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Introduction Main questions

There is no consensus on a quantum theory of gravity to date.

... so we rely on approximations with classical gravity and quantum matter.

Quantized matter
N\, AN\, carrying energy to infinity
from a classical black hole

Black hole mass is corrected
via energy conservation (dM/dt ~ —1/M?)

We need to account for backreaction but do so in an ad hoc manner.
1. Are such classical-quantum approximations derivable from the fundamentals?

2. If so, how good are they, or what are their regimes of validity?
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Introduction Simple quantum mechanics

Subsystem 1 Subsystem 2

212

A bipartite system (subsystem 1 + subsystem 2)

H(G1,p1,92,P2) = H(G1,p1) + H(G2,P2) + AVi(G1,p1)V2(q2, p2) (Classical-classical)
A=HA @1+ 5 A, + AV, ® V, (Quantum-quantum)
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Introduction Simple quantum mechanics

A classical-quantum approximation for this system

= Oy (M1 + 2 (Wl V2 ) 1)
Otp1 = —9g, (H1 + XA (@ V2 |v) V1)

&=

Classical eqgs. with quantum expectations {

Quantum eq. with classical trajectory { WO ) = (Flz + A\i(aq, p1)\72) ap) 1

This is reminiscent of the semiclassical Einstein equation: G5 = M;,z (| Tap [1).

Ty, Husain, I. Javed, and S. Singh, Phys. Rev. Lett. 129, 111302 (2022).
© Irfan Javed (work with V. Husain, S. Seahra, and N. X) 5



Introduction . .. classical-quantum derivation?

Could the said classical-quantum (CQ) approximation be derived from the known
correct quantum-quantum (QQ) dynamics, which is given by the following?
B |v) = Alp)
A=foh+heH+Ahe b,
Others too have attempted to derive this CQ approximation but without much suc-
2
cess.

Our approach relies on somewhat different assumptions from theirs.

27. Singh and T. Padmanabhan, Ann. Phys. (N.Y.) 196, 296 (1989)
C. Kiefer and T. P. Singh, Phys. Rev. D 44, 1067 (1991).

© Irfan Javed (work with V. Husain, S. Seahra, and N. X) 6



Model Assumptions

oy = By (M + X (6] V2 ) W)
onpr = 0y (M + A (0] V2 [9) V1)
rlp) = (Fo + NVa(r,pr)¥a ) 1)

Assumptions allowing the approximation

We find that the CQ approximation is valid if the following hold.
1. Coupling parameter X is small.

Approximation
P

10wy = H )

2. Entanglement between subsystems is small.
3. Quantum state of subsystem 1 is a semiclassical state.
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Model Derivation

We start by assuming that the system is in a nearly product state (entanglement
is small):

) = [¢1) @ |iha) + O(A).

We could then read off effective Hamiltonians from the equations of motion for
the subsystems’ reduced density matrices:

LOip12 = [Hif;,m,z] + O ()\2) 9

where FE% = A1 5 4+ X\ (21| Va1 [102,0) Vi 2.

Finally, we assume a sharply peaked semiclassical state for subsystem 1 such
that
0t = Op, Ha + A (32| V2 [1h2) Op, Vi

and .
Op1 = —0g, Ha — X (2| Vo [¢h2) O, Vi,

where g1 = (1] &1 [11), pr = (4] P1 |¢n), and (wn] Vi [¢n) = Va(qn, pr).
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Model Scrambling and Ehrenfest times

Being an approximation after all, the CQ scheme holds for a finite amount of
time.

Failure could be determined by two different time scales.
1. Ehrenfest time: characteristic time for the spread of subsystem 1 quantum
state
2. Scrambling time: characteristic time for the growth of entanglement
between subsystem 1 and subsystem 2
Ehrenfest time is well understood: it becomes longer as the energy of
subsystem 1 gets higher.

Scrambling time is calculated using linear perturbation theory as timescale for
linear entanglement entropy to grow from 0 to O(1).
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Results and discussion cQ vs. QQ and CC
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Results and discussion Error and entropy

0.20
&
g
E' 0.151
;5
o
go.10 )
g ?.d
8 0.05 f

005 010 015 020 025 030 035
linear entanglement entropy

|— A=0.0005—A=0.001 — A=0.01 — A=0.1

© Irfan Javed (work with V. Husain, S. Seahra, and N. X) 1



Results and discussion Ehrenfest verification
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Results and discussion Observations

1. Derivation of a classical-quantum approximation like G, 5 = M;,z (¥ '7'043 [3)

2. Approximation failure after a (calculable) finite amount of time

Future directions

1. Explicit generalization to gravity remains to be seen (e.g., parametric resonance).
2. Long-term behavior of entropy (S ~ 2/3In(E)) asks for further exploration.
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Thank you!
Questions?
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