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Collective Relational » Continuum and classical

> Relational (localization wrt.
physical frame fields x*)

Quantum theory Classical theory
(averaging over)
BC GFT + 5 MCMF Gravity + 5 MCMF
States g

scalar fields (x", ¢) scalar fields (x*, ¢)

» Cosmological: matter field ¢
e dominating universe
energy-momentum budget;

Cosmological

slightly relationally
inhomogeneous with respect
to physical rods.
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Extended BC model and causal frame coupling

Two-sector GFT

X
4d BC model with spacelike (+) and timelike (—) quanta: ¢4 = @(ga, X+, ®) - &2
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Extended BC model and causal frame coupling

Model

Two-sector GFT

4d BC model with spacelike (+) and timelike (—) quanta: ¢4 = @(ga, X+, ®)

> Reference x"

and matter ¢ scalars encoded in ®=(x", ¢) € R,
> Geometry: g, € G = SL(2,C) and X+ € G/U4, U4 stabilizer of X4+
» BC geometricity constraints imposed using normal: Qxi [e+] = o+

» Sectors only kinematically decoupled: Kger = Ky + K

17549-2308.13261; Jercher, Oriti

Pithis 2206.15442.
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Extended BC model and causal frame coupling

Two-sector GFT

X_
4d BC model with spacelike (+) and timelike (—) quanta: ¢4 = @(ga, X+, ®) 82

g % I H [T »5 &3 81
o | > Reference x" and matter ¢ scalars encoded in ®=(x", ¢) €R’. %
2 > Geometry: g, € G = SL(2,C) and X+ € G/U4, U4 stabilizer of X.

» BC geometricity constraints imposed using normal: Qxi [e+] = o+

84

» Sectors only kinematically decoupled: Kger = Ky + K
& Kinetic restriction
=
=
°
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Extended BC model and causal frame coupling

Two-sector GFT

X_
4d BC model with spacelike (+) and timelike (—) quanta: ¢4 = @(ga, X+, ®) 82
]
. § 3
B | » Reference x* and matter ¢ scalars encoded in ®=(x", ¢) €R>. & o &
2 > Geometry: g, € G = SL(2,C) and X+ € G/U4, U4 stabilizer of X.
» BC geometricity constraints imposed using normal: Qxi [e+] = o+
84
» Sectors only kinematically decoupled: Kger = Ky + K
) A i v
& Kinetic restriction
_g- Since XO propagates along timelike edges (across spacelike tetrahedra): .
8 X
)
£ .
e K+ independent of x'.
w
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Extended BC model and causal frame coupling

Two-sector GFT

X_
4d BC model with spacelike (+) and timelike (—) quanta: ¢4 = @(ga, X+, ®) 82
]
. § 3
B | » Reference x* and matter ¢ scalars encoded in ®=(x", ¢) €R>. & 7 &
2 > Geometry: g, € G = SL(2,C) and X+ € G/U4, U4 stabilizer of X.
» BC geometricity constraints imposed using normal: Qxi [e+] = o+
84
» Sectors only kinematically decoupled: Kger = Ky + K
) A i v
& Kinetic restriction
_g- Since XO propagates along timelike edges (across spacelike tetrahedra): ;
: Since x' propagates along spacelike edges (across timelike tetrahedra): X
£ :
e K+ independent of x'. K_ independent of x°.
o w
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Extended BC model and causal frame coupling

Two-sector GFT

X_
4d BC model with spacelike (+) and timelike (—) quanta: ¢4 = @(ga, X+, ®) 82
]
. § 3
B | » Reference x* and matter ¢ scalars encoded in ®=(x", ¢) €R>. & o &
2 > Geometry: g, € G = SL(2,C) and X+ € G/U4, U4 stabilizer of X.
» BC geometricity constraints imposed using normal: gxi [e+] = o+
84
» Sectors only kinematically decoupled: Kger = Ky + K
) A i v
& Kinetic restriction
_g- Since XO propagates along timelike edges (across spacelike tetrahedra): ;
: Since x' propagates along spacelike edges (across timelike tetrahedra): X
£ :
e K+ independent of x'. K_ independent of x°.
w
Field operators and observables MR (@ © ¢ ,/n(m e

> Tensor Fock structure: F = F; ® F_, with F1 generated by repeated action of Lﬁl on 0) .

» Collective observables are second quantized operators: e.g. number, matter and volume

N=3" oh-¢x,  Sr=9L (s02), V=0l Vgl
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Collective entangled QG states

Macroscopically entangled states

> Background cosmological geometries associated with uncorrelated collective states (condensates).

> Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

|A) = Naexp(6 QT + 1, @ F+3 @ I_ + 6V + I, ® 5=) |0)

Collective states

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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Collective entangled QG states

Macroscopically entangled states

> Background cosmological geometries associated with uncorrelated collective states (condensates).

Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

n
3
3
H A) = Naexp(6 © 1 +1, ® 7 ) 10)
ki
° Background
] . ot .
(] 6 = o - @) : spacelike condensate.
o @T_: timelike condensate.

T, o peaked; ¥, & homogeneous.
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Collective entangled QG states

Macroscopically entangled states

T, o peaked; ¥, & homogeneous.

n

v

S

o]

@

H |A) = Na exp(

ki

° Background

] . ot .

(] 6 = o - @) : spacelike condensate.
o @T_: timelike condensate.

> Background cosmological geometries associated with uncorrelated collective states (condensates).

Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

130 @I + 6V + I, ® 5=) |0)

Perturbations
> 30=050-(plpl), sU=0w-(plpl), 6==06=(pT o).
» §®, 6V and 6= small and relationally inhomogeneous.

> Pert. =rel. nearest neighbour 2-body correlations.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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Collective entangled QG states

Macroscopically entangled states

> Background cosmological geometries associated with uncorrelated collective states (condensates).

§ Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

5]

@ — —~ —

o |A) = Naexp(6 @I- + 1, @ T+6P QI_ + 6V + 1 ® 6=)|0)

;‘.j, Background Perturbations

S 6=o0-" @1: spacelike condensate. > 5B =5d- (go+<p+) SU=5V. (gaJer ), 6==6= (el
o @T_ timelike condensate. » §®, 6V and 6= small and relationally inhomogeneous.
T, o peaked; ¥, & homogeneous. > Pert. =rel. nearest neighbour 2-body correlations.

Peaking and effective relational observables

> Relational localization implemented at an effective level on observable averages. In x*-frame:

(ox, 7<) = (fixed peaking function 7y) X (dynamically determined reduced wavefunction (&, 7)),

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238
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Collective entangled QG states

Macroscopically entangled states

Background cosmological geometries associated with uncorrelated collective states (condensates).

Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

n

3

3

@ ~, & = =

9 [A) = Naexp(6 QI_ + 1 @ THIP QI + 6V + 1 ® 6=) |0)

=]

E Background Perturbations

S 5=o0-" @i: spacelike condensate.  » <§<1\>:6¢-(¢L,51), ﬂ/:(s\u-(@j@i), 6== E-(@t@i).
TS 7o Lﬁi: timelike condensate. » 5P, SV and 6= small and relationally inhomogeneous.
T, o peaked; ¥, & homogeneous. > Pert. =rel. nearest neighbour 2-body correlations.

Peaking and effective relational observables

> Relational localization implemented at an effective level on observable averages. In x*-frame:

(ox, 7x) = (fixed peaking function 7)) x (dynamically determined reduced wavefunction (&, 7)),

(O) o = Oa(x) = OAl6, #]|xomx + SOA[IP, 8W, §=]| yumxn

7; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238




Collective entangled QG states

Macroscopically entangled states

> Background cosmological geometries associated with uncorrelated collective states (condensates).

§ Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

3

s 18,x%x) = Naexp(6 ®I_ + 1, @ 7+3® @ [_ + 5V + 1, ® 6=) [0)

;‘.j, Background Perturbations

S 6=o0-" @1: spacelike condensate. > 5B =5d- (go+<p+) SU=5V. (gaJer ), 6==6= (el
o @T_ timelike condensate. » §®, 6V and 6= small and relationally inhomogeneous.
T, o peaked; ¥, & homogeneous. > Pert. =rel. nearest neighbour 2-body correlations.

Peaking and effective relational observables

> Relational localization implemented at an effective level on observable averages. In x*-frame:

(ox, 7<) = (fixed peaking function 7y) X (dynamically determined reduced wavefunction (&, 7)),

(O) 5 = Oa(x) = Oa(x") + 60a(x°, x)

> Since ("), = x", Oa(x) is an effective relationally localized observable.
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Background: effective FLRW dynamics

Mean-field approximation

> When interactions are small (satisfied in an appropriate regime) the dynamics of (o, ) are:

5Scrr[, ¢1] Scrr[@, §1]
Oth-order: _ =( — —=0.
04(8a X, xH, 0) [ 6p(gas X xH, ) [,

SV=§0=5==0

2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.
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Background: effective FLRW dynamics

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (o, 7) are:
3Scerl, ¢'] 3Scetl@, ¢']
Oth-order: _— =( —— T -
04(8a X, xH, 0) [ 6p(gas X xH, ) [,

» Homogeneity: & and 7 depend only on MCMF clock XO.

=0.

SV=5b=5==

~ 1 ™ ~/ 2
0=¢6, —2ifty 06, — E. 6o,

v

Isotropy: 6 and 7 depend on a single spacelike rep. label. 0

’ .~ ~/
=7, —2i7_ o7, — E

v

Mesoscopic regime: negligible interactions.

02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.




Background: effective FLRW dynamics

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (o, 7) are:

8Scrrl@, ¢t 8Sarr[p, @1
Othorder <%> - <% ~o.
P(gas Xx, x4, 9) [ Plea Xt X4, 8) [ 1 | sy s0mszm
oo - 0

» Homogeneity: & and 7 depend only on MCMF clock x . 0=35! —2if, 06, — Ei,u&v’

> lsotropy: ¢ and 7 depend on a single spacelike rep. label. 11 " 2 .
0=7, —2ift_ o7, — E T

>

Mesoscopic regime: negligible interactions.

Large number of quanta (large volume and late times) rep. label v suppressed

> Assume one single v, is dominating.

> Consider large Na = Ny + N_ (g >p_):

= 0 = 0
Ny =6 ocet+, N_=|FFocet="".

Classical limit

Small observables quantum fluctuations!

02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.




Background: effective FLRW dynamics

Classical limit

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (o, 7) are:

3ScrTlp, 71 8Sarr[, &7
Oth-order: ( ————————— =( ——————
04(8a X, xH, 0) [ 6p(gas X xH, ) [,

=0.
SV=50=6=—
N - 0
Homogeneity: 6 and 7 depend only on MCMF clock x . 0= ~;/ — 2ifty o5, — Ei,uf}m
Isotropy: 6 and 7 depend on a single spacelike rep. label. 0 o .
: . . X 0=7, —2i7_ o7, — EZ ,Tu,
Mesoscopic regime: negligible interactions. ’
Large number of quanta (large volume and late times) rep. label v suppressed
Assume one single v, is dominating. > Volume expands as N, grows: Va = vN,.
Consider large Ny = Ny + N_ (py >p_): » Compare with GR in harmonic gauge.
/\_/+:|5-‘20(e“+xo, I\_/7:|7’:‘2(X€“7X04 +~ Matching requires p :37‘r@/(8M§|).
Small observables quantum fluctuations! (VA/3VA)2 = 2u4 /3 — flat FLRW

02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.



Background: effective FLRW dynamics

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (o, 7) are:

3Serrld, ¢7 8Serr[d, 7
Oth-order: <%> = <% =0.
P(gas Xx, x4, 9) [ P(ga, Xt x5 9) [\ | s soms=
Homogeneity: 6 and 7 depend only on MCMF clock XO. 0= ~;/ — 2ifty o5, — Ei,uf}m
» lIsotropy: 6 and 7 depend on a single spacelike rep. label. 0 o .
: . . X 0=7, —2i7_ o7, — EZ ,Tu,
> Mesoscopic regime: negligible interactions. ’
Large number of quanta (large volume and late times) rep. label v suppressed
= Assume one single v, is dominating. > ¢ obtained combining intensive quantities
£ . - _ _
= Consider large Na = Ny + N_ (pg >p—): én =D (Ny/Na)+D_(N_/Nnp).
S _ o - 0 I _
§ Ny =52 xet+, N_=|#*xce’=*. > In the limit of dominating N, ¢a = ®,:
L]
U -
Small observables quantum fluctuations! $x = 0 — Harmonic dynamics

02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.
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Perturbations: emergent dynamics of cosmic inhomogeneities

Mean-field approximation

» When interactions are small (satisfied in an appropriate regime) the dynamics of (6W, 6%, §=) are:

5Scrr[p, ¢ 5Scer[p, ¢
Ist-order: { ——————— =( ———1 =@,
65(gas X, x4, 0) [ 05(gay Xty xt, ) [

O(5¥,50,53)

Effective dynamics

0.17549-2308.13261.
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Perturbations: emergent dynamics of cosmic inhomogeneities

Mean-field approximation

» When interactions are small (satisfied in an appropriate regime) the dynamics of (6W, 6%, §=) are:

5Scrr[p, ¢ 5Scer[p, ¢
Ist-order: ( —————————— =( ——————————
65(gas X, x4, 0) [ 05(gay Xty xt, ) [

| » 2 equations for 3 functions. .. » But dynamical freedom completely fixed by classical limit!

=0.
O(5¥,50,53)

Effective dynamics ‘

Pithis 2310.17549-2308.13261.
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Perturbations: emergent dynamics of cosmic inhomogeneities

Mean-field approximation

» When interactions are small (satisfied in an appropriate regime) the dynamics of (6W, 6%, §=) are:

5Scrr[p, ¢ 5Scer[p, ¢
Ist-order: ( —————————— =( ——————————
65(gas X, x4, 0) [ 05(gay Xty xt, ) [

> 2 equations for 3 functions. .. » But dynamical freedom completely fixed by classical limit!

=0.
O(5¥,50,53)

Effective dynamics

Classical dynamics with trans-Planckian QG effects

Scalar isotropic pert (5¢A,7~3A)[5¢, oW, 6]

> “Curvature-like” Ra from §Va and Sopna.

LM, Pithis 2310.17549-2308.13261.
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Perturbations: emergent dynamics of cosmic inhomogeneities

Mean-field approximation

(0]

.g » When interactions are small (satisfied in an appropriate regime) the dynamics of (6W, 6%, §=) are:
s 8Serr[@, @F 3Scrr[p, T

é’ 1st-order: < % > = <%> =0.

é PA8ay) Ak, X A PA8as Ak, Xy alosw,s0,63)

= S 2 equations for 3 functions. .. » But dynamical freedom completely fixed by classical limit!

Classical dynamics with trans-Planckian QG effects

Scalar isotropic pert (5¢A,7~3A)[5¢, oW, 6]

“Curvature-like” Ra from §V, and Sopna. f
Late times and single spacelike label: mé \/ Al

/\/\n

02|

00

g
i

Ha®

2’k
SN + k2 a'Spa = (M ; )Ju[W]

SU01399.1100 )
ueppue|g-suei|

2
N L K
RY + K2a*Ra = (M )JR (]
pl

v Remarkable agreement with GR at larger scales.  Ra. Ror and their difference; k/Mp| = 10%.

LM, Pithis 2310.17549-2308.13261.
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Pert. = QG entanglement.
Good classical limit.
Trans-Planckian QG effects.
Extension to EPRL-FK!

Extension to early times:
impact of bounce?

C- A NEANEN

Effectively

-3

Phenomenological

Collective relationally . N
implementation in SCM.

localized

Results and short-term

Ay More relational observables.

Quantum theory Inhomogeneous
BC GFT + 4 causally (averaging over) cosmologies
coupled frame scalars x* States (scalar isotropic
+ MCMF matter ¢ perturbations)

Realistic matter: fundamental
coupling or emergent?

A\

Initial conditions from
fundamental theory:

e QFT limit of QG.

* QG inflationary mechanism.

Slightly

entangled

Longer term
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Group Field Theories with matter scalars

Group Field Theories: theories of a field ¢ :
GYx X — C defined on the product G% x X

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...
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Group Field Theories with matter scalars

Group Field Theories: theories of a field ¢ :
GYx X — C defined on the product G% x X

Kinematics
Quanta are d — 1-simplices decorated with quantum geometric data: X
82
> Interpretation guaranteed by geometricity constraints.
» Causal properties encoded in normal X. Moy = & 81
o =
84

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...
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Group Field Theories with matter scalars

) ) . . d is the dimension of the “spacetime to be” (d = 4),
Group Field Theories: theories of a field ¢ : » . :
4 X 4 X is the normal space, and G is the local gauge
G” x X — C defined on the product G” x X.

group of gravity, G = SL(2, C).

Kinematics

Quanta are d — 1-simplices decorated with quantum geometric data:

X
. - : 82
> Interpretation guaranteed by geometricity constraints.
» Causal properties encoded in normal X. Moy = & 81
o =
84
1 tati p - = 1Q
Dynamlcs notation: ¢ - % /Q( ©1

Scrr: compare Zget with simplicial gravity path integral (Ar = spinfoam amplitudes).
A 9 9 gb o
SGFT:K+V:¢~K[¢]+Zn—7Trw[¢]+c.c. T

v M

» [ encodes propagation of (geometry) data
between neighboring d-simplices.

10

>

Interactions: non-local in g, following the
combinatorial pattern of ~.

. 90
. g
9

g %

91 92 93 9a

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; . ..
Luca Marchetti
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Group Field Theories with matter scalars

Group Field Theories: theories of a d is the dimension of the “spacetime to be" (d = 4),
field ¢ : G! x ¥ x RN — C defined X is the normal space, and G is the local gauge
on the product of G? x X and RY. group of gravity, G = SL(2, C).
Kinematics
Quanta are d — 1-simplices decorated with quantum geometric and scalar data: X
82
> Interpretation guaranteed by geometricity constraints.
» Causal properties encoded in normal X. Moy = & 81
p=
> Scalar field discretized on each d-simplex: each ®
d — 1-simplex composing it carries values ® € RY.
84
. oo p =/ dQ ey
Dynamlcs notation: ¢ - ¥ _/Q( [*=x1

Scrr: compare Zger with simplicial gravity + scalar fields path integral (A = spinfoam amplitudes).
A
Serr = K+ V =¢ - Klp] + Z n—wTr,y[Lp] + c.c.
v M
» I encodes propagation of (geometry and matter)
data between neighboring d-simplices. ]C(giv)1gt(,w); ¢(V), <D(W)) = /C(ga(‘/), géw); A2VW¢)
Interactions: non-local in g,, local in ®.

Vs(glV, ... gl @) = vs(el, ..., gl)
For minimally coupled, free, massless scalars:

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...
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