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Motivation

■ Exactly solvable models within general relativity are rare

■ These models are highly symmetric and characterised by their symmetry group:
Cosmology: Isotropy and Homogeneity
Non-Rotating Black Holes: Spherical Symmetry
Rotating Black Holes: axial symmetry

■ Non-Symmetric degrees of freedom cannot be treated exactly → perturbation theory

The formalism should address the following issues:

1. Backreaction:
Background is in general not fixed but dynamical
Perturbations influence the background dynamics

2. Gauge Invariance:
General Relativity is a gauge theory
Distinguish between observable (true) and non-observable (gauge) degrees of freedom
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The general formalism

The procedure works as follows

1. Fix symmetry group of class of exact solutions
Symmetric variables (background): zero modes under the action of the symmetry group
Non-symmetric variables (perturbations): non-zero modes
Split test functions: symmetric test functions f and non-symmetric test functions g
Split constraints: symmetric constraints C and non-symmetric constraints Z

2. Split symmetric and non-symmetric variables into observable (true) and non-observable
(gauge) degrees of freedom. Notation:

True Gauge

Symmetric (Q,P ) (q, p)
Non-Symmetric (X,Y ) (x, y)

“background”
“perturbations”

3. Apply reduced phase space formulation
Select gauge fixing conditions, q = q∗ and x = x∗
Solve symmetric constraints C for p and non-symmetric constraints Z for y
Determine f∗, g∗ through stability condition of the gauge fixing

4. Boundary term analysis
Define decay properties of fields
Require counter boundary term B(f, g)

5. Physical Hamiltonian H: For any function F (Q,P,X, Y ) of the true degrees of freedom

{H,F} = {C(f) + Z(g) +B(f, g), F}p=p∗,q=q∗,f=f∗,y=y∗,x=x∗,g=g∗

6. Study the physics of H
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The general formalism

Classical Theory:

■ Disentangle treatment of gauge invariance from perturbation theory

■ No need to define notion of n-th order gauge invariance

■ Hamiltonian H computable to any order in X,Y : H = H0 +H1 +H2 + . . .

Quantum Theory:

■ Non perturbative quantisation of Q,P

■ Perturbative treatment of X,Y (c.f. hybrid quantum cosmology)

Remark:

■ For Cosmology: Our approach equivalent to hybrid quantum cosmology if only partial
reduction is performed [Agullo,Ashtekar,Gomar,Mart́ın-Benito,Mena Marugán,Navascués,Singh]

■ Here: Full reduction including symmetric constraints in principle to all orders

■ For full reduction, no issues with closure of constraint algebra of remaining symmetric
constraints
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Application to Black Holes – Step 1

We apply the formalism to non-rotating black holes in vacuum:
Step 1 - The symmetry group:

■ Schwarzschild black hole is spherically symmetric → rotation group SO(3)

■ Work in ADM formalism (induced metric mµν and conjugate momentum Wµν)

■ Expand the variables in terms of spherical scalar, vector and tensor harmonics:
[Freeden,Gervens,Gutting,Schreiner]
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■ Background degrees of freedom are spherically symmetric: (µ, πµ) and (λ, πλ)

■ Perturbation degrees of freedom:(x, y) and (X,Y )

■ Symmetric constraints: symmetric Hamiltonian constraint Cv and symmetric radial
diffeomorphism constraint Ch

■ Non-symmetric constraints: non-symmetric Hamiltonian constraint Zv , non-symmetric radial
diffeomorphism constraint Zh and angular diffeomorphism constraints Ze/o
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Application to Black Holes – Steps 2 & 3

Step 2 - Selection of gauge degrees of freedom:

True Gauge

Symmetric M (µ, πµ), (λ, πλ)
Non-Symmetric (X,Y ) (x, y)

Step 3 - The reduced phase formulation:

■ Choose Gullstrand Painlevé (GP) gauge

m33 = 1, m3A = 0, ΩABmAB = 2r2 ,

where ΩAB = diag(1, sin2 θ) is the metric on the sphere

■ Advantage: GP coordinates non-singular at black hole horizon → Explore interior of black
hole

■ Can work with 2 asymptotic ends → black to white hole transition

■ Symmetric constraints: Solve Cv and Ch for πµ, πλ

■ Non-symmetric constraints: Solve Zv , Zh, Ze/o for yv , yh, ye/o

■ In this step: Iterative solution order by order in the form πµ = π
(0)
µ + π

(1)
µ + . . . and

similarly for the other variables
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Application to Black Holes – Step 3

Solution of the constraints order by order for the non-rotating black hole:
Zeroth Order:

■ Only symmetric constraints Cv and Ch

■ The solution depends on an integration constant M :

π
(0)
µ = 4

√
2Mr

π
(0)
λ = 2

√
2Mr

■ This is precisely the Schwarzschild solution with mass M in GP coordinates

First Order:

■ Only non-symmetric constraints non-vanishing

■ Determine y
(1)
v , y

(1)
h , y

(1)
e/o

as linear functions of X,Y

Second Order:

■ For physical Hamiltonian: Only need to consider the second order symmetric constraints

■ We obtain a solution for π
(2)
µ , π

(2)
λ in terms of X,Y
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Application to Black Holes – Step 5

Step 5 - The physical Hamiltonian (for one asymptotic end):

■ Boundary term analysis yields physical Hamiltonian

H = lim
r→∞

π

2κr
π2
µ = lim

r→∞

π

2κr

(
(π

(0)
µ )2 + 2π

(0)
µ π

(2)
µ +O(3)

)
,

where κ = 16π is the gravitational coupling constant

■ Zeroth order: H0 = M (ADM mass)

■ Second order:

H2 =
1

κ

∑
l≥2,m,I

∫
R+

dr N3Ỹ I
lm∂rX̃

I
lm +
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2

(
(Ỹ I

lm)2 + (∂rX̃
I
lm)2 + VI(X̃

I
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)
,

where N3 =
√

2M
r

, N = 1 and X̃, Ỹ related to X,Y via canonical transformation

■ Black Hole perturbation theory well established to second order both in Lagrangian [Regge,

Wheeler, Zerilli,. . . ] and Hamiltonian formulation [Moncrief,Brizuela,Mart́ın-Garćıa,. . . ]

■ Agreement of H0 +H2 with these works after transforming from GP to Schwarzschild
coordinates

■ Virtue of this approach: Immediately extensible to higher orders
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Outlook

■ Generalisation to Higher Order Perturbations: Interacting gravitational waves X2Y,X3, . . .
work in progress■ Extension to Standard Model matter, e.g. electromagnetic field [JN&TT]

■ Fock quantisation with respect to Gullstrand Painlevé free-falling observer:
GP-time τ = const hypersurfaces foliate black hole spacetime
But: hypersurfaces are not Cauchy surfaces
Glue outgoing and ingoing GP spacetimes (black hole – white hole transition)
Mode system: eigenvalue equation similar to Schrödinger equation for singular potential
Possibly regularisation at r = 0 (singularity) needed:

→ New orthonormal basis for singular Schrödinger operators [JN&TT]

→ Methods of LQC type quantisation of Kantowski-Sachs
[Ashtekar,Bodendorfer,Gambini,Haggard,Olmedo,Pullin,Rovelli,Singh,Vidotto]

→ Methods from dust collapse models [Wilson-Ewing,Hussain]

r = 0

i0

τ
=
const

Ingoing GP coordinates

r = 0

i0

Outgoing GP coordinates

■ Perturbative Expansion and Fock quantisation of the area of apparent horizon

→ Signs of Black hole Evaporation? Decrease of the area?
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