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Learned some deep things about QG from LQG 

 Microstates of black holes 

 Singularity avoidance  

 … 

One big open question (in my mind): 

(Physical!) quantum state of (1Å)4 of spacetime in this room? 

(—> A. Perez: Planck scale DOF)
?



Idea
Solve constraints of canonical LQG numerically, without symmetry assumption.  

Problems:  

 Cutoff: Single graph ɣ? 

 Cutoff: jmax ? 

 Exponential growth of Hilbert space:  

Picture: solid state physics!

<latexit sha1_base64="VNr2wh9mo4stqlE6KPVQfM+7fQQ="></latexit>

dimHkin ⇠ (2jmax + 1)2|�|



In this talk
Proof of principle, using  

 U(1) BF-Theory [2402.10622] 

 3d Euclidean gravity in Smolin small coupling limit SU(2) —> U(1)3 [2405.00661] 

 Simple graph  

Of course: Can be solved analytically (but…)
ɣ



Exponential growth

 Need smart Ansatz for the state 

 Need sophisticated software tools

dim H size Ψ size C 

mmax = ½ 104 100 kB 1 GB

mmax =1 107 100 MB 1 PB

mmax =2 1010 10 GB 1 ZB

dim H = (2 mmax + 1)15 

U(1),cutoff:  

charges m ∈ {-mmax,…,mmax} 

ɣ



Neural network quantum states 

(m1, m2, …, mN) Ψ(m1, m2, …, mN)

Weights wij

In principle 



Neural network quantum states
In practice 13

Figure 2: The architecture of the neural network used in this work. From the left, the
network accepts batches of MCMC sampled configurations. The Learning Block includes
several convolution blocks, shown in purple, each composed of di↵erent layers. Skip
connections are shown in red. Lastly, the Eval Block is a simple FFN the output of which,
shown at the utmost right, is comprised of the amplitudes of each basis state in the given
batch of configurations.

block and the (eval)uation block. The first is tasked to learn, that is to perform fea-

ture extraction on the given inputs. It is composed of several convolutional sub-blocks.

These sub-blocks include convolution layers but also normalisationk, dropout¶, activa-
tion and pooling layers. The number of these convolution sub-blocks varies with respect

to dimH�̃. Furthermore, for large mmax, then skip connections+ resembling what would

be implemented in a residual network [64] are implemented, as shown in red in the fig-

ure. The layers of the convolution sub-blocks then change to adhere to that of a residual

network. Lastly, the eval block is a simple FFN, the output of which is then understood

as the amplitudes of the wave-function. The non-linearity is introduced by using the

hard sigmoid linear unit (SiLU) activation in most blocks, and the sigmoid or rectified

linear unit (ReLU) in others, such as the FFN block. Thus, our non-linearity can take

the forms

f(x) =

8
>>>><

>>>>:

(i) Sigmoid : �(x) = 1/(1 + e�x)

(ii) ReLU : max(0, x),

(iii) Hard SiLU :

(
x · �(x), if x > threshold

0, if x  threshold

(25)

We note that certain neural networks, which are inherently invariant or equivariant un-

der certain groups, have been used [65, 66, 67]. However, we opt not to implement such

networks in our work. We will show that despite that, the network is able to respect

the gauge, and e↵ectively narrowing down the search for only the gauge invariant states.

k A layer normalising the input to the activation layer to prevent instabilities and fluctuations
¶ A layer where some weights are randomly “switched o↵” to prevent the network from biasing certain
weights
+ A type of transformation which connects di↵erent previous layers to each other, these can be long or
short skip connections.

(m1, m2, …, mN) Ψ(m1, m2, …, mN)

Number of blocks scale with size of graph 
Other methods: Tensor network states, ex. [Cunningham,Dittrich,Steinhaus]



Prosaic interpretation: Variational Ansatz for physical state

<latexit sha1_base64="T5zWOE0M7RNsg0cDM5sXkUtnEZQ="></latexit>

hCi w

!
= min

Romantic interpretation: Special kind of brain learns about gauge invariance etc.  



 Differentiable programming for gradient descent  

 Markov-chain Monte Carlo to compute 

 No need to hold entire C in memory 

We did: 

 Custom representation of graphs, holonomies, fluxes 

 Spatial volume operator, constraint operators   

Plan: eventually release software package. Dream: Network weights as essence 

<latexit sha1_base64="M3GzE1Iiagy6YUtZzzyirHwilL0=">AAACE3icbVDLTgIxFO34AvEFunTTSEzUBZlxgS5J2LBEI4+EIaRTLtDQ6UzajoZM5h/cmPglblxojFs37vRrLAMLBU/S5uSc+2iPF3KmtG1/WSura+sbmexmbmt7Z3cvX9hvqiCSFBo04IFse0QBZwIammkO7VAC8T0OLW9cnfqtW5CKBeJGT0Lo+mQo2IBRoo3Uy5+5nIghB1zFrkxZL3bripk7HR5L6Cf4Lkkw7uWLdslOgZeJMyfFymkhc/39OKz38p9uP6CRD0JTTpTqOHaouzGRmlEOSc6NFISEjskQOoYK4oPqxunaBB8bpY8HgTRHaJyqvzti4is18T1T6RM9UoveVPzP60R6cNmNmQgjDYLOFg0ijnWApwHhPpNANZ8YQqhk5q2YjogkVJsYcyYEZ/HLy6R5XnLKpfKVSaOGZsiiQ3SETpCDLlAF1VAdNRBF9+gJvaBX68F6tt6s91npijXvOUB/YH38AI0doOo=</latexit>
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Quantum constraints
Master constraints:                                                                                                                                                                                      

Thiemann-regularized Hamilton constraint: (TRC)

10

where L(�) is a set of minimal loops in �, and

Ĝ|� =
X

v2V (�)

3X

i=1

(ÊS(v),i)
2 (25)

where S(v) is a small sphere around the vertex v. In principle, we would then demand

h �| F̂� + Ĝ|� | �i = 0 (26)

for a physical state  �. Just as in [38], the solutions of the flatness constraint are not

normalisable in HAL but instead form a di↵erent measure µflat which is the �-measure

on flat connections [63, 64, 65, 66]. It is not absolutely continuous with respect to the

Ashtekar-Lewandowski measure but we also nevertheless choose to work with states in

HAL, which can approximate solutions. For details of how these constraints are imple-

mented in the computational model, see Section 3.1.

The constraints (4) look structurally di↵erent from those of 4d gravity [67]. Never-

theless, it was shown that one can bring them into the same form [11]. This is very

interesting, because it maximizes the analogy of this model to 4d gravity. In this form,

the constraints read [11]

GI := DaE
a
I , Va := F

I
abE

b
I , H :=

1

2
p
det q

✏IJKF
I
abE

a
JE

b
K (27)

where Da denotes the covariant derivative with respect to the connection, q is spatial

the metric and E
a
I are modified densitised triads [11]. The Gauß constraint remains

unchanged. However, the curvature constraint is now replaced by the di↵eomorphism

(vector) constraint Va and the Hamilton (scalar) constraint H. The field theories gov-

erned by the constraints (4) shown previously and these three constraints shown above

are classically equivalent. However, it is argued that upon quantisations, the two quan-

tum theories are di↵erent, having little overlap in their solution spaces [11].

The exact procedure of deriving the quantum Hamilton constraint, is too complex to be

presented here, and consequently, we only state the result. We partially follow the pre-

scription proposed in [11]: The classical constraint is regularized in terms of holonomies,

fluxes, and their Poisson brackets, all associated to a triangulation T . To turn this regu-

larization into an operator, one adapts the triangulation to a graph, T ⌘ T (�), replaces

holonomies and fluxes by their operator counterparts and takes a certain limit:

ĤT (�)(N)f� := lim
✏!0

ĤT,✏(N)f� (28)

=
2

~2
X

�,�02T,v

✏
ij
✏
kl
N(v) tr(ĥ↵ij(�0)ĥsk(�)[ĥ

�1
sk(�),

q
V̂v]ĥsl(�)[ĥ

�1
sl(�),

q
V̂v])f�.

(29)
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in a given cuto↵ mmax. The interpretation drawn is then that for larger mmax, one

approaches a setting where ⇤ is small. Of course, this has to be taken with a lot of

caution because the weak coupling limit employed here might have very little to do with

the original theory.

Lastly, one surprising consequence of this is that the curvature and Gauß constraints

will not commute in the quantum theory. Consequently, for finite mmax there are no

exact joint solutions of all the constraints. This frustration will however be shown to be

alleviated for large mmax. We will, in the following refer to this gravitational model as

quantum Uq(1)3 BF-theory.

2.3. Geometric operators

As previously mentioned, LQG comes with well-defined quantum geometric observables.

Therefore, in this quantised model one has for example a well-defined notion of quantum

volume. For a compact region B ⇢ ⌃, the volume operator is expressed as [11]

V̂ (B) :=
X

v2V (�)\B

V̂v , V̂v :=

vuutX

I

 
X

e,e0 at v

sign(e, e0)✏IJKXJ
e X

K
e0

!2

, (23)

where in the U(1)3-limit, the X
I
e are the three invariant vector fields on U(1)3, acting

on holonomies along e, and sign(e, e0) is the orientation of the tangents of the ordered

pair (e, e0) relative to the orientation of ⌃.

In the 4d case, an analog of this operator would vanish at gauge invariant vertices of

valence 3 or less while in 3-dimensions, this the case for valence 2 only, so long as there

are at least a pair of edges incident at the vertex with linearly independent tangents.

In this work, we will explore the implementation of this operator in our computational

framework and examine its properties as given in the literature. This operator also

plays a role for the Thiemann regularised quantum Hamilton constraint which we also

consider in this work.

2.4. Constraint operators

The classical theory considered so far is subject to the curvature and the Gauß

constraints (4). The Gauß constraints imposes charge vector conservation at every

vertex of the graph. The curvature constraint ensures flatness of holonomies. In one

of the two approaches pursued in this work, we impose both constraints in the form of

master constraints [60, 61, 62]. For a fixed graph �

F̂� =
X

↵2L(�)

tr
h⇣

ĥ↵ �
⌘⇣

ĥ
†
↵ �

⌘i
(24)
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�1
sk(�),

q
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(Gauß)

(Curvature)

[Thiemann: QSD IV]



Cutoffs
Representations: 

 tr(he) not gauge invariant  

 Non-trivial theory

Graph:
<latexit sha1_base64="rlPHlnhtLfaFKGc73F/RHnEk0OA="></latexit>
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charges 2 {�mmax,�mmax + 1, . . . ,mmax}
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quickly converges to the exact diagonalisation result shown in red, and one does not

need many iterations to reach a good accuracy. This mmax = 5 simulation shown in the

figure concluded with an accuracy in min hĈi of approximately 92.819%.

Figure 4: A mmax = 5 simulation is shown where the NNQS ansatz is used to find the
solution for the master constraint of the Uq(1) BF-theory posed on the graph described in
Figure 3. The exact diagonalisation result for min hĈi is shown in red and the NNQS result
is shown in green for every iteration in the simulation. The accuracy in this case is 92.819%.

In Table 1, we show the results di↵erent simulations for di↵erent charge cuto↵s ranging

from mmax = 1 to 8. The ED results are compared with the results obtained from the

NN. It is evident that the network is capable to obtain and maintain high accuracy rela-

tive to the ED result, indicating that the architecture employed can be used for solving

such models. This becomes especially useful once the considered models become too

large to be exactly diagonalised as the high accuracy establishes a degree of confidence

in the results obtained even if one cannot compare it with ED results.

Further seen in Table 1 is the e↵ect of having discrete group Uq(1) instead of the

continuum U(1) theory whereby now one obtains min hĈi > 0. This is despite the fact

that it was observed, using the NN and exact diagonalisation, that min hF̂ i and min hĜi
are independently is zero. Nevertheless, one sees that even for relatively low mmax, one

starts to recover the continuum theory as one sees that min hĈi ! 0 for mmax ! 1.

We attribute the lower accuracy of the mmax = 1 cuto↵ case to the fact that the net-

work is probably overfitting due to the number of parameters being more than dimH�̃.

Furthermore, as shown on the two rightmost columns, the accuracy of the results ob-

tained from the NN are measured in two ways: (i) the relative error compared to the

Sanity checks: U(1) BF 



16

quickly converges to the exact diagonalisation result shown in red, and one does not

need many iterations to reach a good accuracy. This mmax = 5 simulation shown in the

figure concluded with an accuracy in min hĈi of approximately 92.819%.
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are independently is zero. Nevertheless, one sees that even for relatively low mmax, one

starts to recover the continuum theory as one sees that min hĈi ! 0 for mmax ! 1.
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Sanity checks: U(1) BF 
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mmax min hĈiED min hĈiNN Accuracy (%) h (NN)| (ED)i2

1 0.835968 0.99866 ± 0.00028 80.538 0.9895

2 0.601165 0.625 ± 0.0013 96.034 0.9979

3 0.389553 0.3942 ± 0.0045 98.818 0.996

4 0.263623 0.2648 ± 0.0013 99.539 0.9906

5 0.187973 0.1882 ± 0.0017 99.853 0.989

6 0.140084 0.1412 ± 0.0035 99.189 0.9834

7 0.108159 0.1133 ± 0.0066 95.218 0.983

8 0.085918 0.0833 ± 0.0079 96.931 0.9598

Table 1: The value of min hĈi at di↵erent charge cuto↵ values are shown. The exact
diagonalisation results (ED) are compared to the results from the neural network (NN).
Note that values are truncated to 6 decimal values at most.

value of min hĈi as obtained from exact diagonalisation and (ii) the inner product of the

solution with that of obtained from exact diagonalisation. We see that in fact, we not

only have a good accuracy in terms of being close to the true min hĈi, but also that the

solutions obtained via ED and the NN are nearly identical, as evident from their inner

product, indicating that we do converge to the true solution as obtained from exact

diagonalisation.

3.2. Quantum fluctuations of minimal loop holonomies

Once the solution has been obtained, one can compute expectation values of observ-

ables. In all cases of di↵erent mmax, it was seen that hĜi is almost 0. This shows that

gauge invariance is almost perfectly imposed. In fact, it seems to be the case that the

Gauß part Ĝ of the constraint is often more enforced than the curvature counterpart.

This eliminates the need to implement gauge invariant neural networks, as the current

network has no trouble narrowing down the search to gauge invariant states.

In our simple model, one observable of interest that exist is the minimal loop holonomy

ĥ↵k
. Additionally, the curvature part of the master constraint e↵ectively imposes that

these minimal loop holonomies are as close to as possible. Once the solution is ob-

tained, in principle one expects that computing hĥ↵k
i should yield a value as close to 1

as possible if the constraint is well satisfied and the solution is accurate. Moreover, we

can also look at quantum fluctuations in ĥ↵k
, which we define as

�ĥ↵k
:= h(ĥ↵k

+ ĥ†
↵k
)2i � hĥ↵k

+ ĥ†
↵k
i
2
. (26)

In our graph, L(�) = 2 and thus we have two observables to compute for. The following

table shows the results for di↵erent charge cuto↵s, each obtained in the solution of the

corresponding simulation shown in the Table 1.

 Good approximation 

 mmax —> ∞ looks reasonable  mmax = 8: dim H = 1.4 * 106        
#(weights) = 4 * 104



U(1)3 with master constraints 

 mmax = 2: dim H = 3 * 1010        
#(weights) = 6 * 103  

 Convergence!   

 Same architecture works  

 Way beyond exact diagonalization
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correspond to them being the second quantisation operators† of their Uq(1) counter-

parts. As such, the eigenvalues � of the matrix [Ĉ]ij representing the master constraint

Ĉ in this work is merely 3�(1), where �(1) are the eigenvalues of the matrix representing

Uq(1) constraint. Therefore, to validate the results obtained in this work, one is required

to solve the Uq(1) model first. This is therefore why we choose to work with the same

graph considered in [38]. The exact diagonalisation (ED) results shown throughout this

work are therefore not computed, but rather taken to be three times the what is obtained

in [38]. This means that we now test the capability of the NNQS ansatz for a model

which one cannot solve using exact methods. This, on its own, is a remarkable point

as one is able to explore models which would otherwise be out of reach due to very real

computational limits. Lastly, in this work we search for solutions with only real valued

coe�cients in the charge network basis, which is the computational basis for the numer-

ical work. This is done to avoid the increase in computational demand from complex

coe�cients ‡. We note that this is a much less drastic restriction than what it seems,

since all the constraints have a real valued matrix representation in the computational

basis, which ensures that each solution of the constraint can be obtained as a linear

combination of solutions with real coe�cients (see Appendix C in [38]).

Figure 3: A simulation where the NNQS has been used to solve the Uq(1)3 model with a
cuto↵ mmax = 2. The accuracy achieved in this simulation was approximately 99.63%. The
number of network parameters needed to be optimised is 6412, constituting only⇠ 2⇥10�5%
of the dimensions of the Hilbert space (⇠ 3⇥ 1010).

† Â = d�(Â(1)) = Â
(1) ⌦ ⌦ + ⌦ Â

(1) ⌦ + ⌦ ⌦ Â
(1)

‡ using complex datatype (complex128) would require double the amount of allocated memory (16
bytes) per variable compared to double precision floating point datatype (float64)
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Furthermore, as shown in Figure 3, the network is able to solve such models remarkably

well at least for relatively low mmax cuto↵s, as shown in a simulation for a mmax = 2

cuto↵ where the accuracy achieved was 99.63%. The accuracy here denotes how close

the value of min hĈi obtained by the network at the final state at the end of the sim-

ulation to that of the estimated true value. If we consider the average min hĈi over

the last 100 iterations in the simulation, the accuracy then is approximately 91.38%. In

what follows, by accuracy we denote the former definition rather than the latter. Lastly,

the error bars shown in the figure arise due to calculations inherit to the minimisation

process, for example the Markov-Chain Monte-Carlo process.

Also seen in Figure 3, the NNQS ansatz with the network architecture used demon-

strates the same capabilities as seen in [38]. Namely, one still obtains the relatively

fast convergence due to the convolutional layers and the specific network architecture

utilising them. This is made even more remarkable when it is realised that for the

case of mmax = 4 as an example, we have only 42101 network parameters to optimise

in order to find the solution. While this may seem large at first, when compared to

dimH� = 205.89 ⇥ 1012 it is realised that we only need a vanishingly small amount

of information, equivalent to almost 2.045 ⇥ 10�8 % of the entire space, to obtain the

solution and thus performing extreme dimensionality reduction and drastically reduc-

ing the computational cost. Further, the computation time is rather “short” even on

standard, not high performance computing, hardware†. We do observe more prominent

fluctuations and larger error bars in the simulations compared to the simple Uq(1) model

considered in [38]. While these are not unusual, they may hint at room for improve-

ment in the used architecture. Further, it was also noticed that for higher mmax valued,

the reliability of the network gradually becomes lower, further indicating the need for

a better architecture. The following table summarises the values for min hĈi obtained
using the NNQS ansatz for di↵erent mmax cuto↵s.

mmax min hĈi⇤⇤(ED) min hĈi(NN) Accuracy (%)

1 2.507903 2.998 ± 0.017 80.441

2 1.803495 1.74 ± 0.16 96.286

3 1.168658 1.12 ± 0.11 96.069

4 0.790868 0.84 ± 0.21 93.788

Table 1: The values of min hĈi at di↵erent cuto↵ values are shown. The exact
diagonalisation results (ED) are compared to the results from the neural network (NN).
Note that values are truncated to 6 decimal values at most. **Here, the ED results are not
computed but are estimated based on the results obtained in [38].

† e.g. for mmax = 1 the Uq(1) model requires ⇡ 7 seconds to solve and a Uq(1)3 model requires ⇡ 30
minutes on a standard commercial 8-core Apple Silicon M1 chip, without multiprocessing
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in a given cuto↵ mmax. The interpretation drawn is then that for larger mmax, one

approaches a setting where ⇤ is small. Of course, this has to be taken with a lot of

caution because the weak coupling limit employed here might have very little to do with

the original theory.

Lastly, one surprising consequence of this is that the curvature and Gauß constraints

will not commute in the quantum theory. Consequently, for finite mmax there are no

exact joint solutions of all the constraints. This frustration will however be shown to be

alleviated for large mmax. We will, in the following refer to this gravitational model as

quantum Uq(1)3 BF-theory.

2.3. Geometric operators

As previously mentioned, LQG comes with well-defined quantum geometric observables.

Therefore, in this quantised model one has for example a well-defined notion of quantum

volume. For a compact region B ⇢ ⌃, the volume operator is expressed as [11]

V̂ (B) :=
X

v2V (�)\B

V̂v , V̂v :=

vuutX

I

 
X

e,e0 at v

sign(e, e0)✏IJKXJ
e X

K
e0

!2

, (23)

where in the U(1)3-limit, the X
I
e are the three invariant vector fields on U(1)3, acting

on holonomies along e, and sign(e, e0) is the orientation of the tangents of the ordered

pair (e, e0) relative to the orientation of ⌃.

In the 4d case, an analog of this operator would vanish at gauge invariant vertices of

valence 3 or less while in 3-dimensions, this the case for valence 2 only, so long as there

are at least a pair of edges incident at the vertex with linearly independent tangents.

In this work, we will explore the implementation of this operator in our computational

framework and examine its properties as given in the literature. This operator also

plays a role for the Thiemann regularised quantum Hamilton constraint which we also

consider in this work.

2.4. Constraint operators

The classical theory considered so far is subject to the curvature and the Gauß

constraints (4). The Gauß constraints imposes charge vector conservation at every

vertex of the graph. The curvature constraint ensures flatness of holonomies. In one

of the two approaches pursued in this work, we impose both constraints in the form of

master constraints [60, 61, 62]. For a fixed graph �

F̂� =
X

↵2L(�)

tr
h⇣

ĥ↵ �
⌘⇣

ĥ
†
↵ �

⌘i
(24)
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Figure 6: The expectation value of
p
V̂ for every vertex in the graph evaluated during

a mmax = 1 simulation where the constraint Ĉ was solved with an accuracy of 81.013%.

As shown in blue and beige,
p
V̂ does not vanish on 3-valent vertices (labeled by 0 and 2

in Figure 2). The 2-valent vertices 1 and 3 have a zero volume as shown since the charge
vectors on the edges attached to them are fixed by the Gauß constraint.

Figure 7: A mmax = 1 simulation where the constraint Ĉ is being solved and the
expectation value of the volume squared, the volume and the square root of the volume
operators are observed while acting on a 3-valent vertex of the graph in Figure 2.

As shown in Figure 7, the h
p
V̂ i on the vertex 0 is close to the square root of hV̂ i,

which in turn is close to the square root of hV̂ 2i. Specifically, at the end of the simula-

tion, the values were hV̂ 2i = 4.69± 0.43, hV̂ i = 1.78± 0.15 and h
p

V̂ i = 1.112± 0.088.
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where L(�) is a set of minimal loops in �, and

Ĝ|� =
X

v2V (�)

3X

i=1

(ÊS(v),i)
2 (25)

where S(v) is a small sphere around the vertex v. In principle, we would then demand

h �| F̂� + Ĝ|� | �i = 0 (26)

for a physical state  �. Just as in [38], the solutions of the flatness constraint are not

normalisable in HAL but instead form a di↵erent measure µflat which is the �-measure

on flat connections [63, 64, 65, 66]. It is not absolutely continuous with respect to the

Ashtekar-Lewandowski measure but we also nevertheless choose to work with states in

HAL, which can approximate solutions. For details of how these constraints are imple-

mented in the computational model, see Section 3.1.

The constraints (4) look structurally di↵erent from those of 4d gravity [67]. Never-

theless, it was shown that one can bring them into the same form [11]. This is very

interesting, because it maximizes the analogy of this model to 4d gravity. In this form,

the constraints read [11]

GI := DaE
a
I , Va := F

I
abE

b
I , H :=

1

2
p
det q

✏IJKF
I
abE

a
JE

b
K (27)

where Da denotes the covariant derivative with respect to the connection, q is spatial

the metric and E
a
I are modified densitised triads [11]. The Gauß constraint remains

unchanged. However, the curvature constraint is now replaced by the di↵eomorphism

(vector) constraint Va and the Hamilton (scalar) constraint H. The field theories gov-

erned by the constraints (4) shown previously and these three constraints shown above

are classically equivalent. However, it is argued that upon quantisations, the two quan-

tum theories are di↵erent, having little overlap in their solution spaces [11].

The exact procedure of deriving the quantum Hamilton constraint, is too complex to be

presented here, and consequently, we only state the result. We partially follow the pre-

scription proposed in [11]: The classical constraint is regularized in terms of holonomies,

fluxes, and their Poisson brackets, all associated to a triangulation T . To turn this regu-

larization into an operator, one adapts the triangulation to a graph, T ⌘ T (�), replaces

holonomies and fluxes by their operator counterparts and takes a certain limit:

ĤT (�)(N)f� := lim
✏!0

ĤT,✏(N)f� (28)

=
2

~2
X

�,�02T,v

✏
ij
✏
kl
N(v) tr(ĥ↵ij(�0)ĥsk(�)[ĥ

�1
sk(�),

q
V̂v]ĥsl(�)[ĥ

�1
sl(�),

q
V̂v])f�.

(29)
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Ĝ|� =
X

v2V (�)

3X

i=1
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graph, for which then ✏
ij and ✏

kl are computed accordingly. We will drop the numerical

prefactor in equation (54) and set N(v) = 1. Lastly, the trace in this case translates to

having the constraint decompose over the three di↵erent graphs in the computational

framework. As such, one has for each term in the sum shown in (54) three terms where

each one lives on a di↵erent graph.

As one now in the computational framework has three of such an expression (54), the

sizes of the matrices of the sub-operators packed in the TRC are rather large, and grow

quickly for higher charge cuto↵s. Even if one simplifies the expression analytically, one

still has an abundant number of computational operators which need to be tensor mul-

tiplied in order to act appropriately on the wave-function defined on H�. This issue

is further compounded as one now uses the Taylor expanded volume operator. Simply

put, one has several computational sub-operators in the TRC stored in the computa-

tional framework which themselves are large matrices which all need to be multiplied

together. This introduces a computational demand that is rather large for constructing

such an operator. For example, even at a cuto↵ of mmax = 2, then one would need

hours to merely construct the TRC and a borderline comical amount of RAM (approx.

7.451 Zetta Bytes (7.451⇥ 109 Tera Bytes) for a sparse representation of the constraint

matrix) in the process of exactly solving it†.

Furthermore, if one desires to solve the constraint using the NNQS ansatz, one needs

to unpack such an operator in a specific manner in the computational framework where

one ultimately searches for all non-zero matrix elements of the operator. This process

is also computationally expensive when the operator is non-diagonal. The TRC was

constructed over a 2-state model (M = {�1, 1}) over the same 2-L graph considered in

this work. In such a case, one can allocate enough computational resources to inspect

the operator in its entirety. It was found that the matrix representing the constraint

was not only not diagonal, but extremely ill-conditioned to the point of being almost

singular. While the case can be, and probably is, di↵erent for a model with more al-

lowed states, it nevertheless shows that the constraint is very di�cult to implement in

the computational framework and di�cult to explore in high mmax cuto↵s.

In any model considered, irrespective of the number of allowed states due to the charge

cuto↵, it was observed that the TRC is non-Hermitian. This poses yet another com-

putational hurdle as the tools used in this work to employ the NNQS ansatz do not

(yet) work reliably or easily for non-Hermitian operators. All together, this now leaves

us in a corner: in order to know anything about this constraint, we can only currently

do simulations in the mmax = 1 cuto↵. In this work, we will consider the Hermitian

constraint

ĈTRC = Ĥ + Ĥ
† + Ĝ. (55)

† One can in principle conduct out-of-core distributed computations but this would nevertheless require
large amount of resources.
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[Thiemann: QSD IV]
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While one can also consider the Hermitian and positive operator ĤĤ
† + Ĝ, we opt not

to do so as the process of computing ĤĤ
† would result in even more computational

demands. We have explicitly checked that the operator Ĥ + Ĥ
† is not positive in the

2-state model. In that case, Ĥ + Ĥ
† had an eigenvalue spectrum that was symmetric

around 0 and a degenerate kernel. After introducing the Gauß constraint, the eigen-

value spectrum does not have the mirror symmetry as before, and the degeneracy in

the spectrum was lifted. Therefore we do not have reason to believe that the operator

is positive for models with higher mmax.

It is interesting to note that in 4d gravity, the TRC actually takes a simpler form [21].

Although computational hurdles will always exist, the specific hurdles we encounter in

the 3d case will not going to be as pronounced in 4d.

4.4.2. The behaviour of ĈTRC in the solution space of Ĉ

The first point of exploration of ĈTRC is to observe the constraint in the solution space

of the master constraint Ĉ. As shown, the current network architecture has proved

capable of solving the latter with good accuracy for di↵erent charge cuto↵ values. How-

ever, due to the technical di�culties of implementing ĈTRC as previously outlined, we

are restricted in working in the mmax = 1 cuto↵.

Figure 8: The result of a mmax = 1 simulation where the master constraint Ĉ is being
solved and the constraint ĈTRC = Ĥ + Ĥ

† + Ĝ is being observed.

Figure 8 shows an mmax = 1 simulation where the master constraint Ĉ, shown in

green, is being solved and the TRC constraint ĈTRC, shown in orange, is being observed

at every iteration. As one does not know what the solution space of ĈTRC looks like,

it is di�cult to conclude whether it is the case that the states that solve Ĉ also solve

ĈTRC. However, it is seen that the solutions of Ĉ are not in the kernel of ĈTRC. Since
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Figure 10: A mmax = 1 simulation where ĈTRC is being solved, shown in green, and Ĉ is
being observed, shown in orange. As shown, the states which are (almost) in the kernel of
ĈTRC do not correspond to the ground state of Ĉ.

that the solution space of Ĉ in the mmax = 1 cuto↵ is not the same eigenspace arrived

at in Figure 10 above. We now aim to quantify the degree of similarity of these solution

spaces.

4.4.4. Comparing solution spaces of Ĉ and ĈTRC

At this point, the NNQS ansatz was used to solve both the Ĉ and ĈTRC constraints,

arriving in the true solution space of the former and the kernel of the latter. It was

observed qualitatively that these two spaces have little overlap. Now, we quantify this

overlap by investigating the contributing basis states of both the solutions.

For the mmax = 1 cuto↵ used, one can obtain the ⇠ 106 amplitudes for each of the

variational states. The first point would be to visualise the two states to determine the

type of contributing basis states as done in Figure 11.

Figure 11 shows the solution  Ĉ of the Ĉ constraint on the right and the state  ĈTRC

near the kernel of ĈTRC that the NNQS ansatz arrived at on the left. Both simulations

were conducted in a mmax = 1 cuto↵. In both, it is observed that the most contributing

basis state happens to be the state with all charge vectors being zero. However, it is

immediate to see that otherwise the two states do not have much in common. The mean

of the absolute value of the amplitudes of  Ĉ was computed to be 1.345⇥10�6 while for

 ĈTRC
it was 1.194⇥ 10�7. This shows that the solution of  Ĉ is peaked more strongly,

which is also visually confirmed in Figure 11.

To conduct a more than qualitative comparison, we begin by investigating the con-

tributing basis states of both  Ĉ and  ĈTRC
. We will denote by a contributing basis

state ones which have an amplitude which falls above or equal to a certain threshold.
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equal to the chosen cuto↵ ✏ = 1.0⇥10�6 for both  Ĉ and  ĈTRC
is very low, constituting

roughly 0.2769% and 0.01551% respectively of the Hilbert space (which at this cuto↵ has

dimensions dimH� ⇡ 14⇥ 106). Nevertheless, these relatively few, and especially so in

the case of  ĈTRC
, basis states have amplitudes which contribute very strongly to their

respective states. Furthermore, if one narrows the focus only on common contributing

states, one finds only 1299 states (0.00905% of dimH�) which both contribute with a

value � ✏ and are common between the two states. Yet, these 1299 states contribute

relatively strongly although not to a similar degree to each respective state. We note

however that all of these values are much more larger than the dimensions of the gauge

invariant subspace which in this case is dimH
G
� = ((2mmax + 1)2)3 = 729.

We conduct the last measure of comparison by computing the inner product of the

two states |h ĈTRC
|  Ĉi|2 as well as calculating the angle between them. In doing so,

it is seen that

|h ĈTRC
|  Ĉi|

2 ⇡ 0.0308 , arccos |h ĈTRC
|  Ĉi| ⇡ 1.394rad. (57)

At first sight, these results seem may seem to be a little discouraging, suggesting that

the solution of Ĉ and this state near the kernel of ĈTRC are unrelated. However, they are

not exactly orthogonal to one another either. As such, we now quantify the significance

of this similarity.

To do this, one can think of random state picking in this Hilbert space. This would

give a measure of significance by asking the question: what is the probability that two

randomly chosen states from the Hilbert space have an overlap larger or equal to that

of  Ĉ and  ĈTRC
? If one considers the entire Hilbert space H�, which contains states

with complex valued coe�cients, then this question can be addressed exactly by random

picking from the probability N -simplex (see Appendix C) where N = dimC H�. In this

case, one sees that the probability that two states have the overlap of 0.0308 obtained

above is

P
C
N(|h ĈTRC

|  Ĉi|
2 � 0.0308) ⇠ 10�194953

, (58)

where N := dimC H� ⇠ 106. While this looks impressive at first sight, it should of

course be expected that both states are much closer than random due to the fact that

they are both approximately gauge invariant. If one considers only the gauge invariant

sector, then N
G := dimC H

G
� = ((2mmax + 1)2)3 = 729 for mmax = 1. Repeating the

same calculation shows that this would again yield a negligible probability

P
C
NG(|h ĈTRC

|  Ĉi|
2 � 0.0308) ⇠ 10�10

. (59)

In this work we explored states with real valued coe�cients in the computational basis

(to further downsize the computational requirements, also see Appendix C of [38]). A

precise statement regarding the probability of two states being " similar therefore needs

to take that into consideration. The analogous picking process restricted to only the
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|  Ĉi|2 as well as calculating the angle between them. In doing so,

it is seen that

|h ĈTRC
|  Ĉi|

2 ⇡ 0.0308 , arccos |h ĈTRC
|  Ĉi| ⇡ 1.394rad. (57)

At first sight, these results seem may seem to be a little discouraging, suggesting that
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precise statement regarding the probability of two states being " similar therefore needs

to take that into consideration. The analogous picking process restricted to only the
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equal to the chosen cuto↵ ✏ = 1.0⇥10�6 for both  Ĉ and  ĈTRC
is very low, constituting

roughly 0.2769% and 0.01551% respectively of the Hilbert space (which at this cuto↵ has

dimensions dimH� ⇡ 14⇥ 106). Nevertheless, these relatively few, and especially so in

the case of  ĈTRC
, basis states have amplitudes which contribute very strongly to their

respective states. Furthermore, if one narrows the focus only on common contributing

states, one finds only 1299 states (0.00905% of dimH�) which both contribute with a

value � ✏ and are common between the two states. Yet, these 1299 states contribute

relatively strongly although not to a similar degree to each respective state. We note

however that all of these values are much more larger than the dimensions of the gauge

invariant subspace which in this case is dimH
G
� = ((2mmax + 1)2)3 = 729.

We conduct the last measure of comparison by computing the inner product of the

two states |h ĈTRC
|  Ĉi|2 as well as calculating the angle between them. In doing so,

it is seen that

|h ĈTRC
|  Ĉi|

2 ⇡ 0.0308 , arccos |h ĈTRC
|  Ĉi| ⇡ 1.394rad. (57)

At first sight, these results seem may seem to be a little discouraging, suggesting that

the solution of Ĉ and this state near the kernel of ĈTRC are unrelated. However, they are

not exactly orthogonal to one another either. As such, we now quantify the significance

of this similarity.

To do this, one can think of random state picking in this Hilbert space. This would

give a measure of significance by asking the question: what is the probability that two

randomly chosen states from the Hilbert space have an overlap larger or equal to that

of  Ĉ and  ĈTRC
? If one considers the entire Hilbert space H�, which contains states

with complex valued coe�cients, then this question can be addressed exactly by random

picking from the probability N -simplex (see Appendix C) where N = dimC H�. In this

case, one sees that the probability that two states have the overlap of 0.0308 obtained

above is

P
C
N(|h ĈTRC

|  Ĉi|
2 � 0.0308) ⇠ 10�194953

, (58)

where N := dimC H� ⇠ 106. While this looks impressive at first sight, it should of

course be expected that both states are much closer than random due to the fact that

they are both approximately gauge invariant. If one considers only the gauge invariant

sector, then N
G := dimC H

G
� = ((2mmax + 1)2)3 = 729 for mmax = 1. Repeating the

same calculation shows that this would again yield a negligible probability

P
C
NG(|h ĈTRC

|  Ĉi|
2 � 0.0308) ⇠ 10�10

. (59)

In this work we explored states with real valued coe�cients in the computational basis

(to further downsize the computational requirements, also see Appendix C of [38]). A

precise statement regarding the probability of two states being " similar therefore needs

to take that into consideration. The analogous picking process restricted to only the
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subspace H
R
�̃ composed only of states with real valued coe�cients amounts to ran-

dom picking of uniformly distributed vectors on the unit sphere S
N�1 ⇢ RN where

N = dimR H
R
�̃ . An exact analytical expression for P

R
N(|h ĈTRC

|  Ĉi|2 � ") was not

obtained in this case. However, numerical estimates are shown in Figure 12.

Figure 12: On the left, P (|h~U, ~V i|2 � ✏ = 0.0308) of two randomly chosen normalised unit
vectors ~U, ~V on S

N�1 ⇢ RN is shown in green and an exponential fit function is shown in
red. On the right, the same probability is shown for di↵erent values of ".

In Figure 12 on the left, a numerical estimate of the probability that the inner product

squared of two randomly chosen normalised unit vectors ~U, ~V which lie on the unit

sphere S
N�1 ⇢ RN (for di↵erent N 2 [2, 1500]) is � " = 0.0308. Here, for every N ,

two normalised unit vectors which lie on the hypersphere were chosen at random. The

absolute value of their inner product squared was computed and stored if it had a value

� ". This process was repeated for 107 trials for every N , each time generating new

vectors and repeating the computation. The probability, for a given N , of the inner

product squared of such random vectors being � " was then computed as the number

of such occurrences divided by the number of trials conducted. The results were then

fitted with an exponential fit function as shown in the figure as well. On the right in

Figure 12, the same simulation is done for di↵erent values of " with a number of trials

being 106. The results indicate that for n ! 1, random vectors on S
N�1 are very likely

to be almost orthogonal as the likelihood of them being " similar decreases for large N ,

a result also known from concentration of measures on the sphere [68].

Given the exponential decay shown in the figure above, we can then address the random

picking procedure on H
R
� as well. We see that even if one restricts to the real subspace,

then

P
R
N(|h ĈTRC

|  Ĉi|
2 � 0.0308) ⇠ 10�5559

. (60)

Further, if one restricts to the gauge invariant sector of the real subspace, the probability

is still very small, with a value of

P
R
NG(|h ĈTRC

|  Ĉi|
2 � 0.0308) ⇠ 10�5

. (61)
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network in the mmax = 2 cuto↵, we see that there are in total 19 strongly contributing

basis states as shown in Figure 5.

Figure 5: The amplitudes of the 3125 basis states obtained using the neural network in
the mmax = 2 cuto↵. We see that only 19 of them (0.608 % of the entire space) are strongly
contributing.

Once the amplitudes of those strongly contributing basis states are identified, one can

see precisely which basis states are those. It was observed that the strongly contributing

states are all gauge invariant states. However, not all gauge invariant states contribute

strongly. Given the orientation of our graph, then the dimension of the gauge invariant

Hilbert space would be dimH
G
�̃ = (2mmax + 1)2 = 25 for mmax = 2. On the contrast,

only 19 of those contribute strongly in the solution obtained using the neural network.

One can investigate precisely which of gauge invariant basis states are strongly con-

tributing, however this is now graph orientation dependent, and thus is not conducted

in this work.

Now we turn our focus into yet another test on the validity of the numerical simu-

lations. For the work done so far, we considered a 2-L graph due to it being non-trivial.

The triviality here is due to the fact that for a 1-L graph, the Gauß constraint is already

perfectly imposed. However, if one considers a 1-L graph composed of three edges and

three vertices, then the states describing our analytical model take the form

 =
mmaxX

n=�mmax

cn |hn
↵i , (27)

where |hn
↵i is a minimal loop holonomy eigenstate with charge n. In this simple case,

the Gauß constraint is fully satisfied and the only remaining constraint is the curvature.

Hence, the master constraint takes the form

Ĉ = (ĥ↵ � )(ĥ†
↵ � ) = �ĥ↵ � ĥ†

↵ + 2 . (28)


