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Solutions of Einstein’s field equations

The Schwarzschild spacetime

The Schwarzschild spacetime is the simplest static vacuum solution of EFEs.
Mathematically it is represented as

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr 2 + r 2dθ2 + r 2 sin2 θdφ2, (1)

where M is the mass of the black hole. This solution was given by Karl
Schwarzschild in 1916 just one year after the development of Einstein field
equations.

The Reissner-Nordström spacetime

It is the charged generalization of the Schwarzschild spacetime and is given
as

ds2 = −
(

1− 2M
r

+
q2

r 2

)
dt2 +

(
1− 2M

r
+

q2

r 2

)−1

dr 2 + r 2dθ2

+ r 2 sin2 θdφ2. (2)

Here black hole’s charge is represented by q.
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The Kerr spacetime

The rotating generalization of the Schwarzschild spacetime is the Kerr metric.
It is stationary, axisymmetric and vacuum solution of EFEs. Its mathematical
expression is given by

ds2 = −
[
1− 2Mr

Σ

]
dt2 − 4aMr sin2 θ

Σ
dtdφ+

Σ

∆
dr 2 + Σdθ2

+ sin2 θ
[
r 2 + a2 +

2a2Mr sin2 θ

Σ

]
dφ2, (3)

where
Σ = r 2 + a2 cos2 θ,∆ = r 2 + a2 − 2Mr .

Here a denotes spin of the black hole. Setting a = 0, one gets the
Schwarzschild spacetime.
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The Kerr-Newman spacetime

The Kerr-Newman spacetime is the charged generalization of the Kerr metric
as well as rotating generalization of the Reissner-Nordström spacetime. It is
also stationary, axisymmetric and vacuum solution of EFEs. The
mathematical expression is given by

ds2 = −
(

1− 2Mr
Σ

+
q2

Σ

)
dt2 − 2a(2Mr − q2) sin2 θ

Σ
dtdφ+

Σ

∆
dr 2 + Σdθ2

+ sin2 θ
(

r 2 + a2 +
a2(2Mr − q2) sin2 θ

Σ

)
dφ2,

where q and a denote charge and spin of the black hole respectively. Here Σ
is same as in Kerr metric whereas ∆ modifies to r 2 + a2 − 2Mr + q2.
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From spheres to spheroids

Both Schwarzschild and Reissner-Nordström spacetimes are spherically
symmetric. Here the surfaces of constant t and constant r are spheres. In
fact, for such surfaces, Schwarzschild and Reissner-Nordström metrics
reduce to

ds2 = r 2dθ2 + r 2 sin2 θdφ2, (4)

which is the line element for a sphere of radius r . Now, consider the Kerr
black hole given in Eq. (3). Taking its limit as M → 0, we get

gµν = −dt2 +
r 2 + a2 cos 2θ

a2 + r 2 dr 2 +
(

r 2 + a2 cos 2θ
)

dθ2 +
(

a2 + r 2
)

sin2 θ dφ2.

(5)
The above equation represents Minkowski spacetime in spheroidal
coordinates.
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It can also be written as

ds2 = −dt2 + dx2 + dy2 + dz2, (6)

where

x =
√

r 2 + a2 sin θ cosφ, y =
√

r 2 + a2 sin θ sinφ, z = r cos θ. (7)

Here a can be considered as deviation from the spherical geometry. The
spatial part of Eq. (6) can be written as

dx2 + dy2 + dz2 =
r 2 + a2 cos 2θ

r 2 + a2 dr 2 +
(

r 2 + a2 cos 2θ
)

dθ2

+
(

r 2 + a2
)

sin2 θ dφ2. (8)

The above line element describes a prolate spheroid for a2 > 0, oblate
spheroid for a2 < 0 and sphere for a2 = 0.
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Figure: Spheroids: prolate spheroid with a2 > 0 (in yellow) compared to oblate
spheroid with a2 < 0 (in red) and to the reference sphere a2 = 0 (in green).
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Tests of general relativity

Historical tests (the weak gravitational field regime)

The first experimental confirmation of the General Relativity was
obtained in 1919 from measuring the bending of light in the vicinity of the
surface of the Sun.

Systematic tests of GR started much later.

Experiments in the Solar system began in 1960s.

Tests employing the observations of the binary pulsars started in the
1970s.

Over the past many years, a large number of experiments have
confirmed the predictions of GR in the weak gravitational field.

Testing in the strong gravitational field regime

It would be interesting to test the predictions of general relativity in the strong
gravitational field regime. The ideal laboratory in this case is spacetime
around the astrophysical black holes.
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The no-hair theorem
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The Kerr black hole hypothesis

Kerr black hole is the unique solution of Einstein’s field equations having the
following properties

stationary

asymptotically flat

axisymmetric

vacuum

regular outside the event horizon

no closed time-like curves

Except for the very short transient periods such as mergers, all the
astrophysical black holes are expected to be described by the Kerr metric and
its two parameters.
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Testing the Kerr black hole hypothesis

Methods such as continuum-fitting and iron line have been proposed to
measure the black hole spin under the assumption that the black hole
metric is described by the Kerr solution of GR. The electromagnetic
spectrum is measured in the Kerr spacetime and the results are
compared with the observational data to see the best fit and measure
the estimate in the spin values and other free parameters appearing in
the model.

Following the same approach, one can use some non-Kerr spacetime,
determine the expected spectrum in this background, and do the
comparison of the new predictions with the observational data. In this
way one can check if the non-kerr metric gives the best fit than Kerr and
constrain deviations from the Kerr case.

One can expect the deviations from the Kerr solution, for example, from
classical extensions of GR, macroscopic quantum gravity effects or the
presence of exotic matter.
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The approaches employed in testing the Kerr hypothesis

The top-bottom approach

Modification and parameterization of the action and constraining the
deviations through observations.

The bottom-top approach

Here, phenomenological parameterization of the metric is employed.
Possible deviations are in terms of the deviation parameters. The parameters
are determined from the astrophysical data.
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Deformed non-Kerr black holes

There are many metrics in the alternate gravity theories each with their
advantages and disadvantages. One such example is the metric proposed by
Johannsen and Psaltis:
[T. Johannsen and D. Psaltis, Phys. Rev. D 83 (2011) 124015]
Its further extensions are

∗ The charged Johannsen-Psaltis spacetime,
R. Rahim and K. Saifullah, Annals Phys. 405 (2019) 220.

∗ The charged CPR black hole,
R. Rahim and K. Saifullah, IJMPD. (2021) 2150123.

∗ The non-Kerr black hole with acceleration,
U. A. Gilliani, R. Rahim and K. Saifullah, Astroparticle Phys. 138 (2022)
102684.

∗ The CPR black hole with acceleration.
U. A. Gilliani and K. Saifullah, Eur. Phys. J. C 81 (2021) 841.
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The Johannsen-Psaltis (non-Kerr) spacetime
The construction using Newman-Janis algorithm

The Schwarzschild metric is given by

ds2 = −f (r)dt2 + f (r)−1dr 2 + r 2dθ2 + r 2 sin2 θdφ2, (9)

where f = 1− 2M/r and M is the mass of the central object. The (t − r)
sector is modified by multiplying the corresponding component by the
expression of the form 1 + h(r) where h(r) is given by

h(r) =
∞∑

k=0

εk

(
M
r

)k

. (10)

The deformed Schwarzchild metric thus takes the form

Khalid Saifullah Deformed Spheres in General Relativity



Change of coordinates

Change from (t , r , θ, φ) coordinates to (u′, r ′, θ′, φ′) where

du′ = dt − dr
f
, (11)

r = r ′, θ = θ′, φ = φ′. (12)

The result is (after removing the primes)

gµν = −f
(

1 + h(r)
)

du2 − 2
(

1 + h(r)
)

dudr + r 2dθ2 + r 2 sin2 θdφ2. (13)

The Newman-Penrose formalism

The contravariant metric in Newman-Penrose formalism is

gµν = −lµnν − lνnµ + mµmν + mνmµ. (14)
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The null vectors in our case are

lµ = (0, 1, 0, 0), (15)

nµ = (1 + h(r))−1(1,−f/2, 0, 0),

mµ =
1√
2r

(
0, 0, 1,

i
sin θ

)
,

mµ =
1√
2r

(
0, 0, 1,− i

sin θ

)
.

Complexification of the variables

Consider r to be complex. Changes in the expressions for r are

1
r
−→ 1

2

(1
r

+
1
r

)
,

1
r 2 −→

( 1
r r

)
. (16)

where the bar denotes the complex conjugate.
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The null vectors are

lµ =
(

0, 1, 0, 0
)
, (17)

nµ = (1 + h(r , r))−1(1,−f (r , r)/2, 0, 0), (18)

mµ =
1√
2r

(
0, 0, 1,

i
sin θ

)
, (19)

mµ =
1√
2r

(
0, 0, 1,− i

sin θ

)
, (20)

where

f (r , r) = 1−M
(

1
r

+
1
r

)
, (21)

h(r , r) =
∞∑

k=0

(
ε2k + ε2k+1

M
2

(
1
r

+
1
r

))(
M2

r r

)k

. (22)
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Using the transformation

u′ = u − ia cos θ, r ′ = r + ia cos θ, (23)

θ = θ′, φ = φ′, (24)

the null vectors in Eqs. (17)-(20) take the form (again the primes have been
removed)

lµ =
(

0, 1, 0, 0
)
, (25)

nµ =
1(

1 + h(r , θ)
)(1,

−f (r , θ)

2
, 0, 0

)
, (26)

mµ =
1√
2r

(
ia sin θ,−ia sin θ, 1,

i
sin θ

)
, (27)

mµ =
1√
2r̄

(
− ia sin θ, ia sin θ, 1,− i

sin θ

)
. (28)
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Here the expressions for f (r , θ), h(r , θ) are

f (r , θ) = 1− 2Mr
Σ

, (29)

h(r , θ) =
∞∑

k=0

(
ε2k + ε2k+1

Mr
Σ

)(
M2

Σ

)k

, (30)

where Σ is given by
Σ = r 2 + a2 cos2 θ. (31)

Using Eqs. (25)-(31), the metric tensor gµν is written in terms of the
coordinates (u, r , θ, φ) as

g00 = −f (1 + h) , g01 = − (1 + h) , (32)

g03 = a (1 + h) (f − 1) sin2 θ, g13 = a (1 + h) sin2 θ, (33)

g22 = Σ, g33 = sin2 θ
[
Σ− a2 (1 + h) (f − 2) sin2 θ

]
. (34)
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Conversion into Boyer-Lindquist coordinates

Change the coordinates (u, r , θ, φ) to (t ′, r ′, θ′, φ′) by using the
transformations

du = dt ′ +
r ′2 + a′2

∆
dr ′, dφ = dφ′ − adr ′

∆
,

r = r ′, θ = θ′,

where ∆ = r 2 + a2 − 2Mr . The new metric is (after removing the primes)

g00 = −f (1 + h) , g03 = a (1 + h) (f − 1) sin2 θ (35)

g11 =
Σ

∆
+

h(Σ∆−∆a2 sin2 θ + a4 sin4 θ − 2Mra2 sin2 θ)

∆2 , (36)

g13 = a (1 + h) sin2 θ, (37)

g22 = Σ, g33 = sin2 θ
[
Σ− a2 (1 + h) (f − 2) sin2 θ

]
. (38)
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In order to remove the off-diagonal term g13, we use another transformation

dt = dt ′ + F (r ′, θ′)dr , dφ = dφ′ + G(r ′, θ′)dr , (39)

r = r ′, θ = θ′, (40)

where

F (r ′, θ′) = −g13

g00

(g2
03 − g33g00

g00g03

)−1
,G(r ′, θ′) =

g13

g03

(g2
03 − g33g00

g00g03

)−1
. (41)
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This leads to the metric tensor given by (after removing the primes)

ds2 = −(1 + h(r , θ))
(

1− 2Mr
Σ

)
dt2 + Σdθ2

− 4aMr sin2 θ

Σ
(1 + h(r , θ))dtdφ+

Σ(1 + h(r , θ))

∆ + a2 sin2 θh(r , θ)
dr 2

+
[

sin2 θ
(

r 2 + a2 +
2a2Mr sin2 θ

Σ

)
+ h(r , θ)

a2 sin4 θ(Σ + 2Mr)

Σ

]
dφ2, (42)

where Σ = r 2 + a2 cos2 θ, ∆ = r 2 + a2 − 2Mr and h(r , θ) has the general
expression given in Eq. (30). With h = 0, the Kerr spacetime is recovered.
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The constraints on the deviation parameters

The function h(r , θ) contains infinite number of parameters. The first two
parameters ε0 and ε1 are set to zero by requiring that the metric must be
asymptotically flat and the next parameter ε2 is constrained at 10−4 by weak
field tests of general relativity in the parameterized post-Newtonian approach.
Thus ε2 can also be set to zero. For the simplest case, we can set εk = 0 for
k > 3, which leads to h(r , θ) as

h(r , θ) =
ε3M3r

Σ2 . (43)

Since ε3 is the only retained deviation parameter, it is represented as ε in the
further analysis.
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The Killing horizon

A Killing horizon is a null hypersurface on which there is a null Killing vector
field. In a stationary and axisymmetric spacetime, the Killing horizon is given
by

gttgφφ − g2
tφ = 0, (44)

which for metric (42) takes the value (1 + h)(∆ + a2h sin2 θ) sin2 θ = 0.

Kretschmann scalar and the Killing horizon

1 + h(r , θ) corresponds to spacetime singularity as the Kretschmann scalar

RαβγδRαβγδ ∝ (1 + h(r , θ))−6. (45)

It diverges at the Killing horizon for the polar angles 0 < θ < π.
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Killing horizons for positive deformation parameter

The graphs are drawn for a = 0.9 and M = 1 with varying values of ε.
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M=1, a=0.9,

Figure: 1(a). The inner
and outer Killing
horizons have spherical
topology.
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Figure: 1(b). The inner
and outer Killing
horizons merge at the
equatorial plane.

Khalid Saifullah Deformed Spheres in General Relativity



0.5 1.0 1.5 2.0

-2

-1

0

1

2

x

z

M=1, a=0.9, Ε=0.33

Figure: 1(c). Disjoint Killing horizons appear above and below the equatorial plane.
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Killing horizons for negative deformation parameter
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Figure: 2. The Killing horizon for negative ε. On the left a = 0.94, ε = −0.6 and M = 1.
Here the inner and outer Killing horizons are in the form of spherical surface. On the
right a = 1.1, ε = −0.6 and M = 1. The Killing horizon is in the shape of toroidal
surface.
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Lorentz violations

det(gµν) = − sin2 θ

64Σ2

[
3a4 + 8a2r 2 + 8r 4 + 8εM3r + 4a2(2r 2 + a2) cos 2θ

+ a4 cos 4θ

]2

. (46)

It is negative, semidefinite and becomes zero at two values of the radii for
ε < −4r+ which coincide with the location of the Killing horizon as

det(gµν) ∝ gttgφφ − g2
tφ. (47)

So, the metric does not contain any Lorentz violating regions.
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Closed time-like curves

0.5 1.0 1.5 2.0

-2

-1

0

1

2

x

z
M=1, a=0.3, Ε=-0.1 The Killing horizons and closed

time-like curves for ε = −0.1 and
a = 0.3. Mass M has been set to 1.
The dashed curves denote the inner
and outer Killing horizons and the
solid region shows the closed
time-like curve.

The closed time-like curves in the above graph lie within the inner Killing
horizon. In general, for Johannsen-Psaltis metric they lie inside the outer
Killing horizon. Thus it does not contain any closed time-like curves outside
the central object.
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The charged generalization of the Johannsen-Psaltis metric

The starting point is the Reissner-Nordström metric

ds2 = −
(

1− 2M
r

+
q2

r 2

)
dt2 +

(
1− 2M

r
+

q2

r 2

)−1

dr 2 + r 2dθ2

+ r 2 sin2 θdφ2, (48)

where M is the mass of the central object having charge q. The 4-potential
for the above metric is

Aµ =
(
−q

r
, 0, 0, 0

)
. (49)

The (t − r) sector is modified by multiplying the corresponding component by
the expression of the form 1 + h(r) where h(r) is

h(r) =
∞∑

k=0

εk

(
M
r

)k

. (50)
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Going through the Newman-Janis algorithm, the charged generalization of
the Johannsen-Psaltis metric is

ds2 = −(1 + h(r , θ))
(

1− 2Mr
Σ

+
q2

Σ

)
dt2 + Σdθ2

− 2a(2Mr − q2) sin2 θ

Σ
(1 + h(r , θ))dtdφ+

Σ(1 + h(r , θ))

∆ + a2 sin2 θh(r , θ)
dr 2

+
[

sin2 θ
(

r 2 + a2 +
a2(2Mr − q2) sin2 θ

Σ

)
+ h(r , θ)

a2 sin4 θ(Σ + 2Mr − q2)

Σ

]
dφ2, (51)

where Σ = r 2 + a2 cos2 θ, ∆ = r 2 + a2 − 2Mr + q2 and h(r , θ) has the general
expression given in Eq. (30). Setting q = 0 gives the Johannsen-Psaltis
metric. With h = 0, the Kerr-Newman spacetime is recovered.
The function h(r , θ) is again determined by the astrophysical observations
and has the same non-zero parameters as in Johannsen-Psaltis.
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Applying the Newman-Janis algorithm on the potential Aµ in Eq. (49) leads to

Aµ =

(
−qr

Σ
,

qr
∆ + a2h sin2 θ

, 0,
aqr sin2 θ

Σ

)
.

Here the Ar component depends on θ.

The Killing horizon, in this case has the equation

(1+h)(r 2+a2+q2−2Mr+a2h sin2 θ) sin2 θ = 0. (52)

The graphs show the similar behavior as in Johannsen-Psaltis metric when
plotted for various values of the parameters ε, a,M and q.

Khalid Saifullah Deformed Spheres in General Relativity



The non-Kerr spacetime with acceleration

The accelerating and rotating black hole solution is an important member of
the Plebański and Demiański family of spacetimes. Here, acceleration of the
black hole is measured by the parameter α. The metric represents the
gravitational field of a pair of uniformly accelerating Kerr-type black holes.
The charged non-Kerr accelerating spacetime is proposed as

ds2=
1

Ω2

{
−
(Q

Σ
− a2P sin2 θ

Σ

)
(1 + h) dt2 +

Σ (1 + h)

Q + a2h sin2 θ
dr 2 +

Σ

P
dθ2

+ sin2 θ
(P(r 2+a2)2

Σ
−Qa2 sin2 θ(1+h)

Σ

)}
dφ2

−2a sin2 θ(P(r 2+a2)−Q)(1+h)

ΣΩ2 dtdφ,

(53)

where

Ω = 1− αr cos θ, (54)

Σ = r 2 + a2 cos2 θ, (55)

P = 1− 2αM cos θ + α2
(

a2 + q2
)

cos2 θ, (56)

Q = (a2 + q2 − 2Mr + r 2)(1− α2r 2). (57)
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Putting α = 0 gives charged non-Kerr black hole. Setting α = 0 = h gives the
Kerr-Newman black hole. This metric does not obey the usual
Einstein-Maxwell equations due to presence of h(r , θ). So, we make the
assumption that above spacetime might be an electro vacuum solution to the
unknown field equations which are different from the Einstein-Maxwell
equations for non vanishing h(r , θ).
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The charged CPR black hole

In the CPR metric (named after the authors V. Cardoso, P. Pani and J. Rico)
the approach of the non-Kerr metric was extended to construct a seed metric
having two different deformation functions in the gtt and grr components of
the Schwarzschild black hole. The charged CPR metric is

ds2=− (1+ht )
(

1−2Mr
Σ

+
q2

Σ

)
dt2−2a sin2 θ

[
H−(1 + ht )

(
1−2Mr

Σ
+

q2

Σ

)]
dtdφ

+
Σ(1+hr )

∆+a2 sin2 θhr
dr 2+ sin2 θ

{
Σ+a2 sin2 θ

[
2H − (1+ht )

(
1−2Mr

Σ
+

q2

Σ

)]}
dφ2

+ Σdθ2, (58)

where H =
√

(1 + ht )(1 + hr ),Σ = r 2 + a2 cos2 θ,∆ = r 2 + a2 − 2Mr + q2

and hi (r , θ) = εiM3r/Σ2 for i = t , r . Setting εt = εr gives the charged
Johannsen-Psaltis metric.
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The charged CPR black hole with acceleration

The charged CPR black hole metric has been extended to acceleration
parameter α. The metric is

ds2=
1

Ω2

{
−
(Q
ρ2 −

a2P sin2 θ

ρ2

)(
1 + ht

)
dt2 +

ρ2 (1 + hr )

Q + a2hr sin2 θ
dr 2 +

ρ2

P
dθ2

+

[
(
P(r 2+a2)2

ρ2 −
Qa2 sin2 θ

(
1+ht)

ρ2 ) sin2 θ+a2 sin4 θ(2(H−1)+
a2ht sin2 θ

ρ2 )

]
dφ2

}

−
2a sin2 θ

[
H −

(
1+ht){1− P(r2+a2)−Q

ρ2

}]
Ω2 dφdt ,

(59)

where

Ω = 1− αr cos θ, (60)

ρ2 = r 2 + a2 cos2 θ, (61)

P = 1− 2αM cos θ + α2
(

a2 + q2
)

cos2 θ, (62)

Q = (a2 + q2 − 2Mr + r 2)(1− α2r 2). (63)
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Conclusions

The presentation focuses at the spacetimes suitable for testing the Kerr black
hole hypothesis in the strong gravitational field. One such example is the
metric proposed by Johannsen and Psaltis. Its salient features are
summarized as

It is an example of the bottom-top approach.

It is stationary, axisymmetric and asymptotically flat.

It does not correspond to any known gravity theory, but is a
parametrization of deviation from the Kerr spacetime obtained by
applying the Newman-Janis algorithm to a deformed Schwarzschild
metric.

It has infinite number of deviation parameters.

These parameters are determined by the requirement that the new
deformed metric is asymptotically flat and is consistent with
observational weak-field constraints on deviations from general relativity
in the parameterized post-Newtonian approach.
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It does not contain Lorentz-violating regions.

It does not contain any closed time-like curves outside the central object.

For the case of a single deformation parameter, the non-Kerr metric is
regular and does not contain unphysical properties outside the event
horizon and can represent a black hole a black hole upto the maximum
range of the spin parameter.

Kretschmann scalar diverges at the Killing horizon for the polar angles
0 < θ < π.

The Killing horizons show dependence on the deviation parameter ε.

The Johannsen-Psaltis metric has been extended to include the electric
charge. Starting from the deformed Reissner-Nordström metric and
subsequent application of the Newman-Janis algorithm leads to the
charged analogue. It has also been extended to include acceleration as
well. Starting from a deformed Reissner-Nordström metric having two
different deformation functions, the charged CPR black hole has been
developed through Newman-Janis algorithm. The accelerating CPR
metric has also been developed.
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