

Cosmological Perturbations from Quantum Gravity Entanglement

(Based on 2308.13261-2310.17549, in collaboration with A. Jercher and A. Pithis)

Luca Marchetti

Loops'24 FAU Fort Lauderdale, Florida, US 09 May 2024

Department of Mathematics and Statistics UNB Fredericton

Quantum theory

Cosmologica

Classical theory

Quantum theory

Cosmologica

Classical theory Gravity + 5 MCMF scalar fields (χ^{μ}, ϕ) Quantum theory BC GFT + 5 MCMF scalar fields (χ^{μ}, ϕ)

Classical theory Gravity + 5 MCMF scalar fields (χ^{μ}, ϕ)

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta:
$$\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \mathbf{\Phi})$$

Jercher, LM, Pithis 2310.17549-2308.13261; Jercher, Oriti, Pithis 2206.15442.

Model

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta:
$$\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \mathbf{\Phi})$$

Jercher, LM, Pithis 2310.17549-2308.13261; Jercher, Oriti, Pithis 2206.15442.

Model

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \Phi)$

- Reference χ^{μ} and matter ϕ scalars encoded in $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$.
- Geometry: $g_a \in G = SL(2, \mathbb{C})$ and $X_{\pm} \in G/U_{\pm}$, U_{\pm} stabilizer of X_{\pm} .
- BC geometricity constraints imposed using normal: $\mathcal{G}_{X_{\pm}}[\varphi_{\pm}] = \varphi_{\pm}$.
- Sectors only kinematically decoupled: $K_{GFT} = K_+ + K_-$

Model

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \Phi)$

- Reference χ^{μ} and matter ϕ scalars encoded in $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$.
- Geometry: $g_a \in G = SL(2, \mathbb{C})$ and $X_{\pm} \in G/U_{\pm}$, U_{\pm} stabilizer of X_{\pm} .
- BC geometricity constraints imposed using normal: G_{X+}[φ_±] = φ_±.
- ► Sectors only kinematically decoupled: K_{GFT} = K₊ + K₋

Kinetic restriction

Model

Jercher, LM, Pithis 2310.17549-2308.13261; Jercher, Oriti, Pithis 2206.15442.

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \mathbf{\Phi})$

- Reference χ^{μ} and matter ϕ scalars encoded in $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$.
- Geometry: $g_a \in G = SL(2, \mathbb{C})$ and $X_{\pm} \in G/U_{\pm}$, U_{\pm} stabilizer of X_{\pm} .
- BC geometricity constraints imposed using normal: G_{X+}[φ_±] = φ_±.
- Sectors only kinematically decoupled: $K_{GFT} = K_+ + K_-$

Kinetic restriction

Since χ^0 propagates along timelike edges (across spacelike tetrahedra):

 \mathcal{K}_+ independent of χ^i .

Model

Frame coupling

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \mathbf{\Phi})$

- Reference χ^{μ} and matter ϕ scalars encoded in $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$.
- Geometry: $g_a \in G = SL(2, \mathbb{C})$ and $X_{\pm} \in G/U_{\pm}$, U_{\pm} stabilizer of X_{\pm} .
- BC geometricity constraints imposed using normal: G_{X⊥}[φ_±] = φ_±.
- Sectors only kinematically decoupled: $K_{GFT} = K_+ + K_-$

Kinetic restriction

Since \(\chi_0\) propagates along timelike edges (across spacelike tetrahedra):
Since \(\chi_i\) propagates along spacelike edges (across timelike tetrahedra):

 \mathcal{K}_+ independent of χ^i . \mathcal{K}_- independent of χ^0 .

Model

Frame coupling

Two-sector GFT

4d BC model with spacelike (+) and timelike (-) quanta: $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \mathbf{\Phi})$

- Reference χ^{μ} and matter ϕ scalars encoded in $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$.
- Geometry: $g_a \in G = SL(2, \mathbb{C})$ and $X_{\pm} \in G/U_{\pm}$, U_{\pm} stabilizer of X_{\pm} .
- BC geometricity constraints imposed using normal: G_{X⊥}[φ_±] = φ_±.
- Sectors only kinematically decoupled: $K_{GFT} = K_+ + K_-$

Kinetic restriction

Since \u03c0⁰ propagates along timelike edges (across spacelike tetrahedra):
Since \u03c0ⁱ propagates along spacelike edges (across timelike tetrahedra):

 \mathcal{K}_+ independent of χ^i . \mathcal{K}_- independent of χ^0 .

Field operators and observables

- Tensor Fock structure: $\mathcal{F} = \mathcal{F}_+ \otimes \mathcal{F}_-$, with \mathcal{F}_\pm generated by repeated action of $\hat{\varphi}^{\dagger}_+$ on $|0\rangle_+$.
- Collective observables are second quantized operators: e.g. number, matter and volume

$$\hat{N} = \sum_{\pm} \hat{\varphi}_{\pm}^{\dagger} \cdot \hat{\varphi}_{\pm} , \qquad \hat{\Phi}_{\pm} = \hat{\varphi}_{\pm}^{\dagger} \cdot (\phi \hat{\varphi}_{\pm}) , \qquad \hat{V} = \hat{\varphi}_{\pm}^{\dagger} \cdot V[\hat{\varphi}_{\pm}] .$$

Jercher, LM, Pithis 2310.17549-2308.13261; Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Model

Frame coupling

Cosmological Perturbations from QG

notation: $\varphi \cdot \psi = \int_{\Omega} d\Omega \varphi \psi$

Macroscopically entangled states

Background cosmological geometries associated with uncorrelated collective states (condensates).

Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

$$|\Delta\rangle = \mathcal{N}_{\Delta} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Collective states

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Macroscopically entangled states

- Background cosmological geometries associated with uncorrelated collective states (condensates).
- Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

$$|\Delta\rangle = \mathcal{N}_{\Delta} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \hat{\tau} + \widehat{\delta\Phi} \otimes \mathbb{I}_{-} + \widehat{\delta\Psi} + \mathbb{I}_{+} \otimes \widehat{\delta\Xi}) |0\rangle$$

Background

- $\hat{\sigma} = \sigma \cdot \hat{\varphi}_{+}^{\dagger}$: spacelike condensate.
 - $\hat{\tau} = \tau \cdot \hat{\varphi}_{-}^{\dagger}$: timelike condensate.
 - τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

- Background cosmological geometries associated with uncorrelated collective states (condensates).
- Since non-trivial geometries = quantum entanglement, look for macroscopically entangled states:

$$|\Delta\rangle = \mathcal{N}_{\Delta} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$$

Background

•
$$\hat{\sigma} = \sigma \cdot \hat{\varphi}_{+}^{\dagger}$$
: spacelike condensate

- $\hat{\tau} = \tau \cdot \hat{\varphi}_{-}^{\dagger}$: timelike condensate.
- τ , σ peaked; $\tilde{\tau}$, $\tilde{\sigma}$ homogeneous.

Perturbations

- $\bullet \quad \widehat{\delta\Phi} = \delta\Phi \cdot (\hat{\varphi}_{+}^{\dagger}\hat{\varphi}_{+}^{\dagger}), \ \widehat{\delta\Psi} = \delta\Psi \cdot (\hat{\varphi}_{+}^{\dagger}\hat{\varphi}_{-}^{\dagger}), \ \widehat{\delta\Xi} = \delta\Xi \cdot (\hat{\varphi}_{-}^{\dagger}\hat{\varphi}_{-}^{\dagger}).$
- $\delta \Phi$, $\delta \Psi$ and $\delta \Xi$ small and relationally inhomogeneous.
- Pert. = rel. nearest neighbour 2-body correlations.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Collective states

Peaking and effective relational observables

Relational localization implemented at an effective level on observable averages. In χ^{μ} -frame: (σ_x, τ_x) = (fixed peaking function η_x) × (dynamically determined reduced wavefunction ($\tilde{\sigma}, \tilde{\tau}$)),

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Macroscopically entangled states

Peaking and effective relational observables

For Relational localization implemented at an effective level on observable averages. In χ^{μ} -frame:

 $(\sigma_x, \tau_x) = (\text{fixed peaking function } \eta_x) \times (\text{dynamically determined reduced wavefunction } (\tilde{\sigma}, \tilde{\tau})),$

$$\langle \hat{\mathcal{O}} \rangle_{\Delta} \equiv \mathcal{O}_{\Delta}(\mathbf{x}) = \bar{\mathcal{O}}_{\Delta}[\tilde{\sigma}, \tilde{\tau}]|_{\chi^0 = \mathbf{x}^0} + \delta \mathcal{O}_{\Delta}[\delta \Phi, \delta \Psi, \delta \Xi]|_{\chi^\mu = \mathbf{x}^\mu}$$

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

 $(\sigma_x, \tau_x) = (\text{fixed peaking function } \eta_x) \times (\text{dynamically determined reduced wavefunction } (\tilde{\sigma}, \tilde{\tau})),$

$$\langle \hat{\mathcal{O}} \rangle_{\Delta} \equiv \mathcal{O}_{\Delta}(x) = \bar{\mathcal{O}}_{\Delta}(x^{0}) + \delta \mathcal{O}_{\Delta}(x^{0}, \mathbf{x})$$

Since $\langle \hat{\chi}^{\mu} \rangle_{\Delta} \simeq x^{\mu}$, $\mathcal{O}_{\Delta}(x)$ is an effective relationally localized observable.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238

Luca Marchetti

Mean-field approximation

• When interactions are small (satisfied in an appropriate regime) the dynamics of (σ, τ) are:

$$\text{Oth-order: } \left. \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{a}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{a}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \right|_{\delta \Psi = \delta \Phi = \delta \Xi = 0} = 0 \,.$$

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677, 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (σ, τ) are:

$$\text{Oth-order: } \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \bigg|_{\delta \Psi = \delta \Phi = \delta \Xi = 0} = 0 \,.$$

- Homogeneity: $\tilde{\sigma}$ and $\tilde{\tau}$ depend only on MCMF clock χ^0 .
- lsotropy: $\tilde{\sigma}$ and $\tilde{\tau}$ depend on a single spacelike rep. label.
- Mesoscopic regime: negligible interactions.

$$\begin{split} 0 &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{+,0}\tilde{\sigma}_{\upsilon}^{\prime} - E_{+,\upsilon}^{2}\tilde{\sigma}_{\upsilon}, \\ 0 &= \tilde{\tau}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{-,0}\tilde{\tau}_{\upsilon}^{\prime} - E_{-,\upsilon}^{2}\tilde{\tau}_{\upsilon}, \end{split}$$

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677, 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (σ, τ) are:

$$\text{Oth-order:} \ \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \bigg|_{\delta \Psi = \delta \Phi = \delta \Xi = 0} = 0 \,.$$

• Homogeneity: $\tilde{\sigma}$ and $\tilde{\tau}$ depend only on MCMF clock χ^0 .

Isotropy: σ̃ and τ̃ depend on a single spacelike rep. label.

Mesoscopic regime: negligible interactions.

$$\begin{split} \mathbf{0} &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{+,0}\tilde{\sigma}_{\upsilon}^{\prime} - \mathbf{E}_{+,\upsilon}^{2}\tilde{\sigma}_{\upsilon}, \\ \mathbf{0} &= \tilde{\tau}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{-,0}\tilde{\tau}_{\upsilon}^{\prime} - \mathbf{E}_{-,\upsilon}^{2}\tilde{\tau}_{\upsilon}, \end{split}$$

Large number of quanta (large volume and late times)

rep. label v_o suppressed

• Assume one single v_o is dominating.

• Consider large
$$\bar{N}_{\Delta} = \bar{N}_{+} + \bar{N}_{-} (\mu_{+} > \mu_{-})$$
:
 $\bar{N}_{+} = |\tilde{\sigma}|^{2} \propto e^{\mu_{+}x^{0}}, \quad \bar{N}_{-} = |\tilde{\tau}|^{2} \propto e^{\mu_{-}x^{0}}.$

Small observables quantum fluctuations!

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677, 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Classical limit

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (σ, τ) are:

$$\text{Oth-order:} \ \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \bigg|_{\delta \Psi = \delta \Phi = \delta \Xi = 0} = 0 \,.$$

• Homogeneity: $\tilde{\sigma}$ and $\tilde{\tau}$ depend only on MCMF clock χ^0 .

Isotropy: σ̃ and τ̃ depend on a single spacelike rep. label.

Mesoscopic regime: negligible interactions.

$$\begin{split} \mathbf{0} &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{+,0}\tilde{\sigma}_{\upsilon}^{\prime} - \mathbf{E}_{+,\upsilon}^{2}\tilde{\sigma}_{\upsilon}, \\ \mathbf{0} &= \tilde{\tau}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{-,0}\tilde{\tau}_{\upsilon}^{\prime} - \mathbf{E}_{-,\upsilon}^{2}\tilde{\tau}_{\upsilon}, \end{split}$$

Large number of quanta (large volume and late times)

rep. label v_o suppressed

- Assume one single v_o is dominating.
- Consider large $\bar{N}_{\Delta} = \bar{N}_{+} + \bar{N}_{-} \ (\mu_{+} > \mu_{-})$:

$$\bar{N}_{+} = |\tilde{\sigma}|^{2} \propto e^{\mu_{+}x^{0}}, \quad \bar{N}_{-} = |\tilde{\tau}|^{2} \propto e^{\mu_{-}x^{0}}$$

Small observables quantum fluctuations!

- Volume expands as \bar{N}_+ grows: $\bar{V}_{\Delta} = v \bar{N}_+$.
- Compare with GR in harmonic gauge.

$$\checkmark$$
 Matching requires $\mu_+ = 3 \bar{\pi}_{\phi} / (8 M_{\rm pl}^2)$.

 $(\bar{V}'_{\Delta}/3\bar{V}_{\Delta})^2 = 2\mu_+/3 \longrightarrow \mathsf{flat} \mathsf{FLRW}$

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677, 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Luca Marchetti

Classical limit

Mean-field approximation

When interactions are small (satisfied in an appropriate regime) the dynamics of (σ, τ) are:

$$\text{Oth-order:} \ \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_a, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_a, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \bigg|_{\delta \Psi = \delta \Phi = \delta \Xi = 0} = 0 \,.$$

• Homogeneity: $\tilde{\sigma}$ and $\tilde{\tau}$ depend only on MCMF clock χ^0 .

Isotropy: σ̃ and τ̃ depend on a single spacelike rep. label.

Mesoscopic regime: negligible interactions.

$$\begin{split} \mathbf{0} &= \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{+,0}\tilde{\sigma}_{\upsilon}^{\prime} - \mathbf{E}_{+,\upsilon}^{2}\tilde{\sigma}_{\upsilon}, \\ \mathbf{0} &= \tilde{\tau}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_{-,0}\tilde{\tau}_{\upsilon}^{\prime} - \mathbf{E}_{-,\upsilon}^{2}\tilde{\tau}_{\upsilon}, \end{split}$$

Large number of quanta (large volume and late times)

rep. label v_o suppressed

- Assume one single v_o is dominating.
- Consider large $\bar{N}_{\Delta} = \bar{N}_{+} + \bar{N}_{-} \ (\mu_{+} > \mu_{-})$:

$$\bar{N}_{+} = |\tilde{\sigma}|^{2} \propto e^{\mu_{+}x^{0}}, \quad \bar{N}_{-} = |\tilde{\tau}|^{2} \propto e^{\mu_{-}x^{0}}$$

 $\phi_{\Delta} = \Phi_+(N_+/N_{\Delta}) + \Phi_-(N_-/N_{\Delta}).$

• In the limit of dominating
$$\bar{N}_+$$
, $\bar{\phi}_{\Delta} = \bar{\Phi}_+$:

φ_Δ obtained combining intensive quantities

Small observables quantum fluctuations! ϕ'_{Δ}

 $\bar{\phi}_{\Delta}^{\prime\prime} = 0 \longrightarrow$ Harmonic dynamics

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677, 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881.

Classical limit

Effective dynamics

Mean-field approximation

• When interactions are small (satisfied in an appropriate regime) the dynamics of $(\delta \Psi, \delta \Phi, \delta \Xi)$ are:

$$1 \text{st-order:} \; \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \left|_{\mathcal{O}(\delta \Psi, \delta \Phi, \delta \Xi)} = 0 \,.$$

Jercher, LM, Pithis 2310.17549-2308.13261.

Effective dynamics

Mean-field approximation

• When interactions are small (satisfied in an appropriate regime) the dynamics of $(\delta \Psi, \delta \Phi, \delta \Xi)$ are:

1st-order:
$$\left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\vartheta}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\vartheta}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \bigg|_{\mathcal{O}(\delta \Psi, \delta \Phi, \delta \Xi)} = 0.$$

2 equations for 3 functions... > But dynamical freedom completely fixed by classical limit!

Jercher, LM, Pithis 2310.17549-2308.13261.

Effective dynamics

Mean-field approximation

• When interactions are small (satisfied in an appropriate regime) the dynamics of $(\delta \Psi, \delta \Phi, \delta \Xi)$ are:

$$\text{1st-order:} \; \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \left|_{\mathcal{O}(\delta \Psi, \delta \Phi, \delta \Xi)} = 0 \, .$$

2 equations for 3 functions... > But dynamical freedom completely fixed by classical limit!

Classical dynamics with trans-Planckian QG effects

Scalar isotropic pert. $(\delta \phi_{\Delta}, \tilde{\mathcal{R}}_{\Delta})[\delta \Phi, \delta \Psi, \delta \Xi]$

• "Curvature-like" $\tilde{\mathcal{R}}_{\Delta}$ from δV_{Δ} and $\delta \phi_{\Delta}$.

Jercher, LM, Pithis 2310.17549-2308.13261.

Mean-field approximation

• When interactions are small (satisfied in an appropriate regime) the dynamics of $(\delta\Psi, \delta\Phi, \delta\Xi)$ are:

$$\text{1st-order:} \; \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} = \left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi}, \hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathfrak{a}}, X_{\pm}, x^{\mu}, \phi)} \right\rangle_{\Delta} \left|_{\mathcal{O}(\delta \Psi, \delta \Phi, \delta \Xi)} = 0 \, .$$

2 equations for 3 functions... > But dynamical freedom completely fixed by classical limit!

Classical dynamics with trans-Planckian QG effects

Scalar isotropic pert.
$$(\delta \phi_{\Delta}, \tilde{\mathcal{R}}_{\Delta})[\delta \Phi, \delta \Psi, \delta \Xi]$$

- "Curvature-like" $\tilde{\mathcal{R}}_{\Delta}$ from δV_{Δ} and $\delta \phi_{\Delta}$.
- Late times and single spacelike label:

$$\begin{split} \delta \phi_{\Delta}^{\prime\prime} + k^2 a^4 \delta \phi_{\Delta} &= \left(\frac{a^2 k}{M_{\rm pl}}\right) j_{\phi}[\bar{\phi}] \quad \text{Grand provided of } \\ \tilde{\mathcal{R}}_{\Delta}^{\prime\prime} + k^2 a^4 \tilde{\mathcal{R}}_{\Delta} &= \left(\frac{a^2 k}{M_{\rm pl}}\right) j_{\bar{\mathcal{R}}}[\bar{\phi}] \quad \text{the set of } \\ \end{split}$$

✓ Remarkable agreement with GR at larger scales.

 $\tilde{\mathcal{R}}_{\Delta}$, $\tilde{\mathcal{R}}_{GR}$ and their difference; $k/M_{Pl} = 10^2$.

Luca Marchetti

Cosmological Perturbations from QG

Effective dynamics

Backup

Group Field Theories: theories of a field φ : $G^d \times \mathcal{X} \to \mathbb{C}$ defined on the product $G^d \times \mathcal{X}$. $\begin{array}{l} d \mbox{ is the dimension of the "spacetime to be" } (d=4), \\ \mathcal{X} \mbox{ is the normal space, and } G \mbox{ is the local gauge} \\ \mbox{ group of gravity, } G = SL(2, \mathbb{C}). \end{array}$

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Luca Marchetti

Group Field Theories: theories of a field φ : $G^d \times \mathcal{X} \to \mathbb{C}$ defined on the product $G^d \times \mathcal{X}$.

Kinematics

Quanta are d - 1-simplices decorated with quantum geometric data:

- Interpretation guaranteed by geometricity constraints.
- Causal properties encoded in normal X.

d is the dimension of the "spacetime to be" (d = 4),

 \mathcal{X} is the normal space, and G is the local gauge

group of gravity, $G = SL(2, \mathbb{C})$.

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Group Field Theories: theories of a field φ : $G^d \times \mathcal{X} \to \mathbb{C}$ defined on the product $G^d \times \mathcal{X}$.

Kinematics

Quanta are d - 1-simplices decorated with quantum geometric data:

- Interpretation guaranteed by geometricity constraints.
- Causal properties encoded in normal X.

 $\begin{array}{l} d \mbox{ is the dimension of the "spacetime to be" } (d=4), \\ \mathcal{X} \mbox{ is the normal space, and } G \mbox{ is the local gauge} \\ \mbox{ group of gravity, } G = {\rm SL}(2,\mathbb{C}). \end{array}$

 $\mathcal{H}_{1-p} =$

notation: $\varphi \cdot \psi = \int_{\Omega} d\Omega \varphi \psi$

Dynamics

 S_{GFT} : compare Z_{GFT} with simplicial gravity path integral ($A_{\Gamma} =$ spinfoam amplitudes).

$$S_{\text{GFT}} = \mathcal{K} + V = ar{arphi} \cdot \mathcal{K}[arphi] + \sum_{\gamma} rac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[arphi] + ext{c.c.}$$

- K encodes propagation of (geometry) data between neighboring *d*-simplices.
- Interactions: non-local in g_a, following the combinatorial pattern of γ.

g₄

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Luca Marchetti

Group Field Theories: theories of a field φ : $G^d \times \mathcal{X} \times \mathbb{R}^{d_1} \to \mathbb{C}$ defined on the product of $G^d \times \mathcal{X}$ and \mathbb{R}^{d_1} .

Kinematics

d is the dimension of the "spacetime to be" (d = 4), \mathcal{X} is the normal space, and G is the local gauge group of gravity, $G = SL(2, \mathbb{C})$.

Quanta are d-1-simplices decorated with quantum geometric and scalar data:

- Interpretation guaranteed by geometricity constraints.
- Causal properties encoded in normal X.
- Scalar field discretized on each *d*-simplex: each
 - d-1-simplex composing it carries values $\mathbf{\Phi} \in \mathbb{R}^{d_{|}}$.

Dynamics

 S_{GFT} : compare Z_{GFT} with simplicial gravity + scalar fields path integral (A_{Γ} = spinfoam amplitudes).

$$S_{\text{GFT}} = K + V = \bar{\varphi} \cdot \mathcal{K}[\varphi] + \sum_{\gamma} \frac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\gamma}[\varphi] + \text{c.c}$$

- K encodes propagation of (geometry and matter) data between neighboring d-simplices.
- Interactions: non-local in g_a , local in Φ .
- For minimally coupled, free, massless scalars:

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Luca Marchetti

$$\mathcal{K}(g_{a}^{(v)}, g_{b}^{(w)}; \Phi^{(v)}, \Phi^{(w)}) = \mathcal{K}(g_{a}^{(v)}, g_{b}^{(w)}; \Delta_{vw}^{2} \Phi)$$
$$\mathcal{V}_{5}(g_{a}^{(1)}, \dots, g_{a}^{(5)}, \Phi) = \mathcal{V}_{5}(g_{a}^{(1)}, \dots, g_{a}^{(5)})$$

