
Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions

Quantization of a black hole interior model in
Loop Quantum Cosmology

Andrés Mı́nguez-Sánchez1

in collaboration with B. Elizaga Navascués2 & G.A. Mena Marugán1.

1Instituto de Estructura de la Materia (IEM) & 2Louisiana State University (LSU).

LOOP’s 24 International Conference, Florida, 6-10th May 2024.

arXiv:2306.06090

A. Mı́nguez-Sánchez (IEM-CSIC) BH interior model in LQC LOOP’s 24, Florida 1 / 12



Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions

Introduction

â When considering possible quantum gravity phenomena, we often think
of the early universe and/or black holes.

â There has recently been a renewed interest in studying black hole models
applying Loop Quantum Cosmology (LQC) techniques.

Objetive

Use LQC to explore the quantum aspects of the simplest black hole scenario
(Schwarzschild). In doing so, we contemplate:

F A recent effective proposal made by Ashtekar, Olmedo, and Singh (AOS).

F A study of the black hole interior geometry.

F A complete quantum description.
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Motivation for the AOS model

The AOS polymerization parameters depend on the black hole mass.

Properties

F The singularity is replaced with a transition surface.

F Quantum effects are small near the horizon.

F Curvature invariants are finite.

F Geometry smoothly extends to the exterior.

Effective formulation

F EoM lack Hamiltonian form without an extended formulation.

F Reducing the model alters the symplectic structure, making it too complex
for quantization. The extended version seems more manageable.
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Framework of the extended AOS model

The metric in the interior region takes the Kantowski-Sachs (KS) form:

ds2 = −N(τ)2dτ2 +
p2
b(τ)

L2
o|pc(τ)|

dx2 + |pc(τ)|(dθ2 + sin2 θdφ2). (1)

The extended phase space has 4 canonical pairs of degrees of freedom

{b, pb} = γ, {c, pc} = 2γ, {δb, pδb} = 1, {δc, pδc} = 1. (2)

The dynamics are subject to three constraints

H̃eff[Ñ ], Ψb[λb], Ψc[λc]. (3)

For a densitized lapse Ñ , the effective Hamiltonian is defined as

H̃eff[Ñ ] = −ÑLo
[
Ω2
b +

p2
b

L2
o

+ 2ΩbΩc

]
, Ωj =

pj sin(δjj)

γLoδj
for j = b or c. (4)
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Dynamics of the extended AOS model

To define the other two constraints, one must first define the quantities

Ob = − 1

2Ωb

[
Ω2
b +

p2
b

L2
o

]
, Oc = Ωc. (5)

(Ob, Oc) are constants of motion if (δb, δc) are also constants of motion. They
coincide with the black hole mass m on-shell.

The constraints Ψj [λj ] = λj [Kj(Ob, Oc)− δj ] follow the AOS prescription

Kb(m,m)
m�1−−−→

( √
∆√

2πγ2m

)1/3

, Kc(m,m)
m�1−−−→ 1

2Lo

(
γ∆2

4π2m

)1/3

. (6)

The dynamics of the AOS model emerge through H̃eff[Ñ ] on the constraint
surface when the inverse of Ñ is fixed to 2Ωb.

A. Mı́nguez-Sánchez (IEM-CSIC) BH interior model in LQC LOOP’s 24, Florida 5 / 12



Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions

Dynamics of the extended AOS model

To define the other two constraints, one must first define the quantities

Ob = − 1

2Ωb

[
Ω2
b +

p2
b

L2
o

]
, Oc = Ωc. (5)

(Ob, Oc) are constants of motion if (δb, δc) are also constants of motion. They
coincide with the black hole mass m on-shell.

The constraints Ψj [λj ] = λj [Kj(Ob, Oc)− δj ] follow the AOS prescription

Kb(m,m)
m�1−−−→

( √
∆√

2πγ2m

)1/3

, Kc(m,m)
m�1−−−→ 1

2Lo

(
γ∆2

4π2m

)1/3

. (6)

The dynamics of the AOS model emerge through H̃eff[Ñ ] on the constraint
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Loop quantization

It is most convenient to define the scaled triad variables: p̃j = pj/δj .

Quantum representation

F For the geometry, we employ the triad representation.

F For the δ-parameters, we use the standard (Schrödinger) representation.

F The kinematic Hilbert space is obtained by taking the tensor product.

F A basis of (generalized) eigenstates is represented by {|µ̃b, µ̃c, δb, δc〉}.

Quamntum operators [e.g. for the angular sector]

ˆ̃pc|µ̃b, µ̃b, δc, δc〉 = γµ̃c|µ̃b, µ̃c, δb, δc〉, δ̂c|µ̃b, µ̃c, δb, δc〉 = δc|µ̃b, µ̃c, δb, δc〉,

2i ̂sin(δcc)|µ̃b, µ̃c, δb, δc〉 = |µ̃b, µ̃c + 2, δb, δc〉 − |µ̃b, µ̃c − 2, δb, δc〉.
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Constraints operators

The constraints on the δ-parameters are straightforward to implement.

The Hamiltonian constraint operator becomes

Ĥeff = −Lo

[
Ω̂2
b + δ̂2

b

ˆ̃p2
b

L2
o

+ 2Ω̂bΩ̂c

]
, (7)

where we use the MMO prescription to define

Ω̂j =
1

2γLo
| ˆ̃pj |1/2

[
̂sin(δjj) ̂sign(p̃j) + ̂sign(p̃j) ̂sin(δjj)

]
| ˆ̃pj |1/2. (8)

To understand Ĥeff action, we need to first analyze Ω̂j and Ω̂2
j operators.

The eigenvalues of Ôc = Ω̂c represent the mass of the black hole.
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Mass operators

Ω̂2
j operator

4-unit step difference operator, essentially self-adjoint, positively defined, with
a positive, continuous, and nondegenerate spectrum. It leaves invariant

(4)H±
ε̃j

= span
{
|µ̃j〉 : µ̃j ∈

(4)L±
ε̃j

}
,

(4)L±
ε̃j

= {±(ε̃j + 4n) : n ∈ N}. (9)

for εj ∈ (0, 4]. Its eigenstates, Ω̂2
j |e

ε̃j
m2

j
〉 = m2

j |e
ε̃j
m2

j
〉, depend on one initial data.

Ω̂j operator

2-unit step difference operator, essentially self-adjoint, with real, continuous,
and nondegenerate spectrum. It leaves invariant

(2)H±
ε̃j

=
(4)H±

ε̃j
⊗ (4)H±

ε̃j+2, |eε̃jmj
〉 = |mj |1/2[|eε̃j

m2
j
〉⊗ isign(−mj)|e

ε̃j+2

m2
j
〉]. (10)

for εj ∈ (0, 2]. Its eigenstates, Ω̂j |e
ε̃j
mj 〉 = mj |e

ε̃j
mj 〉, depend on one initial data.
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Hamiltonian constraint

To solve Ĥeff, we consider a geometric superselection sector
(2)H+

ε̃b
⊗ (2)H+

ε̃c
.

In a generalized eigenspace of the δ̂b and Ω̂c operators, the constraint can be
reexpressed on the radial sector as

Q̂b (mc) |ψε̃bδb〉 =

[
(Ω̂b +mc)

2 + δ2
b

ˆ̃p2
b

L2
o

]
|ψε̃bδb〉 = m2

c |ψ
ε̃b
δb
〉. (11)

â Since Q̂b (mc) has a discrete spectrum, discrete solutions appear in the
geometrical superselected sector.

â Continuous solutions, for any black hole mass m=mc, appear if we instead
search for them in a much larger set, namely the algebraic dual of the
linear span of the eigenstates of ˆ̃pb.

Our choice
Solutions depend on where you look for them. We opt to proceed with the
second case to favor a continuous classical limit.
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Construction of the states

The angular contribution |eε̃cm〉 depends on one initial data.

The radial contribution |ψε̃bδb〉 depends on two initial data.

The δ-contributions amount to impose Dirac deltas on the wave function of the
physical state such that

δb = Kb(m,m) = K̃b(m), δc = Kc(m,m) = K̃c(m). (12)

To ensure that the radial solution depends on one inital data, we impose on
the closest two points to the origin of our superselected sector

〈ε̃b|
(

Ω̂b +m+
√
m2 − δ2

b
ˆ̃p2
b/L

2
o

)
|ψε̃bδb〉 = 0. (13)

This expression represents the classical behavior of Ωb when δbp̃b is small.
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Properties of the states

Formally, the physical states satisfy: Ĥeff|ξp〉 = 0, Ψ̂b|ξp〉 = 0, and Ψ̂c|ξp〉 = 0.

Physical states

|ξp〉=

∫
R

dm
∑
µ̃b,µ̃c

ξ(m)ψ
ε̃b
δb

(µ̃b)|δb=K̃b(m)e
ε̃c
m(µ̃c) |µ̃b, µ̃c, δb = K̃b(m), δc=K̃c(m)〉. (14)

â The state |ξp〉 is totally characterized by its mass profile ξ(m).

â We can construct states peaked on large masses.

â We can caracterize a physical Hilbert space by defining an adequate inner
product for these states.
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Formally, the physical states satisfy: Ĥeff|ξp〉 = 0, Ψ̂b|ξp〉 = 0, and Ψ̂c|ξp〉 = 0.

Physical states

|ξp〉=

∫
R

dm
∑
µ̃b,µ̃c

ξ(m)ψ
ε̃b
δb

(µ̃b)|δb=K̃b(m)e
ε̃c
m(µ̃c) |µ̃b, µ̃c, δb = K̃b(m), δc=K̃c(m)〉. (14)

â The state |ξp〉 is totally characterized by its mass profile ξ(m).

â We can construct states peaked on large masses.

â We can caracterize a physical Hilbert space by defining an adequate inner
product for these states.

A. Mı́nguez-Sánchez (IEM-CSIC) BH interior model in LQC LOOP’s 24, Florida 11 / 12



Introduction The AOS model Loop quantization Constraints operators Physical states Conclusions

Properties of the states
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Conclusions

â We have quantized the extended AOS phase space according to LQC.

â Our solutions belong to a larger set than the Kinematic Hilbert space.

â We have successfully obtained solutions for all real black hole masses.

â Each generalized solution for the angular and radial sectors depend on a
single initial data.

â For all real masses, physical states are characterized by their mass profile.

Further researches

F Inclusion of matter fields.

F Consideration of perturbations.

F Extension of the results to the exterior.
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