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Continuum Phase Space

Full Ashtekar-Barbero phase spacel, Mag = span {(Af, Ej) }:
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8 Continuum Phase Space

Full Ashtekar-Barbero phase spacel, Mag = span {(Af, Ej) }:

% Symplectic form?
2 .
waB = —/ dA! A dE] d®x
kB Jx

Spherically-symmetric subspace Mag = span {(a, pa), (b, pp)}:
% Two 6, p-independent canonical pairs
e a=a(r), p, = pa(r),...
% Restricted symplectic form

2
\ WAB = wAB‘mAB = E / (da Adpy + db A dpb) dr

Spatial indices i, j,... = 1,2,3; su(2) indices I, J,... =1,2,3
2Spacetime R x ¥; x = 167 G; Immirzi parameter 3 € R\{0}
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Discretization: Gravity on a Graph

Define a set I'}, of n € N vertices v along
each spatial axis

% Separated by coordinate-distances
ei = ¢i(n)

Parameterize edges v : Z C R — &
between successive vertices, and surfaces
S, : J? CR? — X dual to each edge

¥ Graph and dual cell-complex:

rn:H77 r::HS’Y

Verx ’Vérn







Truncated Phase Space
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8 Truncated Phase Space

M = H7 T*SU(2) is obtained via a discretization map,

D, Mag — SU(2) x 5u(2) : (A, E) > (Pexp ( / A), /S *E>
——

—_—— ——
hy PY

| Fixed-graph scalar constraint, C"N] = 3" ery N(v) C(v):

(V)= 1o LS (i, k ) [Fic(v,0) = (1 + B2kl (v)IF (V)| €K (v)

\\\ ij,k

* & ~{hy,, V[[a]} hl;l, K¢ ~{hy,, K]} hIM
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8 Symmetry Restriction

For certain symmetry groups, symmetric configurations are
guaranteed to remain symmetric under the flow generated by C"

5 e Poisson brackets can be computed entirely on M

e Dynamical calculations are often significantly simplified
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Discrete Spherical Symmetry

Group of graph-preserving diffeomorphisms for a spherical graph:

Dr 2 Z, x D, < O(3)

¥ D, = Zp x Z, is the symmetry group of a regular n-gon
% Dr is translated into a symmetry group ®r < Symp(Mr)
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Spherical-graph discretization map applied to (Z,_E) € Mug
| produces ®r-invariant loop variables (h,, P,) € Mr C Mr

777, =exp(e,am) P, :6@[C050—C05(9+69)}pa7'1

3>

—I — - .
g = €XP (59 Ag 7'/) P., = €rey pp sin0 1
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N Invariant Subspace

- | Spherical-graph discretization map applied to (Z,_E) € Map

produces ®r-invariant loop variables (h,, P,) € Mr C Mr

, =exp(eram) P, =e,[cost — cos (0 + eg) | pam1
— _

g = €XP (59 Ag 7'/) P., = €rey pp sin0 1

— — 5 ~
hy, = exp (ap A, T/) Yo = Er€O PpT3

3>

RS

* 3= [ra(y(s)) ds, p= [, pb(7r(s)) ds




Restricted Symplectic Structure

With ®r-invariant holonomies h., = exp (£ 7;),

2 SN
r:@ZdﬁAd[P’ﬂ(m)U}
v

* (EV)U =-2Tr <7‘/ hLTJ hw)
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With ®r-invariant holonomies h., = exp (£ 7;),

2 _ -
=52 nd [Pr(R),
2

* (EV)U =-2Tr <7‘/ hLTJ hw)

gl
kS

For sufficiently dense graphs,

\, or Z Ey [cos (e9/2) da A dps + 8_ cot(eg/2) db A dpp

¥ Continuum limit: lim,_oo@Wr = wWag v




Application to FLRW
Cosmology
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k =1 Cosmology

% Symmetric models:
periodic evolution

¥ Asymmetric models:
non-periodic evolution
% Variations among

asymmetric models
beyond bounces

e Largely influenced
by the value of 3
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8| Future Directions

Foundational considerations:
* Alternative constructions of spherical graphs
% Transformation properties of dual cell-complex

‘ * Non-liftable gauge transformations

Applications & extensions:
¥ Discretized black holes

e Nature of horizon(s)
| e Quantum corrections to BH shadows

% Axisymmetric spacetimes
e Cylindrical graphs
e Rotating black holes
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% Emergent cosmological constant in pre-bounce universe,
Aemerg X )\(/B)
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