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® Can we extend the prescription to the KS-anisotropic scenario?
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period 27.

® Decompose the field in modes.
® Determine the Hamiltonian: Infinite sum of harmonic oscillators

= P%z% > (Mo + P2Q Wardh) (1)

nlm

dnim time-dependence of field.
MM,m time-dependence of the conjugate canonical momentum.
Set the Lapse function so that the prefactor is equal to one.
W(t) = o+ 1Y) eigenvalues of LB (time-dependent!)

P2(t) T Q(t)
How to identify the high energy sector? — CT!




Unitary quantum dynamics prescription

® (1). Canonical transformation.



Unitary quantum dynamics prescription

® (1). Canonical transformation.

® (2). Preservation of the field equation symmetries.



Unitary quantum dynamics prescription

® (1). Canonical transformation.
® (2). Preservation of the field equation symmetries.

® (3). Imposition of unitary quantum dynamics.



(1). Canonical transformation

® Zero-mode — Background ("tilde").



(1). Canonical transformation

® Zero-mode — Background ("tilde").
® Goal: Characterize what can be regarded as a frequency in the system
and decouple it from the time-dependent metric functions.



(1). Canonical transformation

® Zero-mode — Background ("tilde").
® Goal: Characterize what can be regarded as a frequency in the system
and decouple it from the time-dependent metric functions.

® Define:



(1). Canonical transformation

® Zero-mode — Background ("tilde").
® Goal: Characterize what can be regarded as a frequency in the system
and decouple it from the time-dependent metric functions.
® Define:
m Wavenumber label: k% = n? + /(] + 1)



(1). Canonical transformation

® Zero-mode — Background ("tilde").
® Goal: Characterize what can be regarded as a frequency in the system
and decouple it from the time-dependent metric functions.
® Define:
m Wavenumber label: k% = n? + /(] + 1)

m Unit vector component label: /= \/I(/ +1)/k



(1). Canonical transformation

® Zero-mode — Background ("tilde").
® Goal: Characterize what can be regarded as a frequency in the system
and decouple it from the time-dependent metric functions.
® Define:
m Wavenumber label: k% = n? + /(] + 1)

m Unit vector component label: /= \/I(/ +1)/k
® CT (time- and mode-dependent):

&n/m _ bb,i 2 ¢nlm 2
ﬁ - 1 77 1 n 9 ( )
nlm 2 b?/Z \/Ff nlm
n = Q1+ P (5 —1)] = E& W,



(1). Canonical transformation

® Zero-mode — Background ("tilde").
® Goal: Characterize what can be regarded as a frequency in the system
and decouple it from the time-dependent metric functions.
® Define:
m Wavenumber label: k% = n? + /(] + 1)

m Unit vector component label: /= \/I(/ +1)/k
® CT (time- and mode-dependent):

&n/m _ bb,i 2 ¢nlm 2
ﬁ - 1 77 1 n 9 ( )
nlm 2 b§/2 \/Ff nlm

I

n = Q1+ P (5 —1)] = E& W,

® Hamiltonian:

o ~ b = .
H= IZEI [I_Ii/m I (k2 + Sf(T)) d)i/m] ) (3)
/\2 i
m s(7) = 322’;) - f—[z?, Mass function.
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® Respect the symmetries of the field equations. Independence of the

label m and do not mix modes.

® Focus on Fock representations that also respect these symmetries.

anim _ [70] é;n/m 4
(3:/,”) nl (T) (nnlm> ( )
T T0

]_-[7'0](7_) _ <fnl(T) gn/(7)> .

f(T)  &n(T)

where

m f, and g, respect the symmetries.
m CCR: f(r)gyi(r) — gu(r)E5(r) = —i.
m Spacetime evolve in time: Motivation to introduce a
time-evolution splitting
Heissenberg evolution — Background evolution
(unfixed and come back later).
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m For unitary dynamics we use a result: antilinear part of
Boim(T, 70) be square summable.

® Unitary dynamics prescription successfully selects a family of unitary
equivalent representations.
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® Remaining freedom — extra criterion: Self-interaction terms

become zero order by order.
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In the ultraviolet limit, we obtain:

/:/ = Zbi/\nl (Sf) a,*,,man/m

nlm

m A\, is a function of the mass and its time derivatives. Can be
determined by a recursion formula.

® The time-dependent part of the scalar field:

b = ZA(Si)eiif d7bi\ni an/m(To) ol h.C.,

nlm

where the time evolution splitting becomes evident.

10



Conclusions

® By the unitary quantum dynamics prescription we were able to
select a unitary equivalent class of representations.

® \We were able to eliminate all possible ambiguities in the
process and obtained a preferred proposal for a unique choice
of a vacuum.

® By introducing an asymptotic Hamiltonian diagonalization, we
could completely fix the time-evolution splitting of the scalar
field and have good physical properties of the resulting

Hamiltonian.
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