The AOS model		

Quantization of a black hole interior model in Loop Quantum Cosmology

$\label{eq:Andrés Minguez-Sánchez} Andrés Mínguez-Sánchez^1 \\ \mbox{in collaboration with B. Elizaga Navascués}^2 \& G.A. Mena Marugán^1.$

¹Instituto de Estructura de la Materia (**IEM**) & ²Louisiana State University (**LSU**).

LOOP's 24 International Conference, Florida, 6-10th May 2024.

BH interior model in LQC

➤ When considering possible quantum gravity phenomena, we often think of the early universe and/or black holes.

- ➤ When considering possible quantum gravity phenomena, we often think of the early universe and/or black holes.
- ➤ There has recently been a renewed interest in studying black hole models applying Loop Quantum Cosmology (LQC) techniques.

Introduction

- ➤ When considering possible quantum gravity phenomena, we often think of the early universe and/or black holes.
- ➤ There has recently been a renewed interest in studying black hole models applying Loop Quantum Cosmology (LQC) techniques.

Objetive

Use LQC to explore the quantum aspects of the **simplest** black hole scenario (Schwarzschild). In doing so, we contemplate:

- ◆ A recent effective proposal made by Ashtekar, Olmedo, and Singh (AOS).
- \blacklozenge A study of the black hole **interior** geometry.
- \blacklozenge A complete quantum description.

4 D b 4 B b

Motivation for the AOS model

The AOS polymerization parameters depend on the **black hole mass**.

Motivation for the AOS model

The AOS polymerization parameters depend on the **black hole mass**.

Properties

- \blacklozenge The singularity is replaced with a transition surface.
- \blacklozenge Quantum effects are small near the horizon.
- ✦ Curvature invariants are finite.
- ✦ Geometry smoothly extends to the exterior.

Motivation for the AOS model

The AOS polymerization parameters depend on the **black hole mass**.

Properties

- \blacklozenge The singularity is replaced with a transition surface.
- ◆ Quantum effects are small near the horizon.
- ♦ Curvature invariants are finite.
- ✦ Geometry smoothly extends to the exterior.

Effective formulation

- EoM lack Hamiltonian form without an **extended formulation**.
- ✦ Reducing the model alters the symplectic structure, making it too complex for quantization. The extended version seems more manageable.

Framework of the extended AOS model

The metric in the interior region takes the Kantowski-Sachs (KS) form:

$$ds^{2} = -N(\tau)^{2}d\tau^{2} + \frac{p_{b}^{2}(\tau)}{L_{o}^{2}|p_{c}(\tau)|}dx^{2} + |p_{c}(\tau)|(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$
(1)

Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions oo o o

Framework of the extended AOS model

The metric in the interior region takes the Kantowski-Sachs (KS) form:

$$ds^{2} = -N(\tau)^{2}d\tau^{2} + \frac{p_{b}^{2}(\tau)}{L_{o}^{2}|p_{c}(\tau)|}dx^{2} + |p_{c}(\tau)|(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$
(1)

The extended phase space has 4 canonical pairs of degrees of freedom

$$\{b, p_b\} = \gamma, \quad \{c, p_c\} = 2\gamma, \quad \{\delta_b, p_{\delta_b}\} = 1, \quad \{\delta_c, p_{\delta_c}\} = 1.$$
(2)

4/12

Framework of the extended AOS model

The metric in the interior region takes the Kantowski-Sachs (KS) form:

$$ds^{2} = -N(\tau)^{2}d\tau^{2} + \frac{p_{b}^{2}(\tau)}{L_{o}^{2}|p_{c}(\tau)|}dx^{2} + |p_{c}(\tau)|(d\theta^{2} + \sin^{2}\theta d\phi^{2}).$$
(1)

The extended phase space has 4 canonical pairs of degrees of freedom

$$\{b, p_b\} = \gamma, \quad \{c, p_c\} = 2\gamma, \quad \{\delta_b, p_{\delta_b}\} = 1, \quad \{\delta_c, p_{\delta_c}\} = 1.$$
(2)

The dynamics are subject to three constraints

$$\tilde{H}^{\text{eff}}[\tilde{N}], \quad \Psi_b[\lambda_b], \quad \Psi_c[\lambda_c].$$
 (3)

For a densitized lapse \tilde{N} , the effective Hamiltonian is defined as

$$\tilde{H}^{\text{eff}}[\tilde{N}] = -\tilde{N}L_o \left[\Omega_b^2 + \frac{p_b^2}{L_o^2} + 2\Omega_b\Omega_c\right], \quad \Omega_j = \frac{p_j \sin(\delta_j j)}{\gamma L_o \delta_j} \text{ for } j = b \text{ or } c.$$
(4)

Dynamics of the extended AOS model

To define the other two constraints, one must first define the quantities

$$O_b = -\frac{1}{2\Omega_b} \left[\Omega_b^2 + \frac{p_b^2}{L_o^2} \right], \qquad O_c = \Omega_c.$$
(5)

 (O_b, O_c) are constants of motion if (δ_b, δ_c) are also constants of motion. They coincide with the black hole mass m on-shell.

Dynamics of the extended AOS model

To define the other two constraints, one must first define the quantities

$$O_b = -\frac{1}{2\Omega_b} \left[\Omega_b^2 + \frac{p_b^2}{L_o^2} \right], \qquad O_c = \Omega_c.$$
(5)

 (O_b, O_c) are constants of motion if (δ_b, δ_c) are also constants of motion. They coincide with the black hole mass m on-shell.

The constraints $\Psi_j[\lambda_j] = \lambda_j[K_j(O_b, O_c) - \delta_j]$ follow the **AOS prescription**

$$K_b(m,m) \xrightarrow{m \gg 1} \left(\frac{\sqrt{\Delta}}{\sqrt{2\pi\gamma^2 m}}\right)^{1/3}, \quad K_c(m,m) \xrightarrow{m \gg 1} \frac{1}{2L_o} \left(\frac{\gamma \Delta^2}{4\pi^2 m}\right)^{1/3}.$$
 (6)

5/12

Dynamics of the extended AOS model

To define the other two constraints, one must first define the quantities

$$O_b = -\frac{1}{2\Omega_b} \left[\Omega_b^2 + \frac{p_b^2}{L_o^2} \right], \qquad O_c = \Omega_c.$$
(5)

 (O_b, O_c) are constants of motion if (δ_b, δ_c) are also constants of motion. They coincide with the black hole mass m on-shell.

The constraints $\Psi_j[\lambda_j] = \lambda_j[K_j(O_b, O_c) - \delta_j]$ follow the **AOS prescription**

$$K_b(m,m) \xrightarrow{m \gg 1} \left(\frac{\sqrt{\Delta}}{\sqrt{2\pi\gamma^2 m}}\right)^{1/3}, \quad K_c(m,m) \xrightarrow{m \gg 1} \frac{1}{2L_o} \left(\frac{\gamma \Delta^2}{4\pi^2 m}\right)^{1/3}.$$
(6)

The dynamics of the AOS model emerge through $\tilde{H}^{\text{eff}}[\tilde{N}]$ on the **constraint** surface when the inverse of \tilde{N} is fixed to $2\Omega_b$.

It is most convenient to define the scaled triad variables: $\tilde{p}_i = p_i/\delta_i$.

æ

Loop quantization

It is most convenient to define the scaled triad variables: $\tilde{p}_j = p_j/\delta_j$.

Quantum representation

- ◆ For the geometry, we employ the **triad representation**.
- For the δ -parameters, we use the standard (Schrödinger) representation.
- ♦ The kinematic Hilbert space is obtained by taking the tensor product.
- A basis of (generalized) eigenstates is represented by $\{|\tilde{\mu}_b, \tilde{\mu}_c, \delta_b, \delta_c\rangle\}$.

Loop quantization

It is most convenient to define the scaled triad variables: $\tilde{p}_j = p_j/\delta_j$.

Quantum representation

- ◆ For the geometry, we employ the **triad representation**.
- For the δ -parameters, we use the standard (Schrödinger) representation.
- ♦ The kinematic Hilbert space is obtained by taking the tensor product.
- A basis of (generalized) eigenstates is represented by $\{|\tilde{\mu}_b, \tilde{\mu}_c, \delta_b, \delta_c\rangle\}$.

Quamntum operators [e.g. for the angular sector]

$$\hat{\tilde{p}}_c | \tilde{\mu}_b, \tilde{\mu}_b, \delta_c, \delta_c \rangle = \gamma \tilde{\mu}_c | \tilde{\mu}_b, \tilde{\mu}_c, \delta_b, \delta_c \rangle, \quad \hat{\delta}_c | \tilde{\mu}_b, \tilde{\mu}_c, \delta_b, \delta_c \rangle = \delta_c | \tilde{\mu}_b, \tilde{\mu}_c, \delta_b, \delta_c \rangle,$$

 $2i\widehat{\sin(\delta_c c)}|\tilde{\mu}_b, \tilde{\mu}_c, \delta_b, \delta_c\rangle = |\tilde{\mu}_b, \tilde{\mu}_c + 2, \delta_b, \delta_c\rangle - |\tilde{\mu}_b, \tilde{\mu}_c - 2, \delta_b, \delta_c\rangle.$

The AOS model 000	Constraints operators •00	

Constraints operators

The constraints on the $\delta\text{-}\mathrm{parameters}$ are straightforward to implement.

Constraints operators

The constraints on the $\delta\text{-}\mathrm{parameters}$ are straightforward to implement.

The Hamiltonian constraint operator becomes

$$\hat{H}^{\text{eff}} = -L_o \left[\hat{\Omega}_b^2 + \hat{\delta}_b^2 \frac{\hat{p}_b^2}{L_o^2} + 2\hat{\Omega}_b \hat{\Omega}_c \right],$$
(7)

where we use the \mathbf{MMO} prescription to define

$$\hat{\Omega}_j = \frac{1}{2\gamma L_o} |\hat{\tilde{p}}_j|^{1/2} \left[\widehat{\sin(\delta_j j)} \widehat{\operatorname{sign}(\tilde{p}_j)} + \widehat{\operatorname{sign}(\tilde{p}_j)} \widehat{\sin(\delta_j j)} \right] |\hat{\tilde{p}}_j|^{1/2}.$$
(8)

To understand \hat{H}^{eff} action, we need to first analyze $\hat{\Omega}_j$ and $\hat{\Omega}_j^2$ operators.

Constraints operators

The constraints on the δ -parameters are straightforward to implement.

The Hamiltonian constraint operator becomes

$$\hat{H}^{\text{eff}} = -L_o \left[\hat{\Omega}_b^2 + \hat{\delta}_b^2 \frac{\hat{\tilde{p}}_b^2}{L_o^2} + 2\hat{\Omega}_b \hat{\Omega}_c \right],$$
(7)

where we use the **MMO** prescription to define

$$\hat{\Omega}_j = \frac{1}{2\gamma L_o} |\hat{\tilde{p}}_j|^{1/2} \left[\widehat{\sin(\delta_j j)} \widehat{\operatorname{sign}(\tilde{p}_j)} + \widehat{\operatorname{sign}(\tilde{p}_j)} \widehat{\sin(\delta_j j)} \right] |\hat{\tilde{p}}_j|^{1/2}.$$
(8)

To understand \hat{H}^{eff} action, we need to first analyze $\hat{\Omega}_i$ and $\hat{\Omega}_i^2$ operators.

The eigenvalues of $\hat{O}_c = \hat{\Omega}_c$ represent the mass of the black hole.

The AOS model	Constraints operators	
	000	

Mass operators

$\hat{\Omega}_j^2$ operator

4-unit step difference operator, essentially self-adjoint, positively defined, with a positive, continuous, and nondegenerate spectrum. It leaves invariant

$$^{(4)}\mathcal{H}_{\tilde{\varepsilon}_{j}}^{\pm} = \overline{\operatorname{span}\left\{|\tilde{\mu}_{j}\rangle : \tilde{\mu}_{j} \in {}^{(4)}\mathcal{L}_{\tilde{\varepsilon}_{j}}^{\pm}\right\}}, \quad {}^{(4)}\mathcal{L}_{\tilde{\varepsilon}_{j}}^{\pm} = \{\pm(\tilde{\varepsilon}_{j} + 4n) : n \in \mathbb{N}\}.$$
(9)

for $\varepsilon_j \in (0, 4]$. Its eigenstates, $\hat{\Omega}_j^2 | e_{m_j^2}^{\tilde{\varepsilon}_j} \rangle = m_j^2 | e_{m_j^2}^{\tilde{\varepsilon}_j} \rangle$, depend on **one** initial data.

The AOS model	Constraints operators	
	000	

Mass operators

$\hat{\Omega}_j^2$ operator

4-unit step difference operator, essentially self-adjoint, positively defined, with a positive, continuous, and nondegenerate spectrum. It leaves invariant

$$^{(4)}\mathcal{H}_{\tilde{\varepsilon}_{j}}^{\pm} = \overline{\operatorname{span}\left\{|\tilde{\mu}_{j}\rangle : \tilde{\mu}_{j} \in {}^{(4)}\mathcal{L}_{\tilde{\varepsilon}_{j}}^{\pm}\right\}}, \quad {}^{(4)}\mathcal{L}_{\tilde{\varepsilon}_{j}}^{\pm} = \{\pm(\tilde{\varepsilon}_{j} + 4n) : n \in \mathbb{N}\}.$$
(9)

for $\varepsilon_j \in (0, 4]$. Its eigenstates, $\hat{\Omega}_j^2 | e_{m_j^2}^{\tilde{\varepsilon}_j} \rangle = m_j^2 | e_{m_j^2}^{\tilde{\varepsilon}_j} \rangle$, depend on **one** initial data.

$\hat{\Omega}_j$ operator

2-unit step difference operator, essentially self-adjoint, with real, continuous, and nondegenerate spectrum. It leaves invariant

$${}^{(2)}\mathcal{H}_{\tilde{\epsilon}_{j}}^{\pm} = {}^{(4)}\mathcal{H}_{\tilde{\epsilon}_{j}}^{\pm} \otimes {}^{(4)}\mathcal{H}_{\tilde{\epsilon}_{j}+2}^{\pm}, \quad |e_{m_{j}}^{\tilde{\epsilon}_{j}}\rangle = |m_{j}|^{1/2}[|e_{m_{j}}^{\tilde{\epsilon}_{j}}\rangle \otimes i \text{sign}(-m_{j})|e_{m_{j}}^{\tilde{\epsilon}_{j}+2}\rangle].$$
(10)
for $\epsilon_{j} \in (0,2]$. Its eigenstates, $\hat{\Omega}_{j}|e_{m_{j}}^{\tilde{\epsilon}_{j}}\rangle = m_{j}|e_{m_{j}}^{\tilde{\epsilon}_{j}}\rangle, \text{ depend on one initial data.}$

The AOS model	Constraints operators		
000	000	00	

To solve \hat{H}^{eff} , we consider a geometric superselection sector ${}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}_b} \otimes {}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}_c}$.

The AOS model	Constraints operators	
	000	

To solve \hat{H}^{eff} , we consider a geometric superselection sector ${}^{(2)}\mathcal{H}^+_{\hat{\epsilon}_b} \otimes {}^{(2)}\mathcal{H}^+_{\hat{\epsilon}_c}$. In a generalized eigenspace of the $\hat{\delta}_b$ and $\hat{\Omega}_c$ operators, the constraint can be reexpressed on the radial sector as

$$\hat{\mathcal{Q}}_b(m_c) |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = \left[(\hat{\Omega}_b + m_c)^2 + \delta_b^2 \frac{\hat{p}_b^2}{L_o^2} \right] |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = m_c^2 |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle.$$
(11)

The AOS model	Constraints operators	
	000	

To solve \hat{H}^{eff} , we consider a geometric superselection sector ${}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}} \otimes {}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}}$. In a generalized eigenspace of the $\hat{\delta}_h$ and $\hat{\Omega}_c$ operators, the constraint can be reexpressed on the radial sector as

$$\hat{\mathcal{Q}}_b(m_c) |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = \left[(\hat{\Omega}_b + m_c)^2 + \delta_b^2 \frac{\hat{\tilde{p}}_b^2}{L_o^2} \right] |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = m_c^2 |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle.$$
(11)

> Since $\hat{\mathcal{Q}}_b(m_c)$ has a discrete spectrum, discrete solutions appear in the geometrical superselected sector.

To solve \hat{H}^{eff} , we consider a geometric superselection sector ${}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}_b} \otimes {}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}_c}$. In a generalized eigenspace of the $\hat{\delta}_b$ and $\hat{\Omega}_c$ operators, the constraint can be reexpressed on the radial sector as

$$\hat{\mathcal{Q}}_b(m_c) |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = \left[(\hat{\Omega}_b + m_c)^2 + \delta_b^2 \frac{\hat{\tilde{p}}_b^2}{L_o^2} \right] |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = m_c^2 |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle.$$
(11)

LOOP's 24, Florida

9/12

- > Since $\hat{\mathcal{Q}}_b(m_c)$ has a discrete spectrum, discrete solutions appear in the geometrical superselected sector.
- > Continuous solutions, for any black hole mass $\mathbf{m} = \mathbf{m}_{\mathbf{c}}$, appear if we instead search for them in a much larger set, namely the **algebraic dual** of the linear span of the eigenstates of \hat{p}_b .

To solve \hat{H}^{eff} , we consider a geometric superselection sector ${}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}_b} \otimes {}^{(2)}\mathcal{H}^+_{\tilde{\epsilon}_c}$. In a generalized eigenspace of the $\hat{\delta}_b$ and $\hat{\Omega}_c$ operators, the constraint can be reexpressed on the radial sector as

$$\hat{\mathcal{Q}}_b(m_c) |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = \left[(\hat{\Omega}_b + m_c)^2 + \delta_b^2 \frac{\hat{p}_b^2}{L_o^2} \right] |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle = m_c^2 |\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle.$$
(11)

- > Since $\hat{Q}_b(m_c)$ has a discrete spectrum, discrete solutions appear in the geometrical superselected sector.
- > Continuous solutions, for any black hole mass $\mathbf{m} = \mathbf{m}_{\mathbf{c}}$, appear if we instead search for them in a much larger set, namely the **algebraic dual** of the linear span of the eigenstates of \hat{p}_b .

Our choice

Solutions depend on where you look for them. We opt to proceed with the second case to favor a **continuous classical limit**.

A. Mínguez-Sánchez (IEM-CSIC)

BH interior model in LQC

9/12

The angular contribution $|e_{m}^{\tilde{\epsilon}_{c}}\rangle$ depends on **one** initial data.

æ

The angular contribution $|e_{\overline{k}}^{\overline{\epsilon}_c}\rangle$ depends on **one** initial data. The radial contribution $|\psi_{\delta_k}^{\overline{\epsilon}_c}\rangle$ depends on **two** initial data.

The angular contribution $|e_m^{\tilde{\epsilon}_c}\rangle$ depends on **one** initial data.

The radial contribution $|\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle$ depends on **two** initial data.

The δ -contributions amount to impose Dirac deltas on the wave function of the physical state such that

$$\delta_b = K_b(m,m) = \tilde{K}_b(m), \qquad \delta_c = K_c(m,m) = \tilde{K}_c(m). \tag{12}$$

The angular contribution $|e_m^{\tilde{\epsilon}_c}\rangle$ depends on **one** initial data.

The radial contribution $|\psi_{\delta_b}^{\tilde{\epsilon}_b}\rangle$ depends on **two** initial data.

The δ -contributions amount to impose Dirac deltas on the wave function of the physical state such that

$$\delta_b = K_b(m, m) = \tilde{K}_b(m), \qquad \delta_c = K_c(m, m) = \tilde{K}_c(m). \tag{12}$$

To ensure that the radial solution depends on one initial data, we impose on the closest two points to the origin of our superselected sector

$$\langle \tilde{\epsilon}_b | \left(\hat{\Omega}_b + m + \sqrt{m^2 - \delta_b^2 \hat{p}_b^2 / L_o^2} \right) | \psi_{\delta_b}^{\tilde{\epsilon}_b} \rangle = 0.$$
(13)

This expression represents the classical behavior of Ω_b when $\delta_b \tilde{p}_b$ is small.

	The AOS model		Physical states	
_				

Formally, the physical states satisfy: $\hat{H}^{\text{eff}}|\xi_p\rangle = 0$, $\hat{\Psi}_b|\xi_p\rangle = 0$, and $\hat{\Psi}_c|\xi_p\rangle = 0$.

Formally, the physical states satisfy: $\hat{H}^{\text{eff}}|\xi_p\rangle = 0$, $\hat{\Psi}_b|\xi_p\rangle = 0$, and $\hat{\Psi}_c|\xi_p\rangle = 0$.

Physical states

$$|\xi_{p}\rangle = \int_{\mathbb{R}} \mathrm{d}m \sum_{\tilde{\mu}_{b}, \tilde{\mu}_{c}} \xi(m) \psi_{\delta_{b}}^{\tilde{\epsilon}_{b}}(\tilde{\mu}_{b})|_{\delta_{b} = \tilde{K}_{b}(m)} e_{m}^{\tilde{\epsilon}_{c}}(\tilde{\mu}_{c}) |\tilde{\mu}_{b}, \tilde{\mu}_{c}, \delta_{b} = \tilde{K}_{b}(m), \delta_{c} = \tilde{K}_{c}(m)\rangle.$$
(14)

Formally, the physical states satisfy: $\hat{H}^{\text{eff}}|\xi_p\rangle = 0$, $\hat{\Psi}_b|\xi_p\rangle = 0$, and $\hat{\Psi}_c|\xi_p\rangle = 0$.

Physical states

$$|\xi_{p}\rangle = \int_{\mathbb{R}} \mathrm{d}m \sum_{\tilde{\mu}_{b}, \tilde{\mu}_{c}} \xi(m) \psi_{\delta_{b}}^{\tilde{\epsilon}_{b}}(\tilde{\mu}_{b})|_{\delta_{b} = \tilde{K}_{b}(m)} e_{m}^{\tilde{\epsilon}_{c}}(\tilde{\mu}_{c}) |\tilde{\mu}_{b}, \tilde{\mu}_{c}, \delta_{b} = \tilde{K}_{b}(m), \delta_{c} = \tilde{K}_{c}(m)\rangle.$$
(14)

LOOP's 24, Florida

11/12

> The state $|\xi_p\rangle$ is totally characterized by its **mass profile** $\xi(m)$.

Formally, the physical states satisfy: $\hat{H}^{\text{eff}}|\xi_p\rangle = 0$, $\hat{\Psi}_b|\xi_p\rangle = 0$, and $\hat{\Psi}_c|\xi_p\rangle = 0$.

Physical states

$$|\xi_p\rangle = \int_{\mathbb{R}} \mathrm{d}m \sum_{\tilde{\mu}_b, \tilde{\mu}_c} \xi(m) \psi_{\delta_b}^{\tilde{\epsilon}_b}(\tilde{\mu}_b)|_{\delta_b = \tilde{K}_b(m)} e_m^{\tilde{\epsilon}_c}(\tilde{\mu}_c) |\tilde{\mu}_b, \tilde{\mu}_c, \delta_b = \tilde{K}_b(m), \delta_c = \tilde{K}_c(m)\rangle.$$
(14)

- > The state $|\xi_p\rangle$ is totally characterized by its **mass profile** $\xi(m)$.
- > We can construct states peaked on **large masses**.

Formally, the physical states satisfy: $\hat{H}^{\text{eff}}|\xi_p\rangle = 0$, $\hat{\Psi}_b|\xi_p\rangle = 0$, and $\hat{\Psi}_c|\xi_p\rangle = 0$.

Physical states

$$|\xi_p\rangle = \int_{\mathbb{R}} \mathrm{d}m \sum_{\tilde{\mu}_b, \tilde{\mu}_c} \xi(m) \psi_{\delta_b}^{\tilde{\epsilon}_b}(\tilde{\mu}_b)|_{\delta_b = \tilde{K}_b(m)} e_m^{\tilde{\epsilon}_c}(\tilde{\mu}_c) |\tilde{\mu}_b, \tilde{\mu}_c, \delta_b = \tilde{K}_b(m), \delta_c = \tilde{K}_c(m)\rangle.$$
(14)

- > The state $|\xi_p\rangle$ is totally characterized by its **mass profile** $\xi(m)$.
- > We can construct states peaked on **large masses**.
- ➤ We can caracterize a physical Hilbert space by defining an adequate inner product for these states.

> We have quantized the **extended AOS phase space** according to LQC.

æ

- > We have quantized the **extended AOS phase space** according to LQC.
- > Our solutions belong to a larger set than the Kinematic Hilbert space.

- > We have quantized the **extended AOS phase space** according to LQC.
- $\succ\,$ Our solutions belong to a larger set than the Kinematic Hilbert space.
- > We have successfully obtained solutions for all real black hole masses.

- > We have quantized the **extended AOS phase space** according to LQC.
- \succ Our solutions belong to a larger set than the Kinematic Hilbert space.
- > We have successfully obtained solutions for all real black hole masses.
- ➤ Each generalized solution for the angular and radial sectors depend on a single initial data.

Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions

- > We have quantized the **extended AOS phase space** according to LQC.
- \succ Our solutions belong to a larger set than the Kinematic Hilbert space.
- > We have successfully obtained solutions for all real black hole masses.
- \succ Each generalized solution for the angular and radial sectors depend on a single initial data.
- > For all real masses, physical states are characterized by their **mass profile**.

Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions

- > We have quantized the **extended AOS phase space** according to LQC.
- $\succ\,$ Our solutions belong to a larger set than the Kinematic Hilbert space.
- > We have successfully obtained solutions for all real black hole masses.
- \succ Each generalized solution for the angular and radial sectors depend on a single initial data.
- > For all real masses, physical states are characterized by their **mass profile**.

Further researches

- ✤ Inclusion of matter fields.
- ✦ Consideration of perturbations.
- Extension of the results to the exterior.