DYNAMICAL SYMMETRIES FOR COSMOLOGY AND BLACK HOLES

FRANCESCO SARTINI

Okinawa Institute of Science and Technology

Based on:

arXiv: 2205.02615 w/ M. Geiller and E.R. Livine arXiv: 2401.16036 w/ S. Ribisi

0

Motivations

What is the role of symmetries in (quantum) gravity?

- Asymptotic symmetries, soft theorems and memory effects
- Non-perturbative handle on quantization
- Structure of solutions to Einstein's equation

Reduced models

- Lower dimensional gravity (d<4)
 - Simpler dynamics (no local degrees of freedom)
 - Known solution space

Existence of spacetime Killing vectors

- Very simple toy models
- Insights on phenomenology (cosmology & black holes)

Motivations

What is the role of symmetries in (quantum) gravity?

- Asymptotic symmetries, soft theorems and memory effects
- Non-perturbative handle on quantization
- Structure of solutions to Einstein's equation

Reduced models

- Lower dimensional gravity (d<4)
 - Simpler dynamics (no local degrees of freedom)
 - Known solution space

Existence of spacetime Killing vectors

- Very simple toy models
- Insights on phenomenology (cosmology & black holes)

(Classical) Symmetries: phase space and dynamics

Unconstrained field space $\{q_{\alpha\beta}, \Pi^{\gamma\delta}\}\$ $\{A^i_{\alpha}, E^{\beta}_j\}$

Constraints

Physical solutions

Symmetries in reduced models

(Classical) Symmetries: phase space and dynamics

Unconstrained field space $\{q_{\alpha\beta}, \Pi^{\gamma\delta}\}$ $\{A^i_{\alpha}, E^{\beta}_j\}$

Constraints

Symmetries in reduced models

(Classical) Symmetries: phase space and dynamics

Unconstrained field space $\{q_{\alpha\beta}, \Pi^{\gamma\delta}\}$ $\{A^i_{\alpha}, E^{\beta}_j\}$

Constraints

Symmetries in reduced models

(Classical) Symmetries: phase space and dynamics

Constraints

Homogenous models $\{q_i, p^j\}$

7/05/2024

Symmetries in reduced models

(Classical) Symmetries: phase space and dynamics

7/05/2024

Symmetries in reduced models

(Classical) Symmetries: phase space and dynamics

2

Symmetries in reduced models

(Classical) Symmetries: phase space and dynamics

Minisuperspaces and 2nd geometrization

Minisuperspaces and 2nd geometrization

Dynamical symmetries from field space isometries

For cosmology and static black holes: Schrödinger algebra

- Cosmology and hydrodynamics [D. Oriti's talk]
- Group quantization [Ben Achour, Livine '19, FS '21]
- Perturbation theory [Ben Achour, Livine, Mukohyama, Uzan '21]

[Ben Achour, Livine, Oriti, Piani '22] [Geiller, Livine, FS '22]

Vaidya field space and covariance

Extension to infinite dimensional field spaces [Ribisi, FS '24]

Vaidya: Null shell collapse or evaporating black hole

$$ds^{2} = -\frac{B}{X}dv^{2} + 2N dr dv + X^{2} d\Omega^{2}$$

Non-trivial action of the Schrödinger group on solution space

Schrödinger symmetry

Extension to infinite dimensional field spaces [Ribisi, FS '24]

Vaidya: Null shell collapse or evaporating black hole

$$ds^{2} = -\frac{B}{X}dv^{2} + 2N dr dv + X^{2} d\Omega^{2}$$

Non-trivial action of the Schrödinger group on solution space

Schrödinger symmetry

Doesn't commute with residual diffeomorphisms

- Usual covariant phase space in 2d → Non-integrable charges
- Completely gauge fixed phase space → Integrable charges

Vaidya phase space

"Edge modes" vs Dynamical symmetries

$$ds^{2} = \frac{B}{X}dv^{2} + 2N drdv + X^{2} d\Omega^{2}$$

Covariant phase space

$$S_{EH} = \int N - \frac{X'(B' - 2\partial_{\nu}(NX))}{N}$$

• Complete gauge fixing

$$S_M = -\int X' \mathfrak{B}'$$
, $\mathfrak{B} = B - 2rN\dot{X}$, $N' =$

0

Vaidya phase spaces

"Edge modes" vs Dynamical symmetries

- Covariant phase space
- Boundary diffeomorphisms appear as physical,
- Charges living at the corner

Vaidya phase spaces

"Edge modes" vs Dynamical symmetries

- Covariant phase space
- Boundary diffeomorphisms appear as physical,
- Charges living at the corner
- Complete gauge fixing
- Schrödinger symmetry
- Charges on a slice at constant radius
- Decoupled mechanical models

Vaidya phase spaces

"Edge modes" vs Dynamical symmetries

- Covariant phase space
- Boundary diffeomorphisms appear as physical,
- Charges living at the corner
- Complete gauge fixing
- Schrödinger symmetry
- Charges on a slice at constant radius
- Decoupled mechanical models

Different phase space, same solutions

Conclusions & Outlooks

Dynamical symmetries

Minisuperspaces:

- "Second geometrization" and symmetries
- Hydrodynamics and quantization

Beyond minisuperspace:

Complementarity with corner algebra

Conclusions & Outlooks

Dynamical symmetries

Minisuperspaces:

- "Second geometrization" and symmetries
- Hydrodynamics and quantization

Beyond minisuperspace:

Complementarity with corner algebra

Future perspectives

- Extend to other midisuperspaces (e.g. Kerr)
- Quantization of Vaidya

Conclusions & Outlooks

Dynamical symmetries

Minisuperspaces:

- "Second geometrization" and symmetries
- Hydrodynamics and quantization

Beyond minisuperspace:

Complementarity with corner algebra

Future perspectives

- Extend to other midisuperspaces (e.g. Kerr)
- Quantization of Vaidya

Thank you for your attention !