Towards canonical LQG with neural networks

From the basics to 3d gravity in Smolin's weak coupling limit

Waleed Sherif, Hanno Sahlmann Department Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

[arXiv: 2402.10622, 2405.00661]

Learned some deep things about QG from LQG

Singularity avoidance

▶ ...

One big open question (in my mind):

(Physical!) quantum state of (1Å)⁴ of spacetime in this room?

(->A. Perez: Planck scale DOF)

Idea

Solve constraints of canonical LQG numerically, without symmetry assumption.

Problems:

- Cutoff: Single graph χ ?
- Cutoff: j_{max} ?
- Exponential growth of Hilbert space:

 $\dim \mathcal{H}_{\rm kin} \sim (2j_{\rm max} + 1)^{2|\gamma|}$

Picture: solid state physics!

In this talk

Proof of principle, using

U(1) BF-Theory [2402.10622]
3d Euclidean gravity in Smolin sma

Of course: Can be solved analytically (but...)

▷ 3d Euclidean gravity in Smolin small coupling limit SU(2) -> U(1)³ [2405.00661]

Exponential growth

	dim H	size Ψ	size
m _{max} = ½	104	100 kB	1 G
m _{max} =1	107	100 MB	1 P
m _{max} =2	10 10	10 GB	1 ZE

Need smart Ansatz for the state
Need sophisticated software tools

U(1), cutoff: charges $m \in \{-m_{max}, \dots, m_{max}\}$ dim $H = (2 m_{max} + 1)^{15}$

Neural network quantum states

In principle

 $(\underline{m}_1, \underline{m}_2, \ldots, \underline{m}_N)$

Weights w_{ij}

 $\Psi(\underline{m}_1, \underline{m}_2, \ldots, \underline{m}_N)$

Neural network quantum states

In practice

Other methods: Tensor network states, ex. [Cunningham, Dittrich, Steinhaus]

 $\langle C \rangle_{\Psi_w} \stackrel{!}{=} \min$

Prosaic interpretation: Variational Ansatz for physical state Romantic interpretation: Special kind of brain learns about gauge invariance etc.

NetKet

- Differentiable programming for gradient descent
- Markov-chain Monte Carlo to compute $\langle C \rangle_{\Psi_m}$
- No need to hold entire C in memory

We did:

- Custom representation of graphs, holonomies, fluxes
- Spatial volume operator, constraint operators

Plan: eventually release software package. Dream: Network weights as essence

Quantum constraints

Master constraints: 0

$$\hat{G}|_{\gamma} = \sum_{v \in V(\gamma)} \sum_{i=1}^{3} (\hat{E}_{S(v),i})^2$$
$$\hat{F}_{\gamma} = \sum_{\alpha \in L(\gamma)} \operatorname{tr} \left[\left(\hat{h}_{\alpha} - \mathbb{1} \right) \left(\hat{h}_{\alpha}^{\dagger} - \mathbb{1} \right) \right]$$

Thiemann-regularized Hamilton constraint: (TRC) [Thiemann: QSD IV]

$$\hat{H}_{T(\gamma)}(N) = \frac{2}{\hbar^2} \sum_{\Delta, \Delta' \in T, v} \epsilon^{ij} \epsilon^{kl} N(v) \operatorname{tr}(\hat{h}_{\alpha_{ij}(\Delta')} \hat{h}_{s_k(\Delta)} [\hat{h}_{s_k(\Delta)}^{-1}, \sqrt{\hat{V}_v}] \hat{h}_{s_l(\Delta)} [\hat{h}_{s_l(\Delta)}^{-1}, \sqrt{\hat{V}_v}])$$

(Gauß)

(Curvature)

Cutoffs

Representations:

 $U(1)^3 \longrightarrow U(1)_q^3$

charges $\in \{-m_{\max}, -m_{\max} + 1, ..., m_{\max}\}$

Graph:

Sanity checks: U(1) BF

Sanity checks: U(1) BF

Good approximation

 $\gg m_{max} \longrightarrow \infty$ looks reasonable

		1100 cm cc y (70)	
0.835968	0.99866 ± 0.00028	80.538	0.9895
0.601165	0.625 ± 0.0013	96.034	0.9979
0.389553	0.3942 ± 0.0045	98.818	0.996
0.263623	0.2648 ± 0.0013	99.539	0.9906
0.187973	0.1882 ± 0.0017	99.853	0.989
0.140084	0.1412 ± 0.0035	99.189	0.9834
0.108159	0.1133 ± 0.0066	95.218	0.983
0.085918	0.0833 ± 0.0079	96.931	0.9598

$m_{max} = 8: dim H = 1.4 * 10^{6}$ $#(weights) = 4 * 10^4$

U(1)³ with master constraints

 $m_{max} = 2: dim H = 3 * 10^{10}$ #(weights) = 6 * 10³

m_{max}	$\min \langle \hat{C} \rangle_{(\text{ED})}^{**}$	$\min \langle \hat{C} \rangle_{(\mathrm{NN})}$	Accuracy $(\%)$
1	2.507903	2.998 ± 0.017	80.441
2	1.803495	1.74 ± 0.16	96.286
3	1.168658	1.12 ± 0.11	96.069
4	0.790868	0.84 ± 0.21	93.788

- Convergence!
- Same architecture works
- Way beyond exact diagonalization

U(1)³ with master constraints

 $m_{max} = 4$ entails:

Constraint represented naively as matrix would be 10¹⁸ TB

But:

42 000 weights

➢ 30 Minutes as base level HPC job

U(1)³: Operators

Volume [Thiemann: QSD IV]

Can deal with complicated operators Have checked expected behavior

$$\operatorname{ign}(e, e') \epsilon_{IJK} X_e^J X_{e'}^K \right)^2$$

U(1)³: Thiemann-regulated constraint [Thiemann: QSD IV]

$$\hat{H}_{T(\gamma)}(N) = \frac{2}{\hbar^2} \sum_{\Delta, \Delta' \in T, v} \epsilon^{ij} \epsilon^{kl} N(v) \operatorname{tr}(\hat{h}_{\alpha_{ij}(\Delta')}) \hat{h}_{\alpha_{ij}(\Delta')} \hat{h}_{\alpha_{ij}$$

Cautious remarks

 $\hat{h}_{s_k(\Delta)}[\hat{h}_{s_k(\Delta)}^{-1},\sqrt{\hat{V}_v}]\hat{h}_{s_l(\Delta)}[\hat{h}_{s_l(\Delta)}^{-1},\sqrt{\hat{V}_v}])$

$\sqrt{\hat{V}} \text{ via Taylor expansion}$ (Mostly) no diffeo constraint

Solving C, CTRC

C, C_{TRC} look very different. So, do they have anything in common?

Solving C, observing CTRC

Solving CTRC, observing C

The solutions have a small overlap:

$$|\langle \Psi_{\hat{C}_{\text{TRC}}} | \Psi_{\hat{C}} \rangle|^2 \approx 0.0308$$
 , arccos

However, this is not an accident. If they were

$$P_{N}^{\mathbb{C}}(|\langle \Psi_{\hat{C}_{\text{TRC}}} \mid \Psi_{\hat{C}} \rangle|^{2} \ge 0.0308) \sim 10^{-194953}$$
$$P_{N^{G}}^{\mathbb{C}}(|\langle \Psi_{\hat{C}_{\text{TRC}}} \mid \Psi_{\hat{C}} \rangle|^{2} \ge 0.0308) \sim 10^{-10}$$
$$P_{N^{G}}^{\mathbb{R}}(|\langle \Psi_{\hat{C}_{\text{TRC}}} \mid \Psi_{\hat{C}} \rangle|^{2} \ge 0.0308) \sim 10^{-5}$$

$|\langle \Psi_{\hat{C}_{\mathrm{TRC}}} | \Psi_{\hat{C}} \rangle| \approx 1.394 \mathrm{rad}$

Preliminary:

Implementation of diffeo = average over graph symmetries

Overlap gets slightly bigger

Summary

Neural networks can in principle par

NetKet:

- * Strong enough to represent LQG-t
- * Powerful numerical capabilities
- Exponential growth of dim H always
 - * Cutoffs too severe?
 - * Start from gauge invariant descript
- Need to go to 4d and SU(2), need (r
- We live exciting times

Waleed Sherif

Sanity checks: U(1) BF

Gauge invariant subspace is selected