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Modified Hamiltonians: The issue of covariance 

Nonsingular static BHs (M, Q, ʌ) 

Coupling matter: The issue of covariance again 

Dynamical BHs: Gravitational collapse 

Outline
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Further Assumptions: 
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Modified Hamiltonians Hamiltonian  Metric⇔

03



Further Assumptions: 

iv. Derivatives: linear in second order and quadratic in first order derivatives of momenta 

v. There exists a continuous limit to GR 

Closure of the hypersurface deformation algebra 

Spacetime embeddability

Modified Hamiltonians Hamiltonian  Metric⇔

03

and F = qxx



No propagating degrees of freedom 

Two pairs of conjugate variables 
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q1 = Kx

q2 = Kφ p2 = Eφ

p1 = Ex
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Construction of the model such that it obeys the 
hypersurface deformation algebra 
with a suitable structure function to embed it in (M, g)

F =
Fs
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Is this too restrictive?    NO 

GR satisfies all these conditions… and more 
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Nonsingular BHs:

[ A-B, Brizuela, Vera (2022) ]

The singularity is replaced with a transition surface   

of positive radius towards a time-reversed (WH) region 

The surface is always inside the trapped region and curvature is finite 

The spacetime is geodesically complete

r = r0
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Nonsingular BHs:    Q and ʌ
m → m(r) = M −

Q2

2r2
+

Λ
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Nonsingular BHs:

[ A-B, Brizuela, Vera (2023) ]Singularity resolution in a nutshell: positive M, small Q, and positive ʌ
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Remarkably, no 
inner Cauchy horizon
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[ A-B, Brizuela (2024) ]
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Dynamical BHs:    dust
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To solve Hamiltonian equations: same procedure as in GR

1. Choose the dust frame:  

2. Conservation of gauge:  

3. Dust momentum:  

4. New variables: 

ϕ = t

N = 1

Pϕ = E

(Ex, Eφ, Kφ) → (r, m, κ)
[Solve diffeomorphism for ]Kx
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Still, one gauge freedom to fix 

We choose  

Conservation: 

m = m(x) ≥ 0

Nx = 0
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• Trajectories on phase space describe a smooth bounce of dust  

• The radius of each dust-shell has a positive infimum, achieved in finite proper time 

• However… curvature scalars diverge there. Singularity resolution is not complete
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Summary & Outlook
We found an effective Hamiltonian theory with a well-defined 
geometric description, and such that GR is a singular limit. 

Static and dynamical solutions are under control in this effective 
description. Physically reasonable cases are free of singularities,
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• Modelling numerical collapse 

• Understanding effective corrections from full LQG 

• Homogeneous reduction: Is it possible to find FLRW? 

• Less symmetric scenarios… effective Kerr BHs 
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