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Extended BC model and causal frame coupling
M
o
d
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Two-sector GFT

4d BC model with spacelike (+) and timelike (−) quanta: φ±≡φ(ga,X±,Φ)

▶ Reference χ
µ and matter ϕ scalars encoded in Φ=(χµ, ϕ)∈R5.

▶ Geometry: ga ∈ G = SL(2,C) and X± ∈ G/U±, U± stabilizer of X±.

▶ BC geometricity constraints imposed using normal: GX± [φ±] = φ±.

▶ Sectors only kinematically decoupled: KGFT = K+ + K−
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▶ Since χ
0 propagates along timelike edges (across spacelike tetrahedra):

▶ Since χ
i propagates along spacelike edges (across timelike tetrahedra):

K+ independent of χi . K− independent of χ0.
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Field operators and observables

▶ Tensor Fock structure: F = F+ ⊗ F−, with F± generated by repeated action of φ̂†
± on |0⟩±.

▶ Collective observables are second quantized operators: e.g. number, matter and volume

N̂ =
∑

±
φ̂

†
± · φ̂± , Φ̂± = φ̂

†
± · (ϕφ̂±) , V̂ = φ̂

†
+ · V [φ̂+] .

notation: φ · ψ =

∫
Ω
dΩφψ

Jercher, LM, Pithis 2310.17549-2308.13261; Jercher, Oriti, Pithis 2206.15442.
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Collective entangled QG states
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Macroscopically entangled states

▶ Background cosmological geometries associated with uncorrelated collective states (condensates).

▶ Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

|∆⟩ = N∆ exp(σ̂ ⊗ I− + I+ ⊗ τ̂+δ̂Φ ⊗ I− + δ̂Ψ + I+ ⊗ δ̂Ξ) |0⟩

Background Perturbations

▶ σ̂ = σ · φ̂†
+: spacelike condensate.

▶ τ̂ = τ · φ̂†
−: timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=δΦ·(φ̂†
+φ̂

†
+), δ̂Ψ=δΨ·(φ̂†

+φ̂
†
−), δ̂Ξ=δΞ·(φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Pert.= rel. nearest neighbour 2-body correlations.

L
o
ca

liz
a
ti
o
n

Peaking and effective relational observables

▶ Relational localization implemented at an effective level on observable averages. In χ
µ-frame:

(σx , τx ) = (fixed peaking function ηx ) × (dynamically determined reduced wavefunction (σ̃, τ̃)) ,

⟨Ô⟩∆ ≡ O∆(x)

▶ Since ⟨χ̂µ⟩∆ ≃ xµ, O∆(x) is an effective relationally localized observable.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.
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−: timelike condensate.

▶ τ , σ peaked; τ̃ , σ̃ homogeneous.

▶ δ̂Φ=δΦ·(φ̂†
+φ̂

†
+), δ̂Ψ=δΨ·(φ̂†

+φ̂
†
−), δ̂Ξ=δΞ·(φ̂†

−φ̂
†
−).

▶ δΦ, δΨ and δΞ small and relationally inhomogeneous.

▶ Pert.= rel. nearest neighbour 2-body correlations.

L
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n

Peaking and effective relational observables

▶ Relational localization implemented at an effective level on observable averages. In χ
µ-frame:

(σx , τx ) = (fixed peaking function ηx ) × (dynamically determined reduced wavefunction (σ̃, τ̃)) ,

⟨Ô⟩∆ ≡ O∆(x) = Ō∆(x
0) + δO∆(x

0
, x)

▶ Since ⟨χ̂µ⟩∆ ≃ xµ, O∆(x) is an effective relationally localized observable.
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Quantum theory

BC GFT + 4 causally

coupled frame scalars χ
µ

+ MCMF matter ϕ

Inhomogeneous

cosmologies

Gravity + 5 MCMF

scalar fields (χµ, ϕ)

(averaging over)

States
⟨Ô⟩∆

Slightly

entangled

Collective

Effectively

relationally

localized
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Background: effective FLRW dynamics
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Mean-field approximation

▶ When interactions are small (satisfied in an appropriate regime) the dynamics of (σ, τ) are:

0th-order:

〈
δSGFT[φ̂, φ̂†]

δφ̂(ga,X±, xµ, ϕ)

〉
∆

=

〈
δSGFT[φ̂, φ̂†]

δφ̂(ga,X±, xµ, ϕ)

〉
∆

∣∣∣∣∣
δΨ=δΦ=δΞ=0

= 0 .

▶ Homogeneity: σ̃ and τ̃ depend only on MCMF clock χ
0.

▶ Isotropy: σ̃ and τ̃ depend on a single spacelike rep. label.

▶ Mesoscopic regime: negligible interactions.

0 = σ̃
′′
υ − 2iπ̃+,0σ̃

′
υ − E 2

+,υσ̃υ,

0 = τ̃
′′
υ − 2iπ̃−,0τ̃

′
υ − E 2

−,υ τ̃υ,

rep. label υo suppressed
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C
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it

Large number of quanta (large volume and late times) (

▶ Assume one single υo is dominating.

▶ Consider large N̄∆ = N̄+ + N̄− (µ+>µ−):

N̄+= |σ̃|2∝eµ+x0
, N̄−= |τ̃ |2∝eµ−x0

.

Small observables quantum fluctuations!

rep. label υo suppressed
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υ − 2iπ̃−,0τ̃

′
υ − E 2

−,υ τ̃υ,

C
la
ss
ic
a
l
lim

it

Large number of quanta (large volume and late times) (

▶ Assume one single υo is dominating.

▶ Consider large N̄∆ = N̄+ + N̄− (µ+>µ−):

N̄+= |σ̃|2∝eµ+x0
, N̄−= |τ̃ |2∝eµ−x0

.

Small observables quantum fluctuations!

▶ Volume expands as N̄+ grows: V̄∆ = vN̄+.

▶ Compare with GR in harmonic gauge.

Matching requires µ+ = 3π̄ϕ/(8M
2
pl).

(V̄ ′
∆/3V̄∆)

2 = 2µ+/3 flat FLRW

rep. label υo suppressed
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Mean-field approximation
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▶ Homogeneity: σ̃ and τ̃ depend only on MCMF clock χ
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▶ Mesoscopic regime: negligible interactions.
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Large number of quanta (large volume and late times) (

▶ Assume one single υo is dominating.

▶ Consider large N̄∆ = N̄+ + N̄− (µ+>µ−):

N̄+= |σ̃|2∝eµ+x0
, N̄−= |τ̃ |2∝eµ−x0

.

Small observables quantum fluctuations!

▶ ϕ∆ obtained combining intensive quantities

ϕ∆ = Φ+(N+/N∆) + Φ−(N−/N∆) .

▶ In the limit of dominating N̄+, ϕ̄∆ = Φ̄+:

ϕ̄
′′
∆ = 0 Harmonic dynamics

rep. label υo suppressed
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Quantum theory

BC GFT + 4 causally

coupled frame scalars χ
µ

+ MCMF matter ϕ

Inhomogeneous

cosmologies

Scalar isotropic pert.

(δΦ, δΨ, δΞ) → δO∆

(averaging over)

States

Slightly

entangled

Collective

Effectively

relationally

localized



Perturbations: emergent dynamics of cosmic inhomogeneities
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Mean-field approximation

▶ When interactions are small (satisfied in an appropriate regime) the dynamics of (δΨ, δΦ, δΞ) are:

1st-order:

〈
δSGFT[φ̂, φ̂†]

δφ̂(ga,X±, xµ, ϕ)

〉
∆

=

〈
δSGFT[φ̂, φ̂†]

δφ̂(ga,X±, xµ, ϕ)

〉
∆

∣∣∣∣∣
O(δΨ,δΦ,δΞ)

= 0 .

▶ 2 equations for 3 functions. . . ▶ But dynamical freedom completely fixed by classical limit!
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Classical dynamics with trans-Planckian QG effects

Scalar isotropic pert. (δϕ∆, R̃∆)[δΦ, δΨ, δΞ]

▶ “Curvature-like” R̃∆ from δV∆ and δϕ∆.

▶ Late times and single spacelike label:

δϕ
′′
∆ + k2a4δϕ∆ =

( a2k

Mpl

)
jϕ[ϕ̄]

R̃′′
∆ + k2a4R̃∆ =

( a2k

Mpl

)
jR̃[ϕ̄]

T
ra
n
s-P

la
n
ck
ia
n

Q
G

correctio
n
s

✓ Remarkable agreement with GR at larger scales.
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Quantum theory

BC GFT + 4 causally

coupled frame scalars χ
µ

+ MCMF matter ϕ

Inhomogeneous

cosmologies

(scalar isotropic

perturbations)

(averaging over)

States

Slightly

entangled

Collective

Effectively

relationally

localized

✓ Pert. = QG entanglement.

✓ Good classical limit.

✓ Trans-Planckian QG effects.

Extension to EPRL-FK!

Extension to early times:

impact of bounce?

Phenomenological

implementation in SCM.

More relational observables.

▶ Realistic matter: fundamental

coupling or emergent?

▶ Initial conditions from

fundamental theory:

• QFT limit of QG.

• QG inflationary mechanism..b
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Group Field Theories with matter scalars

Group Field Theories: theories of a field φ :

G d ×X → C defined on the product G d ×X .

d is the dimension of the “spacetime to be” (d = 4),

X is the normal space, and G is the local gauge

group of gravity, G = SL(2,C).

ciao

ciao Kinematicsy

Quanta are d − 1-simplices decorated with quantum geometric data:

▶ Interpretation guaranteed by geometricity constraints.

▶ Causal properties encoded in normal X .

▶ Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values Φ ∈ Rdl .

ciao Dynamics

SGFT: compare ZGFT with simplicial gravity path integral (AΓ = spinfoam amplitudes).

SGFT = K + V = φ̄ · K[φ] +
∑
γ

λγ

nγ
Trγ [φ] + c.c.

▶ K encodes propagation of (geometry) data

between neighboring d-simplices.

▶ Interactions: non-local in ga, following the

combinatorial pattern of γ.

▶ For minimally coupled, free, massless scalars:

K(g (v)
a , g

(w)
b ;Φ(v)

,Φ(w)) = K(g (v)
a , g

(w)
b ;∆2

vwΦ)

V5(g
(1)
a , . . . , g (5)

a ,Φ) = V5(g
(1)
a , . . . , g (5)

a )

H1-p =

Bgg4Bg

g1

Bgg2Bg

g3

X

Φ

notation: φ · ψ =

∫
Ω
dΩφψ

g′4g′3g′2g′1

g1 g2 g3 g4

K y 7

g′9

g′6

g′2

g10

g′10
g′8

g′5
g′1

g1
g2

g3
g4

g′4
g5
g6
g7

g′7
g′3

g′8
g9
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Group Field Theories with matter scalars

Group Field Theories: theories of a

field φ : G d × X × Rdl → C defined

on the product of G d × X and Rdl .

d is the dimension of the “spacetime to be” (d = 4),

X is the normal space, and G is the local gauge

group of gravity, G = SL(2,C).
ciao

ciao Kinematicsy

Quanta are d − 1-simplices decorated with quantum geometric and scalar data:

▶ Interpretation guaranteed by geometricity constraints.

▶ Causal properties encoded in normal X .

▶ Scalar field discretized on each d-simplex: each

d − 1-simplex composing it carries values Φ ∈ Rdl .

ciao Dynamics

SGFT: compare ZGFT with simplicial gravity + scalar fields path integral (AΓ = spinfoam amplitudes).

SGFT = K + V = φ̄ · K[φ] +
∑
γ

λγ

nγ
Trγ [φ] + c.c.

▶ K encodes propagation of (geometry and matter)

data between neighboring d-simplices.

▶ Interactions: non-local in ga, local in Φ.

▶ For minimally coupled, free, massless scalars:
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