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Goal: 

Understand/quantify the entanglement content of  QFT’s, its spatial distribution, and its 
relation to curvature.  

Interesting applications: 

Hawking radiation in evaporating scenarios (Cf. Beatriz Elizaga-Navascues’, 
and Paula Calizaya-Cabrera’s talks)

de Sitter (cosmology) 

Connection with quantum gravity 



The approach
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Entanglement is all around in QFT

Simplest example: Free scalar field, Minkowski st, Minkowski vacuum. 

Region A

Entanglement exterior/interior

von Neumann entropy a region diverges. Cut-off  makes it finite. But then, unclear interpretation. 

But region A hosts infinitely many field degrees of  freedom.

“Who is entangled with whom?”



A complementary approach:

Study entanglement between an a priori specified set of  finitely many field d.o.f.

(For similar lines of  thought see e.g. Bianchi-Satz 2019)



Some relevant concepts 



Free massless scalar field in 3+1 dim

Single-mode subsystem: 

Consider a complex solution of  the Klein-Gordon eqn. 
<latexit sha1_base64="ACAEvROeqKDUEpVP5qY8a2WjFTU=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRahXsquFO2x4MVjBfsB7VKyabYNTbJLkhXL0r/gxYMiXv1D3vw3Zts9aOuDgcd7M8zMC2LOtHHdb6ewsbm1vVPcLe3tHxwelY9POjpKFKFtEvFI9QKsKWeStg0znPZiRbEIOO0G09vM7z5SpVkkH8wspr7AY8lCRrDJpLD6dDksV9yauwBaJ15OKpCjNSx/DUYRSQSVhnCsdd9zY+OnWBlGOJ2XBommMSZTPKZ9SyUWVPvp4tY5urDKCIWRsiUNWqi/J1IstJ6JwHYKbCZ61cvE/7x+YsKGnzIZJ4ZKslwUJhyZCGWPoxFTlBg+swQTxeytiEywwsTYeEo2BG/15XXSuap517X6fb3SbORxFOEMzqEKHtxAE+6gBW0gMIFneIU3RzgvzrvzsWwtOPnMKfyB8/kDbEuN0A==</latexit>

f(x)
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hf |fi 6= 0such that

Define the operator: 
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[Ôf , Ô
†
f ] = hf |fi 6= 0

Single-mode subsystem =  sub-ablgebra generated from 
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Ô
†
fand

Notation:
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|↵|2 � |�|2 = 1 defines the same single-mode subsyst.with
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= Single-mode subsystem
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)

⌃t

A

(�̂A, ⇧̂A)

fA(~x)

fB(~x)

B

(�̂B , ⇧̂B)

⇢

R

FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2

R2

◆�

⇥

✓
1� |~x� ~xi|

R

◆
,

(16)
where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

region A
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= eigenvalues of  

Example: entropy and purity
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
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We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
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although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.
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tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.
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matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
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Z
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2
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⇥
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◆
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(16)
where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

region A
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)

⌃t

A

(�̂A, ⇧̂A)

fA(~x)

fB(~x)

B

(�̂B , ⇧̂B)

⇢

R

FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2

R2

◆�

⇥

✓
1� |~x� ~xi|

R

◆
,

(16)
where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

region A
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{f} mixed must be entangled with other field modes

= Partner of  

It turns out that one can find a single-mode subsystem          encoding all entangled with 
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2

R2

◆�

⇥

✓
1� |~x� ~xi|

R

◆
,

(16)
where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

region A
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{f} mixed must be entangled with other field modes

= Partner of  

It turns out that one can find a single-mode subsystem          encoding all entangled with 
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2

R2

◆�

⇥

✓
1� |~x� ~xi|
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

region A

we expect

Two-point function:
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)

⌃t
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(�̂A, ⇧̂A)

fA(~x)

fB(~x)
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(�̂B , ⇧̂B)

⇢

R

FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2

R2

◆�

⇥

✓
1� |~x� ~xi|

R

◆
,

(16)
where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

region A

we expect

Two-point function:

Example:

0.0 0.5 1.0 1.5 2.0
-0.5

0.0

0.5

1.0

0.0 0.5 1.0 1.5 2.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Spatial profile mode    
(compactly supported)

Spatial profile of  the partner 
    (Not compactly supported)



The spatial support of  the partner serves to quantify the spatial distribution of  
entanglement  

[Agullo, Martin-Martinez, Nadal-Gisvert, Yamaguchi, to appear]



de Sitter spacetime

(Cosmological patch)



Massive scalar field, with small mass: 

Almost scale invariant
7

the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2

R2

◆�

⇥

✓
1� |~x� ~xi|

R

◆
,

(16)
where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
i (~x) = A�

✓
1� |~x� ~xi|2
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments

we expect
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But entanglement distributed very differently. Spread across much larger distances in dS. 
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-
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pactly supported within a ball of radius R centered at
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i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
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The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).
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gion A, and c is an arbitrary constant with dimensions
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c since changing c amounts to performing a symplectic
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quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of
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i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c
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dDx fA(~x) ⇧̂(~x) , (15)
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:

f (�)
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of

f (�)
i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,

⇧̂A := c

Z
dDx fA(~x) ⇧̂(~x) , (15)
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of
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i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
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the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
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�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
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the transpose is taken only in the B subsystem; there-
fore, the nonpositivity of ⇢̂>B implies that some of the
symplectic eigenvalues ⌫̃I are smaller than 1, producing
EN > 1 (see, e.g., Ref. [28] for further details).

Observe also that a su�cient condition for quantum
entanglement is min{⌫̃J} < 1.

We will mostly use the LN in situations in which it
is faithful (that is, when NA = 1). Nevertheless, we
will also analyze the LN of bipartitions of “many versus
many” modes in Sec. V, which will be of interest since
EN > 0 is always a su�cient condition for entanglement;
although in this case it is not necessary, so EN = 0 does
not imply the absence of entanglement. In any case, since
the LN is a lower bound for distillable entanglement,
EN = 0 indicates that whatever entanglement may be
contained in the system cannot be distilled.

III. CORRELATIONS AND ENTANGLEMENT
BETWEEN TWO DEGREES OF FREEDOM

In this section, we apply the formalism presented above
to a simple, yet illustrative, situation: two modes sup-
ported in disjoint regions of space and each defined by
a pure field and a pure momentum operator. We eval-
uate correlations, entropy, mutual information, and en-
tanglement between the two modes. We use a family of
smearing functions which, for massless fields, permits to
derive analytical expressions in any number of space di-
mensions D > 1. (The D = 1 case requires attention
since one needs to introduce a mass to avoid infrared
divergences; we solve the massive case numerically.)

We find no entanglement between the two modes for
all values of D > 1, i.e., we find that the reduced state is
separable for the family of modes used in this section.

We generalize this calculation to include a larger num-
ber of modes in Sec. IV, to other smearing functions, and
more general definitions of modes in Sec. V.

A. Smearing functions, correlations and covariance
matrix

Consider two D dimensional balls, A and B, with ra-
dius R in a D+1-dimensional Minkowski spacetime, and
let ⇢ be the distance between their centers in units of R.
The balls are assumed to be disjoint so that ⇢ > 2 (see
Fig. 2).

We consider in this section two modes, each supported
within region A and B, respectively, and defined as fol-
lows. The mode in A is defined by a pair of noncommut-
ing operators of the form

�̂A :=

Z
dDx fA(~x) �̂(~x) ,
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FIG. 2. Illustration of two spacelike separated balls of ra-
dius R in a t=constant Cauchy hypersurface in D + 1-
dimensional Minkowski spacetime. A function fA(B)(~x) com-
pactly supported in region A (B) defines a single field-mode
(�̂A(B), ⇧̂A(B)), as shown in Eq. (15).

where fA(~x) is a function compactly supported in re-
gion A, and c is an arbitrary constant with dimensions
of inverse energy (mutual information and entanglement
between two subsystems will not depend on the value of
c since changing c amounts to performing a symplectic
transformation restricted to one subsystem, and these
quantities are invariant under such “local” transforma-
tions). In this section, we denote the pair of noncommut-
ing operators defining the modes of interest as (�̂A, ⇧̂A),
rather than (Ô1

A, Ô
2
A), as we did in the last section, in

order to emphasize that we choose them to be a pure
field and pure momentum operators, respectively. The
mode B is similarly defined by using a function fB(~x)
compactly supported in region B.

For the smearing functions fi(~x), i = A,B, in this
section we will use the following one-parameter family of
non-negative functions:
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where ~xi is the center of the ball i, and ⇥(x) is the Heav-

iside step function—which ensures that f (�)
i (~x) is com-

pactly supported within a ball of radius R centered at
~xi; A� is a normalization constant determined below and
� a positive real number. Figure 3 shows the shape of
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i (~x) for some values of �.
The parameter � determines the di↵erentiability class

of f (�)
i (~x). For example, for � = 0, f (�)

i (~x) reduces to the
Heaviside function, which is discontinuous. For � = 1,
the function is continuous, but its first derivative is not.

The di↵erentiability class of f (�)
i (~x) is C��1 for integer

�. In order for the smeared operators �̂i and ⇧̂i to be
well defined, it su�ces to choose � � 1, as we will see
below by explicitly computing their quantum moments
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We find they are less entangled with each other than they would be in Minkoswki st !

(Intuition: more entanglement with the partner is detrimental for entanglement with other modes)



Interesting consequences for cosmology



Does Inflation generates entanglement??

(Long debate)

My answer: No if  we only have access to local observables


