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Three points program

o Introduction to nondiagonal Bianchi models     [Montani, MB ‘23] 

• Minisuperspace and Ashtekar variables

• Flux quantization procedure

o Abelianization of the Gauss constraint             [Montani, MB ‘23] 

• Gauge freedom and canonical transformation

• Revised Gauss Constraint and Quantum-level implications

o Yang-Mills approach for the cosmological sector      [MB ‘24] [MB ‘24]
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Nondiagonal Bianchi models
Minisuperspace

Globally hyperbolic spacetime  

Homogeneous space    prescription

Metric configuration variables

ℳ = ℝ× Σ

Σ

𝑑𝜔𝐼 +
1

2
𝑓𝐽𝐾
𝐼 𝜔𝐽𝜔𝐾 = 0

𝑞𝑖𝑗 𝑡, 𝑥 = 𝜂𝐼𝐽 𝑡 𝜔𝑖
𝐼 𝑥 𝜔𝑗

𝐽(𝑥)

Maurer-Cartan equation

𝜉𝐼, 𝜉𝐽 = 𝑓𝐼𝐽
𝐾𝜉𝐾

Lie algebra generators

Nondiagonal metric decomposition 𝜂𝐼𝐽 = Γ𝐴𝐵𝑅𝐼
𝐴𝑅𝐽

𝐵

{𝑎1, 𝑎2, 𝑎3, 𝜃, 𝜓, 𝜙}
𝜉1

𝜉2

𝜉3

𝑎1
𝑎2

𝑎3
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[Landau, Lifshits ‘74]

[Belinski ‘14]

[Montani, MB ‘23]



Nondiagonal Bianchi models
Ashtekar variables

Lagrangian

Ashtekar connection

Electric field

𝐿𝐴𝐷𝑀

= 𝑁|det(𝜔𝑖
𝐼)| det Γ𝐴𝐵 ൤

൨

ത𝑅 +
1

4𝑁2 (Γ
𝐴𝐶Γ𝐵𝐷 ሶΓ𝐴𝐵 ሶΓ𝐶𝐷 + 2Γ𝐴𝐵Γ𝐶𝐷(𝑅 ሶΛ)𝐴

𝐷(𝑅 ሶΛ)𝐵
𝐶 + 2(𝑅 ሶΛ)𝐶

𝐵(𝑅 ሶΛ)𝐵
𝐶

+ 2𝑁𝐴𝑁𝐵 𝑓𝐴𝐽
𝐼 𝑓𝐵𝐼

𝐽 + 𝜂𝐼𝐽𝜂𝐾𝐿𝑓𝐴𝐼
𝐾𝑓𝐵𝐽

𝐿 + 4𝑁𝐾𝜂𝐼𝐽 ሶ𝜂𝐽𝐿𝑓𝐾𝐼
𝐿 − Γ𝐼𝐽 ሶΓ𝐼𝐽Γ

𝐾𝐿 ሶΓ𝐾𝐿)

𝐸𝑎
𝑖 = |det(𝜔𝑖

𝐼)| sgn 𝑎 𝑎 𝑎𝑏𝑎𝑐 Λ𝑎
𝐼 𝜉𝐼

𝑖

𝐴𝑖
𝑎 =

1

2
𝜖𝑎𝑏𝑐

𝑎𝑐
𝑎𝑏

Λ𝑏
𝐽
𝑅𝐾
𝑐 𝑓𝐼𝐽

𝐾 −
1

4
𝜖𝑎𝑏𝑐

1

𝑎𝑏𝑎𝑐
𝜂𝐼𝐽Λ𝑏

𝐾Λ𝑐
𝐿𝑓𝐿𝐾

𝐽
+

𝛾

2𝑁
𝑎 𝑎 𝑅𝐿

𝑎 𝜂𝐿𝐽 ሶ𝜂𝐽𝐼 +𝑁𝐴𝜂𝐿𝐾𝜂𝐼𝐽𝑓𝐴𝐾
𝐽
+𝑁𝐴𝑓𝐴𝐼

𝐿 𝜔𝑖
𝐼
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Nondiagonal Bianchi I model
Ashtekar variables

Lagrangian

Ashtekar connection

Electric field

𝐸𝑎
𝑖 = |det(𝜔𝑖

𝐼)| sgn 𝑎 𝑎 𝑎𝑏𝑎𝑐 Λ𝑎
𝐼 𝜉𝐼

𝑖
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𝐿𝐴𝐷𝑀

= 𝑁|det(𝜔𝑖
𝐼)| det Γ𝐴𝐵 ൤

൨

ത𝑅 +
1

4𝑁2 (Γ
𝐴𝐶Γ𝐵𝐷 ሶΓ𝐴𝐵 ሶΓ𝐶𝐷 + 2Γ𝐴𝐵Γ𝐶𝐷(𝑅 ሶΛ)𝐴

𝐷(𝑅 ሶΛ)𝐵
𝐶 + 2(𝑅 ሶΛ)𝐶

𝐵(𝑅 ሶΛ)𝐵
𝐶

+ 2𝑁𝐴𝑁𝐵 𝑓𝐴𝐽
𝐼 𝑓𝐵𝐼

𝐽 + 𝜂𝐼𝐽𝜂𝐾𝐿𝑓𝐴𝐼
𝐾𝑓𝐵𝐽

𝐿 + 4𝑁𝐾𝜂𝐼𝐽 ሶ𝜂𝐽𝐿𝑓𝐾𝐼
𝐿 − Γ𝐼𝐽 ሶΓ𝐼𝐽Γ

𝐾𝐿 ሶΓ𝐾𝐿)
00

0

0 0 0
𝐴𝑖
𝑎 =

1

2
𝜖𝑎𝑏𝑐

𝑎𝑐
𝑎𝑏

Λ𝑏
𝐽
𝑅𝐾
𝑐 𝑓𝐼𝐽

𝐾 −
1

4
𝜖𝑎𝑏𝑐

1

𝑎𝑏𝑎𝑐
𝜂𝐼𝐽Λ𝑏

𝐾Λ𝑐
𝐿𝑓𝐿𝐾

𝐽
+

𝛾

2𝑁
𝑎 𝑎 𝑅𝐿

𝑎 𝜂𝐿𝐽 ሶ𝜂𝐽𝐼 +𝑁𝐴𝜂𝐿𝐾𝜂𝐼𝐽𝑓𝐴𝐾
𝐽
+𝑁𝐴𝑓𝐴𝐼

𝐿 𝜔𝑖
𝐼



Nondiagonal Bianchi I model
Flux quantization

Quantization in the flux polarization as in [Ashtekar, Wilson-Ewing ‘09] 

The fluxes computed on the faces of the fiducial cell

Basis states of the Hilbert space: |𝑝1, 𝑝2, 𝑝3, 𝜃, 𝜓, 𝜙⟩

Geometric operators depend on diagonal fluxes only!

𝑝1

𝑝2

𝑝3

𝜉1

𝜉2

𝜉3

𝑝1

𝑝2

𝑝3

𝜉1

𝜉2

𝜉3

Rotation
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Credits: Beatrice Gorga



Abelianization of the Gauss constraint
Gauge freedom

M. Bojowald’s suggestion in [Bojowald ’00, ‘13] 

Mismatch in 

the number 

of degrees of 

freedom!

Recover the gauge freedom adding a rotation

𝐺𝑎|℘𝑀𝑡
= 0 ℘𝑀𝑡 = {𝑎1, 𝑎2, 𝑎3, 𝜃, 𝜓, 𝜙, 𝜋1, 𝜋2, 𝜋3, 𝜋𝜃 , 𝜋𝜓, 𝜋𝜙}

𝐴𝑖
𝑎 𝑡, 𝑥 = 𝜙𝐼

𝑎 𝑡 𝜔𝑖
𝐼(𝑥)

𝐸𝑎
𝑖 𝑡, 𝑥 = |det(𝜔 𝑥 )|𝑝𝑎

𝐼 𝑡 𝜉𝐼
𝑖(𝑥)

ቐ

𝐺𝑎 = 𝜖𝑎𝑏𝑐𝜙𝐼
𝑏𝑝𝑐

𝐼

℘𝑀𝑡 = {𝑎1, 𝑎2, 𝑎3, 𝜃, 𝜓, 𝜙, 𝛼, 𝛽, 𝛾, 𝜋1, 𝜋2, 𝜋3, 𝜋𝜃 , 𝜋𝜓, 𝜋𝜙, 𝜋𝛼, 𝜋𝛽, 𝜋𝛾}

Three abelian constraints ൞

𝜋𝛼 = 0
𝜋𝛽 = 0

𝜋𝛾 = 0

Slide 6The central role of Gauss constraint across LQC and LQG



Abelianization of the Gauss constraint
Canonical transformation

Lie condition 𝜙𝐼
𝑎𝑑𝑝𝑎

𝐼 − 𝜋𝑛𝑑𝑞𝑛 = 0 provides, perturbative in configurational variables, a linear 

dependence between Gauss constraint and gauge momenta 

Ansatz

Gauss constraint is linear in the gauge momenta 𝐺𝑎 = 𝐿𝑎𝑔𝜋𝑔

System of 9 independent equations 
Admits a 

unique 

solution!

𝜖𝑎𝑏𝑐 = 𝐿𝑎𝑔 𝑂𝑡
𝑑
𝑐 𝜕𝑂𝑏

𝑑

𝜕𝑞𝑔

𝐿𝑎𝑔 =
−csc𝛽 cos 𝛾 sin 𝛾 cot 𝛽 cos 𝛾
csc 𝛽 sin 𝛾 cos 𝛾 − cot 𝛽 sin 𝛾

0 0 1
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Abelianization of the Gauss constraint
The Abelian contraints

The Gauss constraint is recast into three abelian constraints, namely the gauge momenta

This feature holds at the quantum level

The Hilbert space previously defined is the gauge-invariant one 

𝐺𝑎 =

−csc 𝛽 cos 𝛾 𝜋𝛼 sin 𝛾 𝜋𝛽 cot 𝛽 cos 𝛾 𝜋𝛾
csc 𝛽 sin 𝛾 𝜋𝛼 cos 𝛾 𝜋𝛽 −cot 𝛽 sin 𝛾 𝜋𝛾

0 0 𝜋𝛾

෠𝐺𝑎 Ψ = 0 ⟺ ො𝜋𝑔 Ψ = 0

Ψ 𝑝1, 𝑝2, 𝑝3, 𝜃1, 𝜃2, 𝜃3, 𝛼, 𝛽, 𝛾 = 𝜑 𝛼, 𝛽, 𝛾 Φ(𝑝1, 𝑝2, 𝑝3, 𝜃1, 𝜃2, 𝜃3)The wavefunction factorizes

ො𝜋𝑔 Ψ = 0 ⇒ 𝜑 = 𝑐𝑜𝑛𝑠𝑡

From a SU(2) 

symmetry, 

three U(1) 

appear!
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Cosmological sector of Loop Quantum Gravity
A Yang-Mills approach

𝑃𝑆𝑝𝑖𝑛(Σ)

↓
𝑃𝑆𝑂(Σ)

↓
Σ

Connection 𝜔 is a 1-form on 𝑃𝑆𝑝𝑖𝑛(Σ) with value in the Lie algebra of SU(2) 

Dreibein 𝑒 is a section in 𝑃𝑆𝑂(Σ)

Yang-Mills variables

Connection 𝐴 is the local field 𝐴 = 𝑒∗𝜔

Electric field 𝐸 is built from the dreibein 𝐸 = 𝑞𝑑3𝑥 ⊗ 𝑒

Ashtekar variables

The request of homogeneity for 𝜔 yields to a homogeneous geometry for Σ
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[Brodbeck ‘96]

[Bojowald, Kastrup ‘00]

[MB ‘24]

[MB ‘24]



Cosmological sector of Loop Quantum Gravity
Quantum states
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Configurational space 𝒜 = 𝐴 𝐴 = 𝑒∗𝜔,𝜔 homogeneous}

The set of constraints are the same of LQG

Spin-network states as cylindric functions on 𝒜

Some properties analogous to the usual cosmological states naturally emerge:

• the spin networks are homogeneous, namely the curves of the graph are 

integral curves of linear combinations of 𝜉𝐼

• the invariant states bring pointwise holonomy
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Conclusions

o The diagonal quantization in LQC is quite general within the minisuperspace

approach

o The Abelianization of the quantum theory is a feature of the minisuperspace. 

The three U(1) simmetries arise from decomposing the Gauss constraint in 

three abelian ones

o We can identify a cosmological sector with the same constraints as LQG and 

perform a quantization that yields spin-network states exhibiting properties 

akin to those in LQC  

The central role of Gauss constraint across LQC and LQG



Thank you for your attention

Matteo Bruno
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