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Introduction Main questions

There is no consensus on a quantum theory of gravity to date.

. . . so we rely on approximations with classical gravity and quantum matter.

Quantized matter
carrying energy to infinity

from a classical black hole

Black hole mass is corrected
via energy conservation (dM/dt ∼ −1/M2)

We need to account for backreaction but do so in an ad hoc manner.

1. Are such classical-quantum approximations derivable from the fundamentals?

2. If so, how good are they, or what are their regimes of validity?
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Introduction Simple quantum mechanics

q1, p1

Subsystem 1

q2, p2

Subsystem 2

λV1V2

A bipartite system (subsystem 1 + subsystem 2)

H(q1, p1, q2, p2) = H(q1, p1) +H(q2, p2) + λV1(q1, p1)V2(q2, p2) (Classical-classical)

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + λV̂1 ⊗ V̂2 (Quantum-quantum)
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Introduction Simple quantum mechanics

A classical-quantum approximation for this system

Classical eqs. with quantum expectations

∂tq1 = ∂p1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
∂tp1 = −∂q1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
Quantum eq. with classical trajectory

{
ι∂t |ψ⟩ =

(
Ĥ2 + λV1(q1, p1)V̂2

)
|ψ⟩ 1

This is reminiscent of the semiclassical Einstein equation: Gαβ = M−2
Pl ⟨ψ| T̂αβ |ψ⟩.

1V. Husain, I. Javed, and S. Singh, Phys. Rev. Lett. 129, 111302 (2022).
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Introduction . . . classical-quantum derivation?

Could the said classical-quantum (CQ) approximation be derived from the known
correct quantum-quantum (QQ) dynamics, which is given by the following?

ι∂t |ψ⟩ = Ĥ |ψ⟩

Ĥ = Ĥ1 ⊗ Î2 + Î1 ⊗ Ĥ2 + λV̂1 ⊗ V̂2

Others too have attempted to derive this CQ approximation butwithoutmuch suc-
cess.2

Our approach relies on somewhat different assumptions from theirs.

2T. Singh and T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989)
C. Kiefer and T. P. Singh, Phys. Rev. D 44, 1067 (1991).
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Model Assumptions

ι∂t |ψ⟩ = Ĥ |ψ⟩ Approximation
========⇒


∂tq1 = ∂p1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
∂tp1 = −∂q1

(
H1 + λ ⟨ψ| V̂2 |ψ⟩ V1

)
ι∂t |ψ⟩ =

(
Ĥ2 + λV1(q1, p1)V̂2

)
|ψ⟩

Assumptions allowing the approximation

We find that the CQ approximation is valid if the following hold.
1. Coupling parameter λ is small.
2. Entanglement between subsystems is small.
3. Quantum state of subsystem 1 is a semiclassical state.
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Model Derivation

We start by assuming that the system is in a nearly product state (entanglement
is small):

|ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩+O(λ).

We could then read off effective Hamiltonians from the equations of motion for
the subsystems’ reduced density matrices:

ι∂tρ1,2 =
[
Heff

1,2, ρ1,2
]
+O

(
λ2

)
,

where Ĥeff
1,2 = Ĥ1,2 + λ ⟨ψ2,1| V̂2,1 |ψ2,1⟩ V̂1,2.

Finally, we assume a sharply peaked semiclassical state for subsystem 1 such
that

∂tq1 ≈ ∂p1H1 + λ ⟨ψ2| V̂2 |ψ2⟩ ∂p1V1

and
∂tp1 ≈ −∂q1H1 − λ ⟨ψ2| V̂2 |ψ2⟩ ∂q1V1,

where q1 = ⟨ψ1| q̂1 |ψ1⟩, p1 = ⟨ψ1| p̂1 |ψ1⟩, and ⟨ψ1| V̂1 |ψ1⟩ ≈ V1(q1, p1).
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Model Scrambling and Ehrenfest times

Being an approximation after all, the CQ scheme holds for a finite amount of
time.

Failure could be determined by two different time scales.

1. Ehrenfest time: characteristic time for the spread of subsystem 1 quantum
state

2. Scrambling time: characteristic time for the growth of entanglement
between subsystem 1 and subsystem 2

Ehrenfest time is well understood: it becomes longer as the energy of
subsystem 1 gets higher.

Scrambling time is calculated using linear perturbation theory as timescale for
linear entanglement entropy to grow from 0 to O(1).
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Results and discussion CQ vs. QQ and CC
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Results and discussion Error and entropy
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Results and discussion Ehrenfest verification
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Results and discussion Observations

Key messages

1. Derivation of a classical-quantum approximation like Gαβ = M−2
Pl ⟨ψ| T̂αβ |ψ⟩

2. Approximation failure after a (calculable) finite amount of time

Future directions

1. Explicit generalization to gravity remains to be seen (e.g., parametric resonance).
2. Long-term behavior of entropy (S ∼ 2/3 ln(E)) asks for further exploration.
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Thank you!
Questions?
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