Spherically-Symmetric Gravity on a Graph

Jorden Roberts

Klaus Liegener & Saeed Rastgoo

Loops '24 - Florida Atlantic University

UNIVERSITY

ΞA

BERTA

Motivation:

1. Classical dynamics of spherically-symmetric LQG

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

★ Continuum Theory

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

- ★ Continuum Theory
- ✤ Gravity on a Graph

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

- ✤ Continuum Theory
- ✤ Gravity on a Graph
- * Discretized Dynamics & Symmetry Restriction

Motivation:

- 1. Classical dynamics of spherically-symmetric LQG
- 2. "First regularize, then restrict"
- 3. Symmetry restriction in continuum versus discretized theories

Overview:

- ★ Continuum Theory
- ✤ Gravity on a Graph
- * Discretized Dynamics & Symmetry Restriction
- * Application to FLRW Cosmology

Continuum Phase Space

Full Ashtekar-Barbero phase space¹, $\mathcal{M}_{AB} = \text{span}\left\{\left(A_{i}^{l}, E_{J}^{j}\right)\right\}$:

* Symplectic form²

$$\omega_{AB} = \frac{2}{\kappa\beta} \int_{\Sigma} dA'_i \wedge dE'_i d^3x$$

¹Spatial indices $i, j, \ldots = 1, 2, 3$; $\mathfrak{su}(2)$ indices $I, J, \ldots = 1, 2, 3$ ²Spacetime $\mathbb{R} \times \Sigma$; $\kappa = 16\pi G$; Immirzi parameter $\beta \in \mathbb{R} \setminus \{0\}$

Continuum Phase Space

Full Ashtekar-Barbero phase space¹, $\mathcal{M}_{AB} = \text{span}\left\{ \left(A_{i}^{I}, E_{J}^{j} \right) \right\}$:

✗ Symplectic form²

$$\omega_{AB} = \frac{2}{\kappa\beta} \int_{\Sigma} dA_i^I \wedge dE_I^i d^3x$$

Spherically-symmetric subspace $\overline{\mathcal{M}}_{AB} = \text{span} \{(a, p_a), (b, p_b)\}$:

* Two θ, φ -independent canonical pairs

•
$$a = a(r), p_a = p_a(r), ...$$

¹Spatial indices $i, j, \ldots = 1, 2, 3$; $\mathfrak{su}(2)$ indices $I, J, \ldots = 1, 2, 3$ ²Spacetime $\mathbb{R} \times \Sigma$; $\kappa = 16\pi G$; Immirzi parameter $\beta \in \mathbb{R} \setminus \{0\}$

Continuum Phase Space

Full Ashtekar-Barbero phase space¹, $\mathcal{M}_{AB} = \text{span}\left\{ \left(A_{i}^{I}, E_{J}^{j} \right) \right\}$:

✗ Symplectic form²

$$\omega_{AB} = \frac{2}{\kappa\beta} \int_{\Sigma} dA_i^I \wedge dE_I^i d^3x$$

Spherically-symmetric subspace $\overline{\mathcal{M}}_{AB} = \text{span} \{(a, p_a), (b, p_b)\}$:

* Two θ, φ -independent canonical pairs

•
$$a = a(r), p_a = p_a(r), \ldots$$

★ Restricted symplectic form

$$\overline{\omega}_{AB} = \omega_{AB} \big|_{\overline{\mathcal{M}}_{AB}} = rac{2}{\kappa eta} \int \left(\textit{da} \wedge \textit{dp}_{\textit{a}} + \textit{db} \wedge \textit{dp}_{b}
ight) \textit{dr}$$

¹Spatial indices $i, j, \ldots = 1, 2, 3$; $\mathfrak{su}(2)$ indices $I, J, \ldots = 1, 2, 3$ ²Spacetime $\mathbb{R} \times \Sigma$; $\kappa = 16\pi G$; Immirzi parameter $\beta \in \mathbb{R} \setminus \{0\}$

Discretization: Gravity on a Graph

Define a set Γ_n^v of $n \in \mathbb{N}$ vertices v along each spatial axis

* Separated by coordinate-distances $\varepsilon_i = \varepsilon_i(n)$

Discretization: Gravity on a Graph

Define a set Γ_n^v of $n \in \mathbb{N}$ vertices v along each spatial axis

* Separated by coordinate-distances $\varepsilon_i = \varepsilon_i(n)$

Parameterize edges $\gamma : \mathcal{I} \subset \mathbb{R} \to \Sigma$ between successive vertices, and surfaces $S_{\gamma} : \mathcal{J}^2 \subset \mathbb{R}^2 \to \Sigma$ dual to each edge

Discretization: Gravity on a Graph

Define a set Γ_n^v of $n \in \mathbb{N}$ vertices v along each spatial axis

* Separated by coordinate-distances $\varepsilon_i = \varepsilon_i(n)$

Parameterize edges $\gamma : \mathcal{I} \subset \mathbb{R} \to \Sigma$ between successive vertices, and surfaces $S_{\gamma} : \mathcal{J}^2 \subset \mathbb{R}^2 \to \Sigma$ dual to each edge

***** Graph and dual cell-complex:

$$\Gamma_n = \prod_{\nu \in \Gamma_n^{\nu}} \gamma, \qquad \Gamma_n^* = \prod_{\gamma \in \Gamma_n} S_{\gamma}$$

 Γ_n^*

Truncated Phase Space

 $\mathcal{M}_{\Gamma} \cong \prod_{\gamma} T^* SU(2)$ is obtained via a discretization map,

$$\mathfrak{D}_{\gamma}: \mathcal{M}_{AB} \to SU(2) \times \mathfrak{su}(2): (A, E) \mapsto \underbrace{\left(\mathcal{P}\exp\left(\int_{\gamma} A\right), \underbrace{\int_{\mathcal{S}_{\gamma}} \star E}_{P^{\gamma}}\right)}_{h_{\gamma}}$$

Truncated Phase Space

 $\mathcal{M}_{\Gamma} \cong \prod_{\gamma} T^* SU(2)$ is obtained via a discretization map,

$$\mathfrak{D}_{\gamma}: \mathcal{M}_{AB} \to SU(2) \times \mathfrak{su}(2): (A, E) \mapsto \underbrace{\left(\mathcal{P} \exp\left(\int_{\gamma} A\right), \underbrace{\int_{\mathcal{S}_{\gamma}} \star E}_{P^{\gamma}} \right)}_{h_{\gamma}}$$

Fixed-graph scalar constraint, $C^n[N] = \sum_{v \in \Gamma_n^v} N(v) C^n(v)$:

$$C^{n}(\mathbf{v}) = \frac{1}{16\kappa} \sum_{i,j,k} \epsilon(i,j,k) \Big[\mathcal{F}_{K}(\mathbf{v},\Box_{ij}) - (1+\beta^{2}) \epsilon_{IJK} \mathcal{K}_{i}^{I}(\mathbf{v}) \mathcal{K}_{j}^{J}(\mathbf{v}) \Big] \mathcal{E}_{k}^{K}(\mathbf{v})$$

* $\mathcal{E}_{\ell} \sim \{h_{\gamma_{\ell}}, V[\Gamma_n]\} h_{\gamma_{\ell}}^{\dagger}, \mathcal{K}_{\ell} \sim \{h_{\gamma_{\ell}}, \mathcal{K}[\Gamma_n]\} h_{\gamma_{\ell}}^{\dagger}$

Symmetry Restriction

For certain symmetry groups, symmetric configurations are guaranteed to remain symmetric under the flow generated by C^n

Symmetry Restriction

For certain symmetry groups, symmetric configurations are *guaranteed* to remain symmetric under the flow generated by C^n

• Poisson brackets can be computed entirely on $\overline{\mathcal{M}}_{\Gamma}$

Symmetry Restriction

For certain symmetry groups, symmetric configurations are *guaranteed* to remain symmetric under the flow generated by C^n

- Poisson brackets can be computed entirely on $\overline{\mathcal{M}}_{\Gamma}$
- Dynamical calculations are often significantly simplified

Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

$$\mathbb{D}_{\Gamma} \cong \mathbb{Z}_2 \times D_n < O(3)$$

* $D_n \cong \mathbb{Z}_2 \rtimes \mathbb{Z}_n$ is the symmetry group of a regular *n*-gon

Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

 $\mathbb{D}_{\Gamma} \cong \mathbb{Z}_2 \times D_n < O(3)$

* $D_n \cong \mathbb{Z}_2 \rtimes \mathbb{Z}_n$ is the symmetry group of a regular *n*-gon

Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

 $\mathbb{D}_{\Gamma} \cong \mathbb{Z}_2 \times D_n < O(3)$

* $D_n \cong \mathbb{Z}_2 \rtimes \mathbb{Z}_n$ is the symmetry group of a regular *n*-gon * \mathbb{D}_{Γ} is translated into a symmetry group $\Phi_{\Gamma} < \text{Symp}(\mathcal{M}_{\Gamma})$

Invariant Subspace

Spherical-graph discretization map applied to $(\overline{A}, \overline{E}) \in \overline{\mathcal{M}}_{AB}$ produces Φ_{Γ} -invariant loop variables $(\overline{h}_{\gamma}, \overline{P}_{\gamma}) \in \overline{\mathcal{M}}_{\Gamma} \subset \mathcal{M}_{\Gamma}$

Invariant Subspace

Spherical-graph discretization map applied to $(\overline{A}, \overline{E}) \in \overline{\mathcal{M}}_{AB}$ produces Φ_{Γ} -invariant loop variables $(\overline{h}_{\gamma}, \overline{P}_{\gamma}) \in \overline{\mathcal{M}}_{\Gamma} \subset \mathcal{M}_{\Gamma}$

$$\begin{bmatrix} \bar{h}_{\gamma_r} = \exp\left(\varepsilon_r \,\tilde{a}\,\tau_1\right) \\ \bar{h}_{\gamma_{\theta}} = \exp\left(\varepsilon_{\theta}\,\overline{A}_{\theta}^{I}\,\tau_I\right) \\ \bar{h}_{\gamma_{\varphi}} = \exp\left(\varepsilon_{\varphi}\,\overline{A}_{\varphi}^{I}\,\tau_I\right) \\ \begin{bmatrix} \overline{P}_{\gamma_r} = \varepsilon_{\varphi}\left[\cos\theta - \cos\left(\theta + \varepsilon_{\theta}\right)\right]p_a\,\tau_1 \\ \overline{P}_{\gamma_{\theta}} = \varepsilon_r\varepsilon_{\varphi}\,\tilde{p}_b\,\sin\theta\,\tau_2 \\ \hline \overline{P}_{\gamma_{\varphi}} = \varepsilon_r\varepsilon_{\theta}\,\tilde{p}_b\,\tau_3 \end{bmatrix}$$

Invariant Subspace

Spherical-graph discretization map applied to $(\overline{A}, \overline{E}) \in \overline{\mathcal{M}}_{AB}$ produces Φ_{Γ} -invariant loop variables $(\overline{h}_{\gamma}, \overline{P}_{\gamma}) \in \overline{\mathcal{M}}_{\Gamma} \subset \mathcal{M}_{\Gamma}$

$$\begin{split} \bar{h}_{\gamma_{r}} &= \exp\left(\varepsilon_{r}\,\tilde{a}\,\tau_{1}\right) \\ \bar{h}_{\gamma_{\theta}} &= \exp\left(\varepsilon_{\theta}\,\overline{A}_{\theta}^{I}\,\tau_{I}\right) \\ \bar{h}_{\gamma_{\varphi}} &= \exp\left(\varepsilon_{\varphi}\,\overline{A}_{\varphi}^{I}\,\tau_{I}\right) \end{split} \begin{cases} \overline{P}_{\gamma_{r}} &= \varepsilon_{\varphi}\left[\cos\theta - \cos\left(\theta + \varepsilon_{\theta}\right)\right]\,p_{a}\,\tau_{1} \\ \overline{P}_{\gamma_{\theta}} &= \varepsilon_{r}\varepsilon_{\varphi}\,\tilde{p}_{b}\,\sin\theta\,\tau_{2} \\ \overline{P}_{\gamma_{\varphi}} &= \varepsilon_{r}\varepsilon_{\theta}\,\tilde{p}_{b}\,\tau_{3} \end{split}$$

* $\tilde{a} = \frac{1}{4\pi} \int_{\mathcal{I}} a(\gamma_r(s)) ds, \ \tilde{p}_b = \int_{\mathcal{J}} p_b(\gamma_r(s)) ds$

Restricted Symplectic Structure

With Φ_{Γ} -invariant holonomies $\bar{h}_{\gamma} = \exp\left(f_{\gamma}^{I} \tau_{I}\right)$,

*

$$\overline{\omega}_{\Gamma} = \frac{2}{\kappa\beta} \sum_{\gamma} df_{\gamma}^{J} \wedge d\left[\overline{P}_{\gamma}^{I} \pi \left(\bar{h}_{\gamma}\right)_{IJ}\right]$$
$$\pi \left(\bar{h}_{\gamma}\right)_{IJ} = -2 \operatorname{Tr}\left(\tau_{I} h_{\gamma}^{\dagger} \tau_{J} h_{\gamma}\right)$$

Restricted Symplectic Structure

With Φ_{Γ} -invariant holonomies $\bar{h}_{\gamma} = \exp \left(f_{\gamma}^{I} \tau_{I} \right)$,

$$\overline{\omega}_{\Gamma} = \frac{2}{\kappa\beta} \sum_{\gamma} df_{\gamma}^{J} \wedge d\left[\overline{P}_{\gamma}^{I} \pi \left(\bar{h}_{\gamma}\right)_{IJ}\right]$$
$$\pi \left(\bar{h}_{\gamma}\right)_{IJ} = -2 \operatorname{Tr}\left(\tau_{I} h_{\gamma}^{\dagger} \tau_{J} h_{\gamma}\right)$$

For sufficiently dense graphs,

*

$$\overline{\omega}_{\Gamma} pprox rac{8\pi}{\kappaeta} \sum_{r_{v}} arepsilon_{r} \Big[\cos^{2}(arepsilon_{ heta}/2) \, d\widetilde{a} \wedge dp_{a} + rac{arepsilon_{ heta}}{8\pi} \cot(arepsilon_{ heta}/2) \, db \wedge d\widetilde{p}_{b} \Big]$$

9/11

★ Continuum limit: lim_{n→∞} $\overline{\omega}_{\Gamma} = \overline{\omega}_{AB} \checkmark$

Application to FLRW Cosmology

 $\beta = 0.2375$

 Symmetric models: periodic evolution

- Symmetric models:
 periodic evolution
- * Asymmetric models: non-periodic evolution

- Symmetric models:
 periodic evolution
- Asymmetric models: non-periodic evolution
- Variations among asymmetric models beyond bounces

- Symmetric models:
 periodic evolution
- Asymmetric models: non-periodic evolution
- Variations among asymmetric models beyond bounces
 - Largely influenced by the value of β

Foundational considerations:

* Alternative constructions of spherical graphs

Foundational considerations:

- * Alternative constructions of spherical graphs
- * Transformation properties of dual cell-complex

 11_{1}

Foundational considerations:

- * Alternative constructions of spherical graphs
- * Transformation properties of dual cell-complex
- * Non-liftable gauge transformations

Foundational considerations:

- * Alternative constructions of spherical graphs
- * Transformation properties of dual cell-complex

11

* Non-liftable gauge transformations

Applications & extensions:

Foundational considerations:

- * Alternative constructions of spherical graphs
- * Transformation properties of dual cell-complex
- * Non-liftable gauge transformations

Applications & extensions:

- ★ Discretized black holes
 - Nature of horizon(s)
 - Quantum corrections to BH shadows

Foundational considerations:

- * Alternative constructions of spherical graphs
- * Transformation properties of dual cell-complex
- * Non-liftable gauge transformations

Applications & extensions:

- ★ Discretized black holes
 - Nature of horizon(s)
 - Quantum corrections to BH shadows
- * Axisymmetric spacetimes
 - Cylindrical graphs
 - Rotating black holes

The End

* Emergent cosmological constant in pre-bounce universe, $\Lambda_{\rm emerg} \propto \lambda(\beta)$

* Emergent cosmological constant in pre-bounce universe, $\Lambda_{\rm emerg} \propto \lambda(\beta)$

* Emergent cosmological constant in pre-bounce universe, $\Lambda_{\rm emerg} \propto \lambda(\beta)$

