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The application of LQC to black holes has attracted a lot of attention.

The interest has been revitalized by Ashtekar, Olmedo, and Singh, who
introduced a model for nonrotating black holes.

The interior can be described as a Kantowski-Sachs (KS) cosmology.
To go beyond this simple scenario, we consider perturbation theory.
We will truncate our perturbations at second order in the action.
Physical perturbations correspond to perturbative gauge invariants.

We will construct a Hamiltonian formulation for this perturbed system
and proceed to its hybrid quantization within LQC.



The metric in the interior region is of KS form
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The spatial sections have a volume V=87’ pb\/

The geometry has two canonical pairs of degrees of freedom, with
connection variables such that (b, p,|=Yy, (¢, p.}=2Y.

We include a (homogeneous) scalar field, (®,11,}=1.

This KS background is subject ONLY to the Hamiltonian constraint

N Hy=-N|Q+2Q,Q+p—4T0), Q,=57, j=b,c



We consider compact sections S'x S*. Zero-modes are treated exactly.

We expand in REAL spherical harmonics and Fourier modes.

Spherical harmonics, of eigenvalue —/(/+1) for the S*-Laplacian, split in
polar and axial under parity [with eigenvalue (—1) or (—1)"" 1.

Using capital Latin letters for S°-indices, we can decompose any
symmetric spatial tensor as T, dx"dx"=T _dx’+2T ,dxdx"+T ,,dx" dx".

We use a real Regge-Wheeler-Zerilli basis of harmonics and restrict
the study to axial modes with />2.

We call | X, ,, X) ;| our basis of vector and tensor axial harmonics.
Scalar harmonics are polar.
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Axial perturbations_

e We call [Q,M] our Fourier basis of sines (h=—1) and cosines (A=+1)
with frequency o =2nn and n any natural number.

o Let {vl={n,N, I, m|. We can expand the pertubations as
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e At second order, the contribution of these perturbations to the action is
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Perturbative diff. constraints Hamiltonian constraint




e With fixed background, we can perform a linear canonical
transformation so that perturbations are described by gauge invariant
pairs, and perturbative constraints and variables conjugated to them,

(B, pY. Iy, p3|—=|0), PY, 05, Py ocCY).

e The perturbative Hamiltonian changes by a time variation, given by the
bracket of the generating function with the background Hamiltonian,

HY=(PyP+[(1+2)(1=1) pr+ o, p2)(O}F
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e Resemblance with a scalar field in KS suggests a new transformation
{QT,PI}—%QY,PT} with manageable high-frequency limit, of wavenumber

F=(1+2)(1-1)+w.



e We then arrive to a perturbative Hamiltonian corresponding to

oscillators with background-dependent masses,
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e Qur canonical transformation can be extended to the background.
The new geometric zero-modes contain quadratic perturbative terms.
Denoting these new variables as before, the truncated action becomes
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e This system is canonical, and subject only to a nontrivial global
(Hamiltonian) constraint, on the background and the gauge invariants.
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e \We adopt e.g. a loop representation of the background, built on an

extended phase space with polymerization parameters o, (Andrés talk).

Adopting a triad-representation for the scaled variables p,=p,/d,,
calling N26j=e’6”, and using an MMO prescription, we define
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We also quantize the time factors 5, and masses $; of the perturbative
Hamiltonian, using a symmetric factor ordering and that factors of H
vanish at this perturbative level.

Finally, we adopt the (essentially) unique Fock quantization of the
perturbations that respects the symmetries of the axial dynamics and
allows for a unitary Heisenberg evolution (Alvaro's talk).



We considered perturbations around a KS spacetime, describing the
interior of a nonrotating black hole.

We truncated the action at second perturbative order and constructed
a Hamiltonian formulation for axial pertubations.

We obtained a canonical system made of background zero-modes,
gauge invariants, and perturbative constraints with their momenta.

There is only a global Hamiltonian constraint on the (sub-)system
formed by the background and the perturbative gauge invariants.

We combined a loop quantization of the background with a (unique)
Fock quantization of the perturbations.

In future research, we will derive the corrected perturbation equations
and study the relation between interior and exterior modes.
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