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Introduction

Motivation:
1. Classical dynamics of spherically-symmetric LQG

2. "First regularize, then restrict"
3. Symmetry restriction in continuum versus discretized theories

Overview:
✷ Continuum Theory
✷ Gravity on a Graph
✷ Discretized Dynamics & Symmetry Restriction
✷ Application to FLRW Cosmology
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Continuum Phase Space

Full Ashtekar-Barbero phase space1, MAB = span
{(

AI
i ,E

j
J

)}
:

✷ Symplectic form2

ωAB =
2
κβ

∫
Σ
dAI

i ∧ dE i
I d

3x

Spherically-symmetric subspace MAB = span {(a, pa), (b, pb)}:
✷ Two θ, φ-independent canonical pairs

• a = a(r), pa = pa(r), . . .

✷ Restricted symplectic form

ωAB = ωAB

∣∣
MAB

=
2
κβ

∫
(da ∧ dpa + db ∧ dpb) dr

1Spatial indices i , j , . . . = 1, 2, 3; su(2) indices I , J, . . . = 1, 2, 3
2Spacetime R × Σ; κ = 16πG ; Immirzi parameter β ∈ R\{0}
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Discretization: Gravity on a Graph

Define a set Γvn of n ∈ N vertices v along
each spatial axis

✷ Separated by coordinate-distances
εi = εi (n)
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Discretization: Gravity on a Graph

Define a set Γvn of n ∈ N vertices v along
each spatial axis

✷ Separated by coordinate-distances
εi = εi (n)

Parameterize edges γ : I ⊂ R → Σ
between successive vertices, and surfaces
Sγ : J 2 ⊂ R2 → Σ dual to each edge

✷ Graph and dual cell-complex:

Γn =
∐
v∈Γvn

γ, Γ∗n =
∐
γ∈Γn

Sγ
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Spherical Graphs
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Truncated Phase Space

MΓ
∼=
∏

γ T
∗SU(2) is obtained via a discretization map,

Dγ : MAB → SU(2)× su(2) : (A,E ) 7→

(
P exp

(∫
γ
A

)
︸ ︷︷ ︸

hγ

,

∫
Sγ

⋆E︸ ︷︷ ︸
Pγ

)

Fixed-graph scalar constraint, Cn[N] =
∑

v∈Γvn N(v)Cn(v):

C n(v) =
1

16κ

∑
i,j,k

ϵ(i , j , k)
[
FK (v ,□ij)− (1 + β2)ϵIJKKI

i (v)KJ
j (v)

]
EK
k (v)

✷ Eℓ ∼ {hγℓ
,V [Γn]} h†γℓ

, Kℓ ∼ {hγℓ
,K [Γn]} h†γℓ
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Symmetry Restriction
For certain symmetry groups, symmetric configurations are
guaranteed to remain symmetric under the flow generated by Cn
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Symmetry Restriction
For certain symmetry groups, symmetric configurations are
guaranteed to remain symmetric under the flow generated by Cn

• Poisson brackets can be computed entirely on MΓ

• Dynamical calculations are often significantly simplified
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Discrete Spherical Symmetry
Group of graph-preserving diffeomorphisms for a spherical graph:

DΓ
∼= Z2 × Dn < O(3)

✷ Dn
∼= Z2 ⋊ Zn is the symmetry group of a regular n-gon
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Discrete Spherical Symmetry
Group of graph-preserving diffeomorphisms for a spherical graph:

DΓ
∼= Z2 × Dn < O(3)

✷ Dn
∼= Z2 ⋊ Zn is the symmetry group of a regular n-gon

✷ DΓ is translated into a symmetry group ΦΓ < Symp(MΓ)
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Invariant Subspace

Spherical-graph discretization map applied to (A,E ) ∈ MAB

produces ΦΓ-invariant loop variables (h̄γ ,Pγ) ∈ MΓ ⊂ MΓ
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Invariant Subspace

Spherical-graph discretization map applied to (A,E ) ∈ MAB

produces ΦΓ-invariant loop variables (h̄γ ,Pγ) ∈ MΓ ⊂ MΓ
h̄γr = exp (εr ã τ1)

h̄γθ = exp
(
εθ A

I
θ τI

)
h̄γφ = exp

(
εφ A

I
φ τI

)

Pγr = εφ

[
cos θ − cos (θ + εθ)

]
pa τ1

Pγθ = εrεφ p̃b sin θ τ2

Pγφ = εrεθ p̃b τ3
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Spherical-graph discretization map applied to (A,E ) ∈ MAB

produces ΦΓ-invariant loop variables (h̄γ ,Pγ) ∈ MΓ ⊂ MΓ
h̄γr = exp (εr ã τ1)
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I
θ τI

)
h̄γφ = exp

(
εφ A

I
φ τI

)

Pγr = εφ

[
cos θ − cos (θ + εθ)

]
pa τ1

Pγθ = εrεφ p̃b sin θ τ2

Pγφ = εrεθ p̃b τ3

✷ ã = 1
4π

∫
I a (γr (s)) ds, p̃b =

∫
J pb (γr (s)) ds
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Restricted Symplectic Structure

With ΦΓ-invariant holonomies h̄γ = exp
(
f Iγ τI

)
,

ωΓ =
2
κβ

∑
γ

df Jγ ∧ d
[
P
I
γ π
(
h̄γ
)
IJ

]
✷ π

(
h̄γ
)
IJ
= −2 Tr

(
τI h

†
γ τJ hγ

)

For sufficiently dense graphs,

ωΓ ≈ 8π
κβ

∑
rv

εr

[
cos2(εθ/2) dã ∧ dpa +

εθ
8π

cot(εθ/2) db ∧ dp̃b

]
✷ Continuum limit: limn→∞ ωΓ = ωAB ✓
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Application to FLRW
Cosmology



k = 1 Cosmology

✷ Symmetric models:
periodic evolution

β = 0.2375
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k = 1 Cosmology

✷ Symmetric models:
periodic evolution

✷ Asymmetric models:
non-periodic evolution

✷ Variations among
asymmetric models
beyond bounces

• Largely influenced
by the value of β

β = 1
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Future Directions

Foundational considerations:
✷ Alternative constructions of spherical graphs

✷ Transformation properties of dual cell-complex
✷ Non-liftable gauge transformations

Applications & extensions:
✷ Discretized black holes

• Nature of horizon(s)
• Quantum corrections to BH shadows

✷ Axisymmetric spacetimes
• Cylindrical graphs
• Rotating black holes
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The End



k = 1 Cosmology

✷ Emergent cosmological constant in pre-bounce universe,
Λemerg ∝ λ(β)
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