^a$$
 $\delta_W k_a = Z_a$ $\delta_W \rho = 0$

Diffeomorphsim preserving background structure is parameterized by (T, X^A, R, W, Z^A) , spacetime functions obeying some 1st order transverse evolutions

• Time Translation: *T*

Tangential to
$$\mathcal{H}$$
: $\xi_{||}^a = Tv^a + X^a$

• Horizontal Diff: $X^a = X^A e_A^{\ a}$

Transform sCarrollian tensors covariantly

• Transverse Translation: $\xi_{\perp}^{a}=Rk^{a}$

• Rescaling: $\xi^a = rWk^a$

Symmetries of sCarroll structure, preserving h_{ij}

• Shifts: $Z^a = Z^A e_A^{\ a}$

$$\delta_W v^a = W v^a$$
 $\delta_W k_a = -W k_a$ $\delta_W \rho = 2W \rho$

$$\delta_Z v^a = -2\rho Z^a$$
 $\delta_W k_a = Z_a$ $\delta_W \rho = 0$

Diffeomorphsim preserving background structure is parameterized by (T, X^A, R, W, Z^A) , spacetime functions obeying some 1st order transverse evolutions

• Time Translation: T Tangential to \mathcal{H} : $\xi^a_{||} = Tv^a + X^a$

• Horizontal Diff: $X^a = X^A e_A^a$ Transform sCarrollian tensors covariantly

• Transverse Translation: $\xi^a_\perp = Rk^a$

• Rescaling: $\xi^a = rWk^a$ Symmetries of sCarroll structure, preserving h_{ii}

ullet Shifts: $Z^a=Z^Ae_A{}^a$ $\delta_W v^a=Wv^a$ $\delta_W k_a=-Wk_a$ $\delta_W
ho=2W
ho$

 $\delta_Z v^a = -2\rho Z^a \quad \delta_W k_a = Z_a \quad \delta_W \rho = 0$

▶ Transformations of under (R, W, Z^A) are anomalous: $\delta_{(R,W,Z)} \neq \mathcal{L}_{(R,W,Z)}$

Canonical Charges: $Q_\xi:=\Theta^{\mathrm{can}}_{\mathscr H}[\delta_\xi]+\delta_\xi\mathsf{B}_{\mathscr H}=Q^{\mathrm{EH}}_\xi-\vartheta_{\partial\mathscr H}[\delta_\xi]$

Canonical Charges: $Q_{\xi} := \Theta^{\mathrm{can}}_{\mathscr{H}}[\delta_{\xi}] + \delta_{\xi}\mathsf{B}_{\mathscr{H}} = Q^{\mathrm{EH}}_{\xi} - \vartheta_{\partial\mathscr{H}}[\delta_{\xi}]$

Shifts: $Q_Z = 0$ \Rightarrow gauge transformation

Canonical Charges:

$$Q_{\xi} := \Theta^{\operatorname{can}}_{\mathscr{H}}[\delta_{\xi}] + \delta_{\xi}\mathsf{B}_{\mathscr{H}} = Q^{\operatorname{EH}}_{\xi} - \vartheta_{\partial\mathscr{H}}[\delta_{\xi}]$$

Shifts: $Q_Z = 0$ \Rightarrow gauge transformation

Rescaling:
$$\xi^a = Wrk^a \Rightarrow$$
 charge is the area $Q_W = -\int_{\partial\mathcal{H}} W\epsilon_{\mathcal{S}}$ (edge modes)

[Null case: Adami-Grumiller-Sheikh-Jabbari-Taghiloo-Yavartanoo-Zwikel '21, BMSW: Freidel-Oliveri-Pranzetti-Speziale '21, Geiller-Zwikel '22 & '24]

Canonical Charges:

$$Q_{\xi} := \Theta^{\operatorname{can}}_{\mathscr{H}}[\delta_{\xi}] + \delta_{\xi} \mathsf{B}_{\mathscr{H}} = Q^{\operatorname{EH}}_{\xi} - \vartheta_{\partial \mathscr{H}}[\delta_{\xi}]$$

Shifts: $Q_Z = 0$ \Rightarrow gauge transformation

Rescaling: $\xi^a=Wrk^a\Rightarrow$ charge is the area $Q_W=-\int_{\partial\mathcal{H}}W\epsilon_{\mathcal{S}}$ (edge modes)

[Null case: Adami-Grumiller-Sheikh-Jabbari-Taghiloo-Yavartanoo-Zwikel '21, BMSW: Freidel-Oliveri-Pranzetti-Speziale '21, Geiller-Zwikel '22 & '24]

Tangential diffeomorphism: $\xi_{||}^a = Tv^a + X^a$

$$Q_{\xi_{||}} = -\int_{\mathcal{H}} \xi_{||}^{a} G_{a}^{b} n_{b} \epsilon_{\mathcal{H}} + \int_{\partial \mathcal{H}} \xi_{||}^{a} \underbrace{(\mathsf{T}_{a}^{b} + \mathsf{N} \delta_{a}^{b})}_{\mathsf{N}_{a}^{b}} \iota_{b} \epsilon_{\mathcal{H}}$$

Canonical Charges:

$$Q_{\xi} := \Theta_{\mathscr{H}}^{\operatorname{can}}[\delta_{\xi}] + \delta_{\xi} \mathsf{B}_{\mathscr{H}} = Q_{\xi}^{\operatorname{EH}} - \vartheta_{\partial \mathscr{H}}[\delta_{\xi}]$$

Shifts: $Q_Z = 0$ \Rightarrow gauge transformation

Rescaling: $\xi^a = Wrk^a \Rightarrow$ charge is the area $Q_W = -\int_{\partial\mathcal{H}} W\epsilon_{\mathcal{S}}$ (edge modes)

[Null case: Adami-Grumiller-Sheikh-Jabbari-Taghiloo-Yavartanoo-Zwikel '21, BMSW: Freidel-Oliveri-Pranzetti-Speziale '21, Geiller-Zwikel '22 & '24]

Tangential diffeomorphism: $\xi_{||}^a = Tv^a + X^a$

$$Q_{\xi_{||}} = -\int_{\mathcal{H}} \xi_{||}^{a} G_{a}^{b} n_{b} \epsilon_{\mathcal{H}} + \int_{\partial \mathcal{H}} \xi_{||}^{a} \underbrace{(\mathsf{T}_{a}^{b} + \mathsf{N} \delta_{a}^{b})}_{\mathsf{N}_{a}^{b}} \iota_{b} \epsilon_{\mathcal{H}}$$

Energy & Momentum evolutions:

$$-G_{vn} = \mathcal{L}_v \mathsf{E} + (\mathsf{E} + \mathsf{P})\theta + (\mathcal{D}_A + 2\varphi_A)\mathsf{J}^A + \mathsf{S}^{AB}\sigma_{AB}$$

$$G_{An} = \mathcal{L}_v \mathsf{p}_A + \theta \mathsf{p}_A + \mathsf{E}\varphi_A + \mathsf{J}^B w_{BA} + (\mathcal{D}_B + \varphi_B)(\mathsf{S}_A{}^B + \mathsf{P}\delta_A^B)$$

Canonical Charges: $Q_\xi := \Theta^{\mathrm{can}}_{\mathscr{H}}[\delta_\xi] + \delta_\xi \mathsf{B}_{\mathscr{H}} = Q^{\mathrm{EH}}_\xi - \vartheta_{\partial\mathscr{H}}[\delta_\xi]$

Canonical Charges:

$$Q_{\boldsymbol{\xi}} := \Theta^{\operatorname{can}}_{\mathscr{H}}[\delta_{\boldsymbol{\xi}}] + \delta_{\boldsymbol{\xi}}\mathsf{B}_{\mathscr{H}} = Q^{\operatorname{EH}}_{\boldsymbol{\xi}} - \vartheta_{\partial\mathscr{H}}[\delta_{\boldsymbol{\xi}}]$$

Transverse Translation: $\xi_{\perp}^{a}=Rk^{a}$

$$Q_{R} = \int_{\mathcal{H}} R(\operatorname{Ric}_{kn}) \epsilon_{\mathcal{H}} + \int_{\partial \mathcal{H}} \left(\mathcal{D}^{A} R - \mathsf{p}^{A} R \right) \iota_{A} \epsilon_{\mathcal{H}}$$

Canonical Charges:

$$Q_{\xi} := \Theta^{\operatorname{can}}_{\mathscr{H}}[\delta_{\xi}] + \delta_{\xi} \mathsf{B}_{\mathscr{H}} = Q^{\operatorname{EH}}_{\xi} - \vartheta_{\partial \mathscr{H}}[\delta_{\xi}]$$

Transverse Translation: $\xi_{\perp}^{a}=Rk^{a}$

$$Q_{R} = \int_{\mathcal{H}} R(\operatorname{Ric}_{kn}) \epsilon_{\mathcal{H}} + \int_{\partial \mathcal{H}} \left(\mathcal{D}^{A} R - \mathsf{p}^{A} R \right) \iota_{A} \epsilon_{\mathcal{H}}$$

Transverse Evolution:

$$-\operatorname{Ric}_{kn} = \frac{1}{2}q^{AB}G_{AB} - \rho G_{kk} = \mathcal{L}_k \mathsf{N} + (\mathsf{E} + \mathsf{P})\overline{\theta} - (\mathcal{D}_A + 2\mathsf{p}_A + 2\varphi_A)\mathsf{p}^A + \mathsf{S}^{AB}\overline{\sigma}_{BA}$$

 Intrinsic stretched Carrollian (sCarroll) geometry for casual surfaces (timelike or null), and its connection with a stretched horizon (embedding) perspective

- Intrinsic stretched Carrollian (sCarroll) geometry for casual surfaces (timelike or null), and its connection with a stretched horizon (embedding) perspective
- Correspondence between gravity and sCarrollian hydrodynamics, both at the level of EOM and phase space

- Intrinsic stretched Carrollian (sCarroll) geometry for casual surfaces (timelike or null), and its connection with a stretched horizon (embedding) perspective
- Correspondence between gravity and sCarrollian hydrodynamics, both at the level of EOM and phase space
- Symmetries and Charges → Holographic derivation of Einstein equations

- Intrinsic stretched Carrollian (sCarroll) geometry for casual surfaces (timelike or null), and its connection with a stretched horizon (embedding) perspective
- Correspondence between gravity and sCarrollian hydrodynamics, both at the level of EOM and phase space
- Symmetries and Charges → Holographic derivation of Einstein equations
- Quantization?
- Thermodynamics?
- Holography?

- Intrinsic stretched Carrollian (sCarroll) geometry for casual surfaces (timelike or null), and its connection with a stretched horizon (embedding) perspective
- Correspondence between gravity and sCarrollian hydrodynamics, both at the level of EOM and phase space
- Symmetries and Charges → Holographic derivation of Einstein equations
- Quantization?
- Thermodynamics?
- Holography?

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface ${\mathscr N}$

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface $\mathcal N$

$$\begin{split} G_{kn} &= \mathscr{L}_{v}\overline{\theta} + \mathsf{N}\overline{\theta} + (\mathscr{D}_{A} + \mathsf{p}_{A} + \varphi_{A})(\mathsf{p}^{A} + \varphi^{A}) - \frac{1}{2}\mathscr{R} \\ &\frac{1}{2}q^{AB}G_{AB} = \mathscr{L}_{v}\overline{\theta} + \mathscr{L}_{k}\kappa - \mathsf{P}\overline{\theta} + (\mathscr{D}_{A} + \varphi_{A})(\mathsf{p}^{A} + \varphi^{A}) - \mathsf{p}_{A}(2\mathsf{p}^{A} + \varphi^{A}) + \mathsf{S}^{AB}\overline{\sigma}_{BA} \\ &-G_{\langle AB \rangle} = 2\mathscr{L}_{v}\overline{\sigma}_{\langle AB \rangle} - 2(\mathsf{E} + \mathsf{P})\overline{\sigma}_{AB} + \overline{\theta}\mathsf{S}_{AB} + 2(\mathscr{D} + \mathsf{p} + \varphi)_{\langle A}(\mathsf{p} + \varphi)_{B \rangle} - \mathscr{R}_{\langle AB \rangle} \end{split}$$

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface $\mathcal N$

$$\begin{split} G_{kn} &= \mathscr{L}_v \overline{\theta} + \mathsf{N} \overline{\theta} + (\mathscr{D}_A + \mathsf{p}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \frac{1}{2}\mathscr{R} \\ &\frac{1}{2} q^{AB} G_{AB} = \mathscr{L}_v \overline{\theta} + \mathscr{L}_k \kappa - \mathsf{P} \overline{\theta} + (\mathscr{D}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \mathsf{p}_A (2\mathsf{p}^A + \varphi^A) + \mathsf{S}^{AB} \overline{\sigma}_{BA} \\ &- G_{\langle AB \rangle} = 2\mathscr{L}_v \overline{\sigma}_{\langle AB \rangle} - 2(\mathsf{E} + \mathsf{P}) \overline{\sigma}_{AB} + \overline{\theta} \mathsf{S}_{AB} + 2(\mathscr{D} + \mathsf{p} + \varphi)_{\langle A} (\mathsf{p} + \varphi)_{B \rangle} - \mathscr{R}_{\langle AB \rangle} \end{split}$$

NOTE: \mathcal{L}_v and \mathcal{L}_k are interchangeable: $\mathcal{L}_v \overline{\theta} \Longleftrightarrow \mathcal{L}_k \theta$

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface $\mathcal N$

$$\begin{split} G_{kn} &= \mathscr{L}_v \overline{\theta} + \mathsf{N} \overline{\theta} + (\mathscr{D}_A + \mathsf{p}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \frac{1}{2}\mathscr{R} \\ &\frac{1}{2} q^{AB} G_{AB} = \mathscr{L}_v \overline{\theta} + \mathscr{L}_k \kappa - \mathsf{P} \overline{\theta} + (\mathscr{D}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \mathsf{p}_A (2\mathsf{p}^A + \varphi^A) + \mathsf{S}^{AB} \overline{\sigma}_{BA} \\ &- G_{\langle AB \rangle} = 2\mathscr{L}_v \overline{\sigma}_{\langle AB \rangle} - 2(\mathsf{E} + \mathsf{P}) \overline{\sigma}_{AB} + \overline{\theta} \mathsf{S}_{AB} + 2(\mathscr{D} + \mathsf{p} + \varphi)_{\langle A} (\mathsf{p} + \varphi)_{B \rangle} - \mathscr{R}_{\langle AB \rangle} \end{split}$$

NOTE: \mathscr{L}_v and \mathscr{L}_k are interchangeable: $\mathscr{L}_v \overline{\theta} \Longleftrightarrow \mathscr{L}_k \theta$

They show up when considering the radial evolution of charges

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface $\mathcal N$

$$\begin{split} G_{kn} &= \mathscr{L}_v \overline{\theta} + \mathsf{N} \overline{\theta} + (\mathscr{D}_A + \mathsf{p}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \frac{1}{2}\mathscr{R} \\ &\frac{1}{2} q^{AB} G_{AB} = \mathscr{L}_v \overline{\theta} + \mathscr{L}_k \kappa - \mathsf{P} \overline{\theta} + (\mathscr{D}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \mathsf{p}_A (2\mathsf{p}^A + \varphi^A) + \mathsf{S}^{AB} \overline{\sigma}_{BA} \\ &- G_{\langle AB \rangle} = 2\mathscr{L}_v \overline{\sigma}_{\langle AB \rangle} - 2(\mathsf{E} + \mathsf{P}) \overline{\sigma}_{AB} + \overline{\theta} \mathsf{S}_{AB} + 2(\mathscr{D} + \mathsf{p} + \varphi)_{\langle A} (\mathsf{p} + \varphi)_{B \rangle} - \mathscr{R}_{\langle AB \rangle} \end{split}$$

NOTE: \mathcal{L}_v and \mathcal{L}_k are interchangeable: $\mathcal{L}_v \overline{\theta} \Longleftrightarrow \mathcal{L}_k \theta$

They show up when considering the radial evolution of charges

$$\partial_{r}Q_{X}^{\text{EH}} = -\int_{\mathcal{N}} \left((\mathscr{D}^{\langle A}X^{B\rangle}) G_{\langle AB\rangle} + \frac{1}{2} (\mathscr{D}_{C}X^{C}) q^{AB} G_{AB} + (X^{A}\varphi_{A}) G_{nk} + (\mathscr{L}_{v}X^{A}) G_{kA} \right) \epsilon_{\mathcal{N}}$$

$$+ \int_{\mathcal{S}} \left(-(\mathscr{D}^{\langle A}X^{B\rangle}) \overline{\sigma}_{AB} + \frac{1}{2} (\mathscr{D}_{C}X^{C}) \overline{\theta} + \frac{1}{2} (X^{A}\varphi_{A}) \overline{\theta} \right) \epsilon_{\mathcal{S}}$$

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface $\mathcal N$

$$\begin{split} G_{kn} &= \mathscr{L}_{v}\overline{\theta} + \mathsf{N}\overline{\theta} + (\mathscr{D}_{A} + \mathsf{p}_{A} + \varphi_{A})(\mathsf{p}^{A} + \varphi^{A}) - \frac{1}{2}\mathscr{R} \\ &\frac{1}{2}q^{AB}G_{AB} = \mathscr{L}_{v}\overline{\theta} + \mathscr{L}_{k}\kappa - \mathsf{P}\overline{\theta} + (\mathscr{D}_{A} + \varphi_{A})(\mathsf{p}^{A} + \varphi^{A}) - \mathsf{p}_{A}(2\mathsf{p}^{A} + \varphi^{A}) + \mathsf{S}^{AB}\overline{\sigma}_{BA} \\ &-G_{\langle AB \rangle} = 2\mathscr{L}_{v}\overline{\sigma}_{\langle AB \rangle} - 2(\mathsf{E} + \mathsf{P})\overline{\sigma}_{AB} + \overline{\theta}\mathsf{S}_{AB} + 2(\mathscr{D} + \mathsf{p} + \varphi)_{\langle A}(\mathsf{p} + \varphi)_{B \rangle} - \mathscr{R}_{\langle AB \rangle} \end{split}$$

NOTE: \mathscr{L}_v and \mathscr{L}_k are interchangeable: $\mathscr{L}_v \overline{\theta} \Longleftrightarrow \mathscr{L}_k \theta$

They show up when considering the radial evolution of charges

$$\begin{split} \partial_{r}Q_{X}^{\text{EH}} &= -\int_{\mathcal{N}} \left((\mathcal{D}^{\langle A}X^{B\rangle}) G_{\langle AB\rangle} + \frac{1}{2} (\mathcal{D}_{C}X^{C}) q^{AB} G_{AB} + (X^{A}\varphi_{A}) G_{nk} + (\mathcal{L}_{v}X^{A}) G_{kA} \right) \epsilon_{\mathcal{N}} \\ &+ \int_{\mathcal{S}} \left(-(\mathcal{D}^{\langle A}X^{B\rangle}) \overline{\sigma}_{AB} + \frac{1}{2} (\mathcal{D}_{C}X^{C}) \overline{\theta} + \frac{1}{2} (X^{A}\varphi_{A}) \overline{\theta} \right) \epsilon_{\mathcal{S}} \end{split}$$

This mechanism can be traced back to the **Bianchi identity** $\nabla_b G_a^{\ b} = 0$

What about $(G_{nk}, G_{\langle AB \rangle}, G_{Ak}, \dots)$? Let's focus on the case of null surface $\mathcal N$

$$\begin{split} G_{kn} &= \mathscr{L}_v \overline{\theta} + \mathsf{N} \overline{\theta} + (\mathscr{D}_A + \mathsf{p}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \frac{1}{2}\mathscr{R} \\ &\frac{1}{2} q^{AB} G_{AB} = \mathscr{L}_v \overline{\theta} + \mathscr{L}_k \kappa - \mathsf{P} \overline{\theta} + (\mathscr{D}_A + \varphi_A)(\mathsf{p}^A + \varphi^A) - \mathsf{p}_A (2\mathsf{p}^A + \varphi^A) + \mathsf{S}^{AB} \overline{\sigma}_{BA} \\ &- G_{\langle AB \rangle} = 2\mathscr{L}_v \overline{\sigma}_{\langle AB \rangle} - 2(\mathsf{E} + \mathsf{P}) \overline{\sigma}_{AB} + \overline{\theta} \mathsf{S}_{AB} + 2(\mathscr{D} + \mathsf{p} + \varphi)_{\langle A} (\mathsf{p} + \varphi)_{B \rangle} - \mathscr{R}_{\langle AB \rangle} \end{split}$$

NOTE: \mathscr{L}_v and \mathscr{L}_k are interchangeable: $\mathscr{L}_v \overline{\theta} \Longleftrightarrow \mathscr{L}_k \theta$

They show up when considering the radial evolution of charges

$$\partial_{r}Q_{X}^{\text{EH}} = -\int_{\mathcal{N}} \left((\mathcal{D}^{\langle A}X^{B\rangle}) G_{\langle AB\rangle} + \frac{1}{2} (\mathcal{D}_{C}X^{C}) q^{AB} G_{AB} + (X^{A}\varphi_{A}) G_{nk} + (\mathcal{L}_{v}X^{A}) G_{kA} \right) \epsilon_{\mathcal{N}}$$

$$+ \int_{\mathcal{S}} \left(-(\mathcal{D}^{\langle A}X^{B\rangle}) \overline{\sigma}_{AB} + \frac{1}{2} (\mathcal{D}_{C}X^{C}) \overline{\theta} + \frac{1}{2} (X^{A}\varphi_{A}) \overline{\theta} \right) \epsilon_{\mathcal{S}}$$

This mechanism can be traced back to the **Bianchi identity** $\nabla_b G_a^{\ \ b} = 0$

What does it mean? Can we think of this mechanism as the action of some symmetries? Relation with asymptotic infinities?