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Introduction

● The application of LQC to black holes has attracted a lot of attention.

● The interest has been revitalized by Ashtekar, Olmedo, and Singh, who 
introduced a model for nonrotating black holes.

● The interior can be described as a Kantowski-Sachs (KS) cosmology. 

● To go beyond this simple scenario, we consider perturbation theory.

● We will truncate our perturbations at second order in the action.

● Physical perturbations correspond to perturbative gauge invariants.

● We will construct a Hamiltonian formulation for this perturbed system 
and proceed to its hybrid quantization within LQC.



  

● The metric in the interior region is of KS form

  
● The spatial sections have a volume 

● The geometry has two canonical pairs  of degrees of freedom, with 
connection variables such that 

● We include a (homogeneous) scalar field, 

● This KS background is subject ONLY to the Hamiltonian constraint
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● We consider compact sections             Zero-modes are treated exactly.

● We expand in REAL spherical harmonics and Fourier modes. 
  

● Spherical harmonics, of eigenvalue              for the    -Laplacian, split in 
polar and axial under parity [with eigenvalue           or              ].

● Using capital Latin letters for  -indices, we can decompose any 
symmetric spatial tensor as

● We use a real Regge-Wheeler-Zerilli basis of harmonics and restrict 
the study to axial modes with           

● We call                     our basis of vector and tensor axial harmonics. 
Scalar harmonics are polar. 
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● We call          our Fourier basis of sines            and cosines            , 
with frequency                 and      any natural number.   

● Let                            We can expand the pertubations as  

● At second order, the contribution of these perturbations to the action is

     

Axial perturbations
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● With fixed background, we can perform a linear canonical 
transformation so that perturbations are described by gauge invariant 
pairs, and perturbative constraints and variables conjugated to them,   

● The perturbative Hamiltonian changes by a time variation, given by the 
bracket of the generating function with the background Hamiltonian,

● Resemblance with a scalar field in  KS  suggests a new transformation 
                          with manageable high-frequency limit, of  wavenumber

Gauge invariants
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● We then arrive to a perturbative Hamiltonian corresponding to 
oscillators with background-dependent masses, 

● Our  canonical  transformation  can  be  extended to  the background. 
The new geometric zero-modes contain quadratic perturbative terms. 
Denoting these new variables as before, the truncated action becomes 

● This system is canonical, and subject only to a nontrivial global 
(Hamiltonian) constraint, on the background and the gauge invariants.
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● We adopt e.g. a loop representation of the background, built on an 
extended phase space with polymerization parameters     (Andrés talk).

● Adopting a triad-representation for the scaled variables                 
calling                    and using an MMO prescription, we define 

● We also quantize the time factors      and masses     of the perturbative 
Hamiltonian, using a symmetric factor ordering and that factors of        
vanish at this perturbative level.

● Finally, we adopt the (essentially) unique Fock quantization of the 
perturbations that respects the symmetries of the axial dynamics and 
allows for a unitary Heisenberg evolution (Álvaro's talk).

 

Hybrid quantization
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● We considered perturbations around a KS spacetime, describing the 
interior of a nonrotating black hole.  

● We truncated the action at second perturbative order and constructed 
a Hamiltonian formulation for axial pertubations.

● We obtained a canonical system made of background zero-modes, 
gauge invariants, and perturbative constraints with their momenta.

● There is only a global Hamiltonian constraint on the (sub-)system 
formed by the background and the perturbative gauge invariants. 

● We combined a loop quantization of the background with a (unique) 
Fock quantization of the perturbations.
 

● In future research, we will derive the corrected perturbation equations 
and study the relation between interior and exterior modes.
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