Spherically-Symmetric Gravity on a Graph

Jorden Roberts Klaus Liegener & Saeed Rastgoo

Loops '24 – Florida Atlantic University

UNIVERSITY OF ALBERTA

Motivation:

1. Classical dynamics of spherically-symmetric LQG

Motivation

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

✷ Continuum Theory

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

- ✷ Continuum Theory
- ✷ Gravity on a Graph

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

- ✷ Continuum Theory
- ✷ Gravity on a Graph
- ✷ Discretized Dynamics & Symmetry Restriction

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

- ✷ Continuum Theory
- ✷ Gravity on a Graph
- ✷ Discretized Dynamics & Symmetry Restriction
- ✷ Application to FLRW Cosmology

Continuum Phase Space

Full Ashtekar-Barbero phase space 1 , $\mathcal{M}_{AB} =$ span $\left\{\left(A^{I}_{i},E^{J}_{j}\right)\right\}$ $\left\{ \begin{matrix} j \\ j \end{matrix} \right\}$:

✷ Symplectic form²

$$
\omega_{AB}=\frac{2}{\kappa\beta}\int_{\Sigma}dA'_{i}\wedge dE'_{i} d^{3}x
$$

¹Spatial indices $i, j, ... = 1, 2, 3$; $\mathfrak{su}(2)$ indices $l, J, ... = 1, 2, 3$ ²Spacetime $\mathbb{R} \times \Sigma$; $\kappa = 16\pi G$; Immirzi parameter $\beta \in \mathbb{R} \backslash \{0\}$

Continuum Phase Space

Full Ashtekar-Barbero phase space 1 , $\mathcal{M}_{AB} =$ span $\left\{\left(A^{I}_{i},E^{J}_{j}\right)\right\}$ $\left\{ \begin{matrix} j \\ j \end{matrix} \right\}$:

✷ Symplectic form²

$$
\omega_{AB}=\frac{2}{\kappa\beta}\int_{\Sigma}dA^I_i\wedge dE^i_l\ d^3x
$$

Spherically-symmetric subspace $\overline{\mathcal{M}}_{AB}$ = span { (a, p_a) , (b, p_b) }:

 $*$ Two θ , φ -independent canonical pairs

•
$$
a = a(r), p_a = p_a(r), \ldots
$$

¹Spatial indices $i, j, ... = 1, 2, 3; \text{su}(2)$ indices $1, J, ... = 1, 2, 3$ ²Spacetime $\mathbb{R} \times \Sigma$; $\kappa = 16\pi G$; Immirzi parameter $\beta \in \mathbb{R} \backslash \{0\}$

Continuum Phase Space

Full Ashtekar-Barbero phase space 1 , $\mathcal{M}_{AB} =$ span $\left\{\left(A^{I}_{i},E^{J}_{j}\right)\right\}$ $\left\{ \begin{matrix} j \\ j \end{matrix} \right\}$:

✷ Symplectic form²

$$
\omega_{AB}=\frac{2}{\kappa\beta}\int_{\Sigma}dA_i^I\wedge dE_I^i\,d^3x
$$

Spherically-symmetric subspace $\overline{\mathcal{M}}_{AB}$ = span { (a, p_a) , (b, p_b) }:

 $*$ Two θ , φ -independent canonical pairs

•
$$
a = a(r), p_a = p_a(r), \ldots
$$

✷ Restricted symplectic form

$$
\overline{\omega}_{AB} = \omega_{AB}\big|_{\overline{\mathcal{M}}_{AB}} = \frac{2}{\kappa \beta} \int (da \wedge dp_a + db \wedge dp_b) \, dr
$$

¹Spatial indices $i, j, ... = 1, 2, 3$; $\mathfrak{su}(2)$ indices $l, J, ... = 1, 2, 3$ ²Spacetime $\mathbb{R} \times \Sigma$; $\kappa = 16\pi G$; Immirzi parameter $\beta \in \mathbb{R} \backslash \{0\}$

Discretization: Gravity on a Graph

Define a set Γ_n^{\vee} of $n \in \mathbb{N}$ **vertices** v along each spatial axis

✷ Separated by coordinate-distances $\varepsilon_i = \varepsilon_i(n)$

Discretization: Gravity on a Graph

Define a set Γ_n^{\vee} of $n \in \mathbb{N}$ **vertices** v along each spatial axis

✷ Separated by coordinate-distances $\varepsilon_i = \varepsilon_i(n)$

Parameterize edges $\gamma : \mathcal{I} \subset \mathbb{R} \to \Sigma$ between successive vertices, and surfaces $\mathcal{S}_{\gamma}: \mathcal{J}^{2} \subset \mathbb{R}^{2} \rightarrow \Sigma$ dual to each edge

Discretization: Gravity on a Graph

Define a set Γ_n^{\vee} of $n \in \mathbb{N}$ **vertices** v along each spatial axis

✷ Separated by coordinate-distances $\varepsilon_i = \varepsilon_i(n)$

Parameterize edges γ : I ⊂ **R** → Σ between successive vertices, and surfaces $\mathcal{S}_{\gamma}: \mathcal{J}^{2} \subset \mathbb{R}^{2} \rightarrow \Sigma$ dual to each edge

✷ Graph and dual cell-complex:

$$
\Gamma_n = \coprod_{v \in \Gamma_n^{\vee}} \gamma, \qquad \Gamma_n^* = \coprod_{\gamma \in \Gamma_n} \mathcal{S}_{\gamma}
$$

Spherical Graphs

Truncated Phase Space

 $\mathcal{M}_{\mathsf{\Gamma}}\cong\prod_{\gamma}\mathcal{T}^{*}SU(2)$ is obtained via a <mark>discretization map</mark>,

$$
\mathfrak{D}_{\gamma}: \mathcal{M}_{AB} \to SU(2) \times \mathfrak{su}(2): (A, E) \mapsto \left(\mathcal{P} \exp\left(\int_{\gamma} A\right), \underbrace{\int_{\mathcal{S}_{\gamma}} \star E}_{P\gamma}\right)
$$

Truncated Phase Space

 $\mathcal{M}_{\mathsf{\Gamma}}\cong\prod_{\gamma}\mathcal{T}^{*}SU(2)$ is obtained via a <mark>discretization map</mark>,

$$
\mathfrak{D}_{\gamma}: \mathcal{M}_{AB} \to SU(2) \times \mathfrak{su}(2): (A, E) \mapsto \left(\mathcal{P} \exp\left(\int_{\gamma} A\right), \underbrace{\int_{\mathcal{S}_{\gamma}} \star E}_{P\gamma}\right)
$$

Fixed-graph scalar constraint, $C^{n}[N] = \sum_{v \in \Gamma_{n}^{\vee}} N(v) C^{n}(v)$:

$$
C^{n}(v) = \frac{1}{16\kappa} \sum_{i,j,k} \epsilon(i,j,k) \Big[\mathcal{F}_{K}(v,\Box_{ij}) - (1+\beta^{2}) \epsilon_{IJK} \mathcal{K}_{i}^{I}(v) \mathcal{K}_{j}^{J}(v) \Big] \mathcal{E}_{k}^{K}(v)
$$

 $\ast \ \mathcal{E}_{\ell} \sim \{h_{\gamma_{\ell}}, V[\Gamma_n]\} \ h_{\gamma_{\ell}}^{\dagger}, \ \mathcal{K}_{\ell} \sim \{h_{\gamma_{\ell}}, K[\Gamma_n]\} \ h_{\gamma_{\ell}}^{\dagger}$

Symmetry Restriction

For certain symmetry groups, symmetric configurations are guaranteed to remain symmetric under the flow generated by C^n

Symmetry Restriction

For certain symmetry groups, symmetric configurations are guaranteed to remain symmetric under the flow generated by C^n

• Poisson brackets can be computed entirely on $\overline{\mathcal{M}}_{\Gamma}$

Symmetry Restriction

For certain symmetry groups, symmetric configurations are guaranteed to remain symmetric under the flow generated by C^n

- Poisson brackets can be computed entirely on $\overline{\mathcal{M}}_{\Gamma}$
- Dynamical calculations are often significantly simplified

Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

 $\mathbb{D}_{\Gamma} \cong \mathbb{Z}_2 \times D_n < O(3)$

✷ Dⁿ ∼= **Z**² ⋊ **Z**ⁿ is the symmetry group of a regular n-gon

Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

 $\mathbb{D}_{\Gamma} \cong \mathbb{Z}_2 \times D_n < O(3)$

✷ Dⁿ ∼= **Z**² ⋊ **Z**ⁿ is the symmetry group of a regular n-gon

Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

 $\mathbb{D}_{\Gamma} \cong \mathbb{Z}_2 \times D_n < O(3)$

✷ Dⁿ ∼= **Z**² ⋊ **Z**ⁿ is the symmetry group of a regular n-gon $*$ D_Γ is translated into a symmetry group Φ _Γ < Symp (\mathcal{M}_{Γ})

Invariant Subspace

Spherical-graph discretization map applied to $(\overline{A}, \overline{E}) \in \overline{\mathcal{M}}_{AB}$ produces Φ_Γ-invariant loop variables $(\bar h_\gamma,\overline P_\gamma)\in\overline{\mathcal M}_\Gamma\subset \mathcal M_\Gamma$

Invariant Subspace

Spherical-graph discretization map applied to $(\overline{A}, \overline{E}) \in \overline{\mathcal{M}}_{AB}$ produces Φ_Γ-invariant loop variables $(\bar h_\gamma,\overline P_\gamma)\in\overline{\mathcal M}_\Gamma\subset \mathcal M_\Gamma$

$$
\begin{cases}\n\bar{h}_{\gamma_r} = \exp(\varepsilon_r \tilde{a} \tau_1) \\
\bar{h}_{\gamma_\theta} = \exp(\varepsilon_\theta \overline{A}_\theta' \tau_I) \\
\bar{h}_{\gamma_\varphi} = \exp(\varepsilon_\varphi \overline{A}_\varphi' \tau_I)\n\end{cases}\n\qquad\n\begin{cases}\n\overline{P}_{\gamma_r} = \varepsilon_\varphi [\cos \theta - \cos (\theta + \varepsilon_\theta)] p_a \tau_1 \\
\overline{P}_{\gamma_\theta} = \varepsilon_r \varepsilon_\varphi \tilde{p}_b \sin \theta \tau_2 \\
\overline{P}_{\gamma_\varphi} = \varepsilon_r \varepsilon_\theta \tilde{p}_b \tau_3\n\end{cases}
$$

Invariant Subspace

Spherical-graph discretization map applied to $(\overline{A}, \overline{E}) \in \overline{\mathcal{M}}_{AB}$ produces Φ_Γ-invariant loop variables $(\bar h_\gamma,\overline P_\gamma)\in\overline{\mathcal M}_\Gamma\subset \mathcal M_\Gamma$

$$
\begin{cases}\n\bar{h}_{\gamma_r} = \exp(\varepsilon_r \tilde{a} \tau_1) \\
\bar{h}_{\gamma_\theta} = \exp(\varepsilon_\theta \overline{A}_\theta' \tau_I) \\
\bar{h}_{\gamma_\varphi} = \exp(\varepsilon_\varphi \overline{A}_\varphi' \tau_I)\n\end{cases}\n\qquad\n\begin{cases}\n\overline{P}_{\gamma_r} = \varepsilon_\varphi [\cos \theta - \cos (\theta + \varepsilon_\theta)] \rho_a \tau_1 \\
\overline{P}_{\gamma_\theta} = \varepsilon_r \varepsilon_\varphi \tilde{p}_b \sin \theta \tau_2 \\
\overline{P}_{\gamma_\varphi} = \varepsilon_r \varepsilon_\theta \tilde{p}_b \tau_3\n\end{cases}
$$

 $\frac{3}{4}$ $\frac{1}{4}$ $\frac{1}{4\pi}\int_{\mathcal{I}}a\left(\gamma_{\mathsf{r}}(s)\right)\,\mathsf{d}s$, $\widetilde{p}_{b}=\int_{\mathcal{J}}p_{b}\left(\gamma_{\mathsf{r}}(s)\right)\,\mathsf{d}s$

Restricted Symplectic Structure

With $\Phi_\mathsf{\Gamma}$ -invariant holonomies $\bar h_\gamma = \exp\left(f_\gamma^I\, \tau_I\right)$,

✷ π

$$
\overline{\omega}_{\Gamma} = \frac{2}{\kappa \beta} \sum_{\gamma} df_{\gamma}^{J} \wedge d \left[\overline{P}_{\gamma}^{I} \pi \left(\overline{h}_{\gamma} \right)_{IJ} \right]
$$

$$
\pi \left(\overline{h}_{\gamma} \right)_{IJ} = -2 \operatorname{Tr} \left(\tau_{I} h_{\gamma}^{\dagger} \tau_{J} h_{\gamma} \right)
$$

Restricted Symplectic Structure

With $\Phi_\mathsf{\Gamma}$ -invariant holonomies $\bar h_\gamma = \exp\left(f_\gamma^I\, \tau_I\right)$,

$$
\overline{\omega}_{\Gamma} = \frac{2}{\kappa \beta} \sum_{\gamma} df_{\gamma}^{J} \wedge d \left[\overline{P}_{\gamma}^{I} \pi \left(\overline{h}_{\gamma} \right)_{IJ} \right]
$$

$$
\pi \left(\overline{h}_{\gamma} \right)_{IJ} = -2 \operatorname{Tr} \left(\tau_{I} \, h_{\gamma}^{\dagger} \, \tau_{J} \, h_{\gamma} \right)
$$

For sufficiently dense graphs,

✷ π

$$
\overline{\omega}_{\Gamma} \approx \frac{8\pi}{\kappa\beta}\sum_{r_{\mathbf{v}}}\varepsilon_{r}\Big[\cos^{2}(\varepsilon_{\theta}/2)\,d\widetilde{\mathsf{a}}\wedge d p_{\mathsf{a}} + \frac{\varepsilon_{\theta}}{8\pi}\cot(\varepsilon_{\theta}/2)\,db\wedge d\widetilde{p}_{b}\Big]
$$

 \ast Continuum limit: lim_{n→∞} $\overline{\omega}_{\Gamma} = \overline{\omega}_{AB}$ \checkmark

Application to FLRW Cosmology

 $\beta = 0.2375$

✷ Symmetric models: periodic evolution

- ✷ Symmetric models: periodic evolution
- ✷ Asymmetric models: non-periodic evolution

- ✷ Symmetric models: periodic evolution
- ✷ Asymmetric models: non-periodic evolution
- ✷ Variations among asymmetric models beyond bounces

- ✷ Symmetric models: periodic evolution
- ✷ Asymmetric models: non-periodic evolution
- ✷ Variations among asymmetric models beyond bounces
	- Largely influenced by the value of β

Foundational considerations:

✷ Alternative constructions of spherical graphs

Foundational considerations:

- ✷ Alternative constructions of spherical graphs
- ✷ Transformation properties of dual cell-complex

Foundational considerations:

- ✷ Alternative constructions of spherical graphs
- ✷ Transformation properties of dual cell-complex
- ✷ Non-liftable gauge transformations

Foundational considerations:

- ✷ Alternative constructions of spherical graphs
- ✷ Transformation properties of dual cell-complex
- ✷ Non-liftable gauge transformations

Applications & extensions:

Foundational considerations:

- ✷ Alternative constructions of spherical graphs
- ✷ Transformation properties of dual cell-complex
- ✷ Non-liftable gauge transformations

Applications & extensions:

- ✷ Discretized black holes
	- Nature of horizon(s)
	- Quantum corrections to BH shadows

Foundational considerations:

- ✷ Alternative constructions of spherical graphs
- ✷ Transformation properties of dual cell-complex
- ✷ Non-liftable gauge transformations

Applications & extensions:

- ✷ Discretized black holes
	- Nature of horizon(s)
	- Quantum corrections to BH shadows

- ✷ Axisymmetric spacetimes
	- Cylindrical graphs
	- Rotating black holes

The End

✷ Emergent cosmological constant in pre-bounce universe, Λemerg ∝ λ(β)

✷ Emergent cosmological constant in pre-bounce universe, Λemerg ∝ λ(β)

✷ Emergent cosmological constant in pre-bounce universe, Λemerg ∝ λ(β)

