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Motivation

• One of the main focuses of Loop Quantum Cosmology nowadays is the

study of BH.

• The interior region of a nonrotating BH is isometric to the

Kantowski-Sachs cosmology (homogeneous but anisotropic).

• How to treat perturbations and matter content in the interior of the BH?

• A possible strategy: Hybrid LQC. The background is quantized à la Loops

and the fields à la Fock.

• Even in QFT in CS there is no a unique way to proceed. Intrinsic

ambiguities!

• The infinite number of degrees of freedom and the lack of symmetries

opens the possibility of different and inequivalent representations.

Different criteria have been put forward, in particular for isotropic

cosmologies.

• Unitary quantum dynamics prescription (come back later on).

• Can we extend the prescription to the KS-anisotropic scenario?
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• Even in QFT in CS there is no a unique way to proceed. Intrinsic

ambiguities!

• The infinite number of degrees of freedom and the lack of symmetries

opens the possibility of different and inequivalent representations.

Different criteria have been put forward, in particular for isotropic

cosmologies.

• Unitary quantum dynamics prescription (come back later on).

• Can we extend the prescription to the KS-anisotropic scenario?

2



Motivation

• One of the main focuses of Loop Quantum Cosmology nowadays is the

study of BH.

• The interior region of a nonrotating BH is isometric to the

Kantowski-Sachs cosmology (homogeneous but anisotropic).

• How to treat perturbations and matter content in the interior of the BH?

• A possible strategy: Hybrid LQC. The background is quantized à la Loops
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Overview of the prescription
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Classical dynamics

• Real massless scalar field minimally coupled to the background.

Line element:

ds2 = −A2(t)dt2 + P2(t)dr2 + Q2(t)(dθ2 + sin2 θdφ2)

• For mathematical convenience: Compactify r in the circle, with

period 2π.

• Decompose the field in modes.

• Determine the Hamiltonian: Infinite sum of harmonic oscillators

H =
A

PQ2

1

2

∑
nlm

(
Π2

nlm + P2Q4Wnlϕ
2
nlm

)
(1)

ϕnlm time-dependence of field.

Πnlm time-dependence of the conjugate canonical momentum.

Set the Lapse function so that the prefactor is equal to one.

Wnl(t) =
n2

P2(t) +
l(l+1)
Q2(t) eigenvalues of LB (time-dependent!)

How to identify the high energy sector? → CT!
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Unitary quantum dynamics prescription

• (1). Canonical transformation.

• (2). Preservation of the field equation symmetries.

• (3). Imposition of unitary quantum dynamics.
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(1). Canonical transformation

• Zero-mode → Background (”tilde”).

• Goal: Characterize what can be regarded as a frequency in the system

and decouple it from the time-dependent metric functions.

• Define:

Wavenumber label: k2 = n2 + l(l + 1)

Unit vector component label: l̂ =
√
l(l + 1)/k

• CT (time- and mode-dependent):(
ϕ̃nlm

Π̃nlm

)
=

√bl̂ 0

1
2

b′
l̂

b
3/2

l̂

1√
b
l̂

(ϕnlm

Πnlm

)
, (2)

b2
l̂
= Q4

[
1 + l̂2

(
P2

Q2 − 1
)]

= P2Q4

k2
Wnl .

• Hamiltonian:

H̃ =
∑̃
nlm

bl̂
2

[
Π̃2

nlm +
(
k2 + sl̂(τ)

)
ϕ̃2
nlm

]
. (3)

sl̂(τ) =
3(b′

l̂
)2

4b4
l̂

−
b′′
l̂

2b3
l̂

, Mass function.
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(2). Preservation of the field equation symmetries

• Respect the symmetries of the field equations. Independence of the

label m and do not mix modes.

• Focus on Fock representations that also respect these symmetries.(
anlm
a∗nlm

)
τ

= F [τ0]
nl (τ)

(
ϕ̃nlm

Π̃nlm

)
τ0

(4)

where

F [τ0]
nl (τ) =

(
fnl(τ) gnl(τ)

f ∗nl(τ) g∗
nl(τ)

)
.

fnl and gnl respect the symmetries.

CCR: fnl(τ)g
∗
nl(τ)− gnl(τ)f

∗
nl(τ) = −i .

Spacetime evolve in time: Motivation to introduce a

time-evolution splitting

Heissenberg evolution − Background evolution

(unfixed and come back later).

7
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∗
nl(τ) = −i .

Spacetime evolve in time: Motivation to introduce a

time-evolution splitting

Heissenberg evolution − Background evolution

(unfixed and come back later).
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(3). Unitary dynamics

• We can write the dynamics (the evolution of the c-a operators) as a

Bogoliubov transformation Bnlm(τ, τ0).

For unitary dynamics we use a result: antilinear part of

Bnlm(τ, τ0) be square summable.

• Unitary dynamics prescription successfully selects a family of unitary

equivalent representations.
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Hamiltonian of the c-a variables

• Until what extent do we need the time-evolution splitting?

Time-independent functions:

H =
∑̃

nlm

(
− b

l̂
2

){
a∗nlma

∗
nlm

[
f 2nl + g 2

nl

(
k2 + sl̂

)]
+ h.c.

-2a∗nlmanlm
[
|fnl |2 + |gnl |2

(
k2 + sl̂

)]}
.

Hamiltonian action onto the class of vacua: The state does

not have a finite norm in the high energy sector.

Time-dependent functions: - change of the dynamics by the

time-dependent CT:

H̊ = H + 1
2

∑̃
nlm

{
2R{g ′

nl f
∗
nl − f ′nlg

∗
nl} a∗nlmanlm + (f ′nlgnl −

fnlg
′
nl)a

∗
nlma

∗
nlm + h.c.

}
.

Asymptotic analysis → the sum can converge at the dominant order.

Remaining freedom → extra criterion: Self-interaction terms

become zero order by order.
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Asymptotic Hamiltonian diagonalization

• Proceed recursively. Each subdominant term will be smaller in k.

In the ultraviolet limit, we obtain:

H̊ =
∑̃
nlm

bl̂Λnl(sl̂)a
∗
nlmanlm

.

Λnl is a function of the mass and its time derivatives. Can be

determined by a recursion formula.

• The time-dependent part of the scalar field:

Φ =
∑̃
nlm

A(sl̂)e
−i

∫
d τ̄bl̂Λnl anlm(τ0) + h.c.,

where the time evolution splitting becomes evident.
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Conclusions

• By the unitary quantum dynamics prescription we were able to

select a unitary equivalent class of representations.

• We were able to eliminate all possible ambiguities in the

process and obtained a preferred proposal for a unique choice

of a vacuum.

• By introducing an asymptotic Hamiltonian diagonalization, we

could completely fix the time-evolution splitting of the scalar

field and have good physical properties of the resulting

Hamiltonian.
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