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B Exactly solvable models within general relativity are rare
B These models are highly symmetric and characterised by their symmetry group:

o Cosmology: Isotropy and Homogeneity
o Non-Rotating Black Holes: Spherical Symmetry
o Rotating Black Holes: axial symmetry

B Non-Symmetric degrees of freedom cannot be treated exactly — perturbation theory

The formalism should address the following issues:

1. Backreaction:
o Background is in general not fixed but dynamical
o Perturbations influence the background dynamics
2. Gauge Invariance:

o General Relativity is a gauge theory
o Distinguish between observable (true) and non-observable (gauge) degrees of freedom
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The general formalism

The procedure works as follows

1. Fix symmetry group of class of exact solutions
Symmetric variables (background): zero modes under the action of the symmetry group
Non-symmetric variables (perturbations): non-zero modes
Split test functions: symmetric test functions f and non-symmetric test functions g
Split constraints: symmetric constraints C' and non-symmetric constraints Z

2. Split symmetric and non-symmetric variables into observable (true) and non-observable
(gauge) degrees of freedom. Notation:

True Gauge

Symmetric (Q, P) (¢,p) “background”
Non-Symmetric (X,Y) (z,y) “perturbations”

3. Apply reduced phase space formulation
o Select gauge fixing conditions, ¢ = g« and = = z.
o Solve symmetric constraints C for p and non-symmetric constraints Z for y
o Determine fi, g« through stability condition of the gauge fixing

4. Boundary term analysis

o Define decay properties of fields
o Require counter boundary term B(f, g)

5. Physical Hamiltonian H: For any function F(Q, P, X,Y) of the true degrees of freedom

{H,F} ={C(f) + Z(9) + B(f,9), F}p=pu.a=au,f=Fr,u=y 2= ,0=0x
6. Study the physics of H
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The general formalism

Classical Theory:
B Disentangle treatment of gauge invariance from perturbation theory
B No need to define notion of n-th order gauge invariance

B Hamiltonian H computable to any order in X,Y: H = Ho+ H1 + Ha + ...

Quantum Theory:
B Non perturbative quantisation of Q, P
B Perturbative treatment of X,Y (c.f. hybrid quantum cosmology)

Remark:

B For Cosmology: Our approach equivalent to hybrid quantum cosmology if only partial
reduction is performed [Agullo,Ashtekar, Gomar,Martin-Benito,Mena Marugén,Navascués,Singh]

B Here: Full reduction including symmetric constraints in principle to all orders

B For full reduction, no issues with closure of constraint algebra of remaining symmetric
constraints
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Application to Black Holes — Step 1

We apply the formalism to non-rotating black holes in vacuum:

Step 1 - The symmetry group:
B Schwarzschild black hole is spherically symmetric — rotation group SO(3)

B Work in ADM formalism (induced metric m,, and conjugate momentum W#")

B Expand the variables in terms of spherical scalar, vector and tensor harmonics:
[Freeden, Gervens, Gutting,Schreiner]

W33 e—2u :
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52 N ™t YimLim im LT, im
1>1,m 1>2,m,I

>1,m
Background degrees of freedom are spherically symmetric: (i, 7,) and (X, my)

B Perturbation degrees of freedom:(z,y) and (X,Y)
Symmetric constraints: symmetric Hamiltonian constraint C;, and symmetric radial

diffeomorphism constraint C,
Non-symmetric constraints: non-symmetric Hamiltonian constraint Z,, non-symmetric radial

diffeomorphism constraint Zj, and angular diffeomorphism constraints Z,,
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Application to Black Holes — Steps 2 & 3

Step 2 - Selection of gauge degrees of freedom:

True Gauge
Symmetric M (1, i), (A, 7y)
Non-Symmetric  (X,Y) (z,v)
Step 3 - The reduced phase formulation:
B Choose Gullstrand Painlevé (GP) gauge
maz =1, mza =0, Q4 Bmap =217,

where Q 45 = diag(1,sin? @) is the metric on the sphere

B Advantage: GP coordinates non-singular at black hole horizon — Explore interior of black
hole

B Can work with 2 asymptotic ends — black to white hole transition

B Symmetric constraints: Solve C, and CY, for m,, my

B Non-symmetric constraints: Solve Zy, Zp, Ze /o for Yuv, Yn, Ye/o

B In this step: Iterative solution order by order in the form 7, = WL()) + Wﬁl) + ... and

similarly for the other variables
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Application to Black Holes — Step 3

Solution of the constraints order by order for the non-rotating black hole:
Zeroth Order:

B Only symmetric constraints C, and C},

B The solution depends on an integration constant M:
7Y = 4v/2Mr
= = 2v2Mr

B This is precisely the Schwarzschild solution with mass M in GP coordinates

First Order:

B Only non-symmetric constraints non-vanishing

B Determine y< ) y}(ll),ye /o 3 linear functions of XY
Second Order:

B For physical Hamiltonian: Only need to consider the second order symmetric constraints
(2) _(2) ;

B We obtain a solution for 7", my™ in terms of X, Y
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Application to Black Holes — Step 5

Step 5 - The physical Hamiltonian (for one asymptotic end):
B Boundary term analysis yields physical Hamiltonian

H= lim — 72 = lim i(( ()2 1 9772 1 0(3 ))

r—oo 2kt M r—oo 2kr

where k = 167 is the gravitational coupling constant
B Zeroth order: Hyp = M (ADM mass)
B Second order:

1 5 . Ny - o .
Hy=— Y | arN*%L0:Xf, + 5 ((Bh)2 + @ X2 + Vi(XE,)?)
r 1>2,m,I R+ 2

where N3 = 2M , N=1and X,f/ related to X, Y via canonical transformation

B Black Hole perturbation theory well established to second order both in Lagrangian [regge,
Wheeler, Zerilli,...] and Hamiltonian formulation [Moncrief,Brizuela,Martin-Garcia,. . .]

B Agreement of Hg + H2 with these works after transforming from GP to Schwarzschild
coordinates

B Virtue of this approach: Immediately extensible to higher orders
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B Generalisation to Higher Order Perturbations: Interacting gravitational waves X2Y, X3, ...
B Extension to Standard Model matter, e.g. electromagnetic field pneTT) work in progress
B Fock quantisation with respect to Gullstrand Painlevé free-falling observer:

o GP-time 7 = const hypersurfaces foliate black hole spacetime

o But: hypersurfaces are not Cauchy surfaces
Glue outgoing and ingoing GP spacetimes (black hole — white hole transition)
Mode system: eigenvalue equation similar to Schrédinger equation for singular potential
Possibly regularisation at © = 0 (singularity) needed:
— New orthonormal basis for singular Schrédinger operators [JN&TT]
— Methods of LQC type quantisation of Kantowski-Sachs

[Ashtekar,Bodendorfer, Gambini,Haggard,Olmedo,Pullin,Rovelli,Singh, Vidotto]

Methods from dust collapse models [Wilson-Ewing,Hussain]

)

Ingoing GP coordinates Outgoing GP coordinates

B Perturbative Expansion and Fock quantisation of the area of apparent horizon
— Signs of Black hole Evaporation? Decrease of the area?
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Thank You!
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