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At the end of the Hawking evaporation the horizon of a black hole enters a physical region where
quantum gravity cannot be neglected. The physics of this region has not been much explored. We
characterise its physics and introduce a technique to study it.

I. INTRODUCTION

In a spacetime formed by gravitationally collapsed mat-
ter, there are three distinct regions in which curvature
becomes Planckian. We expect the approximation de-
fined by quantum field theory interacting with classical
general relativity to break down in all three of them. The
physics of these regions is quite di↵erent.

The three regions are illustrated in the Carter-Penrose
causal diagram of Figure 1. The dark grey area is the re-
gion where quantum gravity cannot be neglected and the
diagram itself becomes unreliable. The light grey area is
the collapsing matter and the dashed line is the (trap-
ping) horizon (the event horizon is not determined by
classical physics). The three physically distinct regions
where curvature becomes Planckian are:

1. Region C, in the future of the event c in the di-
agram, which is directly a↵ected by the collapsing
matter reaching Planckian density.

2. Region B, in the future of the event b in the di-
agram, which is a↵ected by the horizon reaching
Planckian size because of Hawking’s evaporation.

3. Region A, in the future of any location like a (that
is a generic event in the dark grey area distant from
the events b and c) in the diagram, where the cur-
vature becomes Planckian but the classical evolu-
tion to the singularity is not causally connected to
the collapsing matter or to the horizon.

The physical distance between these regions depends
on the age of the black hole at the time when its horizon
reaches the quantum region. This age depends in turn
on the overall mass of the black hole before being shrunk
by Hawking evaporation.

To give a rough estimate of these distances we consider
for simplicity the interior of a Schwarzschild black hole.
(Most of the evaporation takes place at late times.) The

Figure 1: The three regions of a black hole spacetime where
quantum gravity becomes relevant. In the dark grey region
quantum gravity cannot be neglected and the diagram itself
becomes unreliable. The future of the locations a, b and c en-
counter di↵erent quantum gravity phenomena depending, re-
spectively, on the presence of the collapsing matter (C), the
horizon (B), or neither (A).
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We can take the three locations a, b and c to be at the
same fixed values of ✓, �, r and at three di↵erent values
ta, tb, tc of the t coordinate. The proper distance dl along
a line of constant ✓,�, r, namely a nearly horizontal line
in the causal diagram, is given by the line element
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There are three independent  
physical phenomena happening 
at the end of the BH evaporation
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Good coordinates for past patch

Good coordinates for future patch

Overlap
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FIG. 4. The spinfoam 2–complex C (left) and its oriented
boundary graph � = @C (right) chosen in [6]. The four mid-
dle links (faces) carry the boundary data !� and ⇣� that
correspond to a discretization of the sphere �, defined as the
intersection of C±. The six upper and six lower links (faces)
carry the boundary data !± and ⇣± respectively, that corre-
spond to a particularly rough discretization of the remaining
of the surfaces C± while the surfaces F± were disregarded.
It is striking that this rough discretization gives exactly the
behavior for the bounce time Tc and lifetime ⌧ expected on
general grounds from the analysis in Section V. This should
be taken as an indication that the relevant physics happen in
the vicinity of the sphere �, see [90] for a detailed argument.

glued along one of their five tetrahedra so that they cor-
respond to a simplicial manifold dual to the spinfoam in
Figure 4, have zero 4–volume. This can be checked ex-
plicitly by calculating the edge lengths of the 4–simplices
from !` and k`n, and then calculating their 4–volume
written as a Cayley–Menger determinant, verifying that
it vanishes. The vanishing of the 4–volume follows from
the fact that the triangulation is taken to be intrinsically
flat: the five tetrahedra making up each four simplex
glue properly when embedded in a 3d Euclidean space.
They correspond to a tetrahedron split in four tetrahedra
with all deficit angles on the interior edges equal to zero.
Thus, when promoted to a 4–simplex, this is a degenerate
4–simplex. For an analogy in one dimension lower, think
of a tetrahedron with three of its triangles in the plane
of the fourth triangle. This can be understood either as
a 2d geometry made up of three triangles, or, as a 3d
geometry made up of one tetrahedron of zero 3–volume.

We saw in Section V that the estimates for Tc and ⌧

are not a↵ected by the kind of geometrical critical point
for the partial amplitude. Then, the fact that the chosen
boundary data correspond to a degenerate 4d triangu-
lation can be seen as an (accidental) smart choice, that
allows to understand easily equations (A2) and (A3). All
dihedral angles �`(�`) will vanish, there is only a ⇧` = ⇡

thin–wedge contribution at � to consider on top of the
embedding data ⇣`. The dihedral angles �(�`) are cal-
culated using well known trigonometry formulas, see for
instance [91].

Setting �`(�`) = 0 for all ` and neglecting the sum over
co–frame orientations s(v) and the scaling �

2M of (43),
the transition amplitude then scales as

W (m,T ) ⇠ e
� 4

t(m) (� T

2m�⇡)2
e
� 12

t(m) (⇣
±)2

, (A4)

with the factors 4 and 12 coming from the number of
corresponding links in the boundary graph. Then, the

crossing time can be read o↵ directly from this expres-
sion as Tc = 2⇡m/�, in agreement with the numerical
estimate in equation (A2). Setting T = Tc, we have

|W (m,Tc)|2 ⇠ e
� 24

t(m) (⇣
±)2

. (A5)

Thus the lifetime will scale as ⌧(m) ⇠ e
⌅

t(m) with ⌅ =
24 (⇣±)2 ⇡ 1820, in agreement with equation (A3).

These results are verified numerically in the figures be-
low. We briefly summarize their content with further de-
tails given in their description. The amplitude estimate
is shown in Figure 5. We see that a pronounced peak is
present in the interval of the bounce time T for which
the estimate is reliable. The value of T at the peak is the
crossing time Tc. In Figure 6 we verify that Tc is given by
T = 2⇡/�. In the following two figures we show that the
lifetime scales as ⌧(m) ⇠ e

�⌅/t(m) with ⌅ a positive con-
stant. Instead of ⌧(m), we plot �t(m) log ⌧(m) against
m. In Figure 7 we see that �t(m) log ⌧(m) is constant
in the mass m and does not depend on the power n. In
Figure 8 we verify that for t = m

2
/~, ⌅ scales as the

inverse of ~.

FIG. 5. The modulus squared of the transition amplitude
W (m,T ) for mass values m = 10, 11, . . . , 15. The peak in
the bounce time T is at Tc = 2⇡m/� and corresponds to the
crossing time, see also Figure 6. The peak is normalized to
unit for presentation purposes. The semiclassicality parame-
ter is fixed to t = ~/m2 (n = 2) and the Immirzi parameter to
� = 1. The bold black dots on the horizontal axis mark the
maximal value of T for which the estimate for the transition
amplitude of equation (43) is valid, as a result of the trunca-
tion. According to equations (31) and (A1), the estimate is
valid in the interval 0  T  4⇡m/�.
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This was Hal’s first idea: the inside of the black hole is 
able to cross the zone forbidden by Einstein’s  equations— 
 the gray zone in the figures  above—  and jump, by tunnel ef-
fect, “to the other side.”

The quantum properties of space and time allow the in-
side of the black hole to “leap” beyond the singularity, when 
classical equations would have time stop.

Quantum leap by tunnel effect
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M Christodoulou, CR, How big is a black hole? PRD 2015. 
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the white hole horizon. This is the flow of the major part of 
the energy:

Information entering the horizon, on the other hand, re-
mains trapped until after the quantum leap. The leap frees 
it, to return to the world of light.
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It takes a long time to release a lot of  low-  energy infor-
mation from a very small horizon (think of an enormous 
number of very small marbles needing to get through a tight 
opening). The information needs a long period to exit. The 
white hole must live for a long time.

When all of the information and residual energy inside 
has finally left, the long, happy life of the rebound of a Planck 
star is over, and the white hole horizon dissipates.

A

Information

White_9780593545447_all_2p_r1.indd 112 7/10/23 11:16 AM



suppressed! 

This also solve the old problem: 
Why WH are not easily produced?
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quantum states of geometry and matter inside a sphere,
of Schwarzschild radius r = 2m. This is a reduced model
since we disregard internal degrees of freedom others
than v. We are interested in the evolution of the state
as the surface ⌃ moves up in time.

Let’s label the position of ⌃ with a temporal parameter
t. For a black hole, it is natural to identify t with the
advanced time v and for a white hole, it is natural to
identify it with the retarded time -u. So let’s define

dt = dv, for H = B, and dt = �du, for H = W, (8)

with an arbitrary origin for the t label. A number of
processes can occur as the surface ⌃ moves up in time.
We list them here using relativistic units G = c = 1 and
keeping ~ explicit to distinguish classical from quantum
phenomena.

1. Black hole volume increase and white hole volume

decrease

|B,m, vi ! |B,m, v + �vi, (9)

|W,m, vi ! |W,m, v � �vi. (10)

This is simply determined by the Einstein’s equa-
tions if nothing else happens. The variation is com-
puted in [26] to be governed by

dv

dt
= ±3

p

3⇡m2
o
. (11)

where mo is the initial mass of the black hole and
the sign is plus for a black hole and minus for white
hole.

2. White to black instability

|W,m, vi ! |B,m, vi. (12)

This process is allowed by classical general relativ-
ity in the absence of any perturbation when there is
a second asymptotic region, as it is apparent from
the Top panel of Fig. 3; but it can also be triggered
by an external perturbation [25]. Notice that the
volume does not change: this is due to the fact
that this is a local process in the horizon region,
which does not modify the interior. The lifetime of
a white hole under decay to a black hole has been
estimated to be proportional to its Schwarzschild
radius [25]:

⌧W!B ⇠ m. (13)

This is equivalent to a transition probability per
unit of time

p ⇠ m
�1

. (14)

3. Hawking evaporation

|B,m, vi ! |B,m� �m, vi. (15)

This is a process that decreases the mass of a black
hole, produced by negative energy entering the hole
when a Hawking quantum is radiated. It is a phe-
nomenon described by the classical backreaction on
the geometry of the dynamics of a quantum field.
Hawking radiation theory gives

dm

dt
=

~
m2

. (16)

Giving the lifetime for a massive black hole

⌧B ⇠
m

3

~ . (17)

4. Black to white tunnelling

|B,m, vi ! |W,m, vi. (18)

This is a genuine quantum gravitational process
[16, 30, 31]. Its probability per unit of time is still
unclear. We take here the conservative estimate de-
rived in [15] using covariant Loop Quantum Grav-
ity [32], which agrees with the semiclassical expec-
tation for tunnelling phenomena, namely that this
probability is suppressed by the semiclassical stan-
dard tunnelling factor

e
�S

~ ⇠ e
�m2

~ (19)

where S is a typical action for the transition. On di-
mensional grounds, this suggests a tunnelling prob-
ability per unit time

p ⇠ e
�m2

~ /m (20)

Here we have assumed for simplicity that the in-
ternal volume v is conserved in this transition. A
more precise account of this process will be studied
elsewhere (for the tentative phenomenology derived
from this process, see [33–39]).

VII. DYNAMICAL EVOLUTION

The ensemble of the processes listed above can be de-
scribed as an evolution in t

i~ @t| i = H| i (21)

for a two component state

| i =

✓
B(m, v)

W (m, v)

◆
(22)
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governed by the Hamiltonian

H =

0

@
m+ 3

p
3 i⇡m

2
o

@

@v
� i

~2

m2
@

@m
b
~
m

c
~
m
e
�m

2
/~

m� 3
p
3 i⇡m

2
o

@

@v

1

A

(23)
where we have added also a diagonal energy term propor-
tional to the mass in order to obtain the standard energy
phase evolution, and c and b are constants of order unit.

We now ask what are the stable or semi-stable states
of the hole as seen from the exterior.

A macroscopic black hole with mass m much larger
than the Planck mass mP =

p
~ is stable when seen from

the exterior for a (long) time span of the order m
3
/~,

which is the Hawking evaporation time. The stability
is due to the fact that process (1) does not a↵ect the
exterior, process (2) does not concern black holes and
process (4) is strongly suppressed for macroscopic holes.

A macroscopic white hole, on the other hand, is not so
stable, because of the fast instability of process (2). As
basic physics is invariant under time reversal, one may
wonder what breaks time reversal invariance here. What
breaks time reversal invariance is the notion of stability
that we are using. This is a stability under small fluc-
tuations of the past boundary conditions. If instead we
asked about stability under small fluctuations of the fu-

ture boundary conditions, we would obviously obtain the
opposite result: macroscopic white holes would be stable
while macroscopic black holes would not.

The question we are interested in is what happens
(generically) to a large macroscopic black hole if it is
not fed by incoming mass. Then two processes are in
place: its Hawking evaporation for a time ⇠ m

3
/~ (pro-

cess 3) and the internal growth of v (process 1). This
continues until process (4) becomes relevant, which hap-
pens when the mass is reduced to order of Planck mass.
At this point the black hole has a probability of order
one to tunnel into a white hole under process (4). But a
white hole in unstable under process (2), giving it a finite
probability of returning back to a black hole. Both pro-
cesses (4) and (2) are fast at this point. Notice that this
happens at large v, therefore in a configuration that clas-
sically is very distant from flat space, even if the overall
mass involved is small.

As energy is constantly radiated away and no energy
is fed into the system, the system evolves towards low
m. But m cannot vanish, because of the presence of the
interior: in the classical theory, a geometry with larger v
and small m is not contiguous to a Minkowski geometry,
even if the mass is small. Therefore in the large v region
we have m > 0. Alternatively, this can be seen as a
hypothesis ruling out macroscopic topology change.

But m cannot be arbitrarily small either, because of
quantum gravity. The quantity m is defined locally by
the area of the horizon A = 16⇡G2

m
2 and A is quan-

tized. According to Loop Quantum Gravity [40] the
eigenvalues of the area of any surface are [41]

A = 8⇡ ~G
p
j(j + 1) (24)

where we have taken the Immirzi parameter to be unit
for simplicity. The minimal non-vanishing eigenvalue is

ao = 4
p

3⇡ ~G (25)

and is called the ‘area gap’ in loop quantum cosmology
[42]. This gives a minimal non-vanishing mass µ defined
by ao = 16⇡G2

µ
2, that is

µ ⌘
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G
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(we have momentarily restored G 6= 1 for clarity.) Radi-
ating energy away brings down the system to the m = µ

eigenspace. Consider now states that are eigenstates of
m with the minimal value m = µ and denote them
|B,µ, vi and |W,µ, vi. The dynamics governed by the
above Hamiltonian allows transition between black and
white components. This is a typical quantum mechanical
situation where two states, here |B,µ, vi and |W,µ, vi,
can dynamically turn into one another. Let us we disre-
gard for a moment v, which is invisible from the exterior,
and project H̃ down to a smaller state space H with ba-
sis states |H,µi. This is a two dimensional Hilbert space
with basis vectors |B,µi and |W,µi. Seen from the exte-
rior, the state of ⌃ will converge to Hµ.
The Hamiltonian acting on this subspace is

H =

 
µ

b~
µ

a~
µ

µ

!
(27)

where a = ce
�

p
3

4 . Quantum mechanics indicates that in
a situation where the system can radiate energy away and
there are possible transitions between these two states,
the actual state will converge to a quantum state which
is a quantum superposition of the two given by the lowest
eigenstate of H. This is

|Ri =

p
a

b
|B,µi � |W,µi
p

1 + a

b

(28)

(R for ‘Remnant’) and has eigenvalue µ � ~
p
ab/µ. If

the amplitude b of going from black to white is larger
than the amplitude a of going from white to black (as
it seems plausible), the state is dominated by the white
hole component. A related picture was been considered
in [43–45]: a classical oscillation between black and white
hole states.
In a fully stationary situation, the mass m is equal

to the Bondi mass, which generates time translations at
large distance from the hole in the frame determined by
the hole. (Quantum gravity is locally Lorentz invariant
[46, 47] and has no preferred time [48] but a black hole
in a large nearly-flat region determines a preferred frame
and a preferred time variable.) Keeping possible tran-
sitions into account there is a subtle di↵erence between
the mass m, determined locally by the horizon area, and
the energy of the system, which is determined by the full
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where we have added also a diagonal energy term propor-
tional to the mass in order to obtain the standard energy
phase evolution, and c and b are constants of order unit.

We now ask what are the stable or semi-stable states
of the hole as seen from the exterior.
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p
~ is stable when seen from

the exterior for a (long) time span of the order m
3
/~,
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hole component. A related picture was been considered
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1) LQG suggest the existence of a quasi-stable particle with mass ~ 20μg 

2) This particle can be detected 

3) It can be originated by the complete evaporation of an old black hole 

4) It is a natural candidate for Dark Matter



LQG suggest the existence of  

a quasi-stable particle  

with mass ~ 20μg


