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Three points program

o Introduction to nondiagonal Bianchi models  [Montani, MB ‘23]
* Minisuperspace and Ashtekar variables
* Flux quantization procedure

o Abelianization of the Gauss constraint [Montani, MB ‘23]
» Gauge freedom and canonical transformation
» Revised Gauss Constraint and Quantum-level implications

o Yang-Mills approach for the cosmological sector  [MB 24] [MB ‘24]
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Nondiagonal Bianchi models
Minisuperspace

[Landau, Lifshits 74]
[Belinski “14]

Globally hyperbolic spacetime M =R x X [Montani, MB ‘23]

Homogeneous space 2 prescription  q;;(t, x) = n;(Dw](x)w! (x)

Nondiagonal metric decomposition  1;; = [4zR{'R}

1
52 Maurer-Cartan equatlon Lie a|gebra generator's

1
dow'! +Ef]IKa)]a)K =0 €1, f]] = fij &k

a;

- Metric configuration variables {ai,a,,a3,0,Y, ¢}

¢3 as
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Nondiagonal Bianchi models

Ashtekar variables

Lagrangian
LADM "
= N|det(w))|y/det(Typ) ’ﬁ + Iz (TACTBPT g Tep + 2T BT (RA)E (RA)G + 2(RA)E(RA)S

+ ZNANB(f,c{]fBJI + UI]UKLfAlngL]) + 4ANS "0, fir — FUFI]FKLFKL)]

Ashtekar connection

1 1 1
A? — 2 abc " A RKfI] gabc m]AKAlC,fL]K

)4
4 . b N ——aRL (77 ]77]1 + N4ntEn, fAK + NAfAI)]

Electric field
= |det(w})| sgn(acy)) lapaclALE;
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Nondiagonal Bianchi | model

Ashtekar variables

Lagrangian
LADM "
.0 . . . . . .
= N|det(w)|/ det(FAB){»R’+ vz (TACTBLPT, g Ip + 2T 48T p (RA)S (RN + 2(RA)E(RA)S

4 2NANM+M—OFUFUF”FKL)]
0

Ashtekar connection

1 1
A? — [2 abc & A]RKfI] 4 abc - K AL KO o a(a)RL (77 ]7711 LK ]Kz)l_ L?)] w{
c

Electric field
= |det(w})| sgn(acy)) lapaclALE;
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Nondiagonal Bianchi | model

Flux quantization

»

Quantization in the flux polarization as in [Ashtekar, Wilson-Ewing ‘09] £ P2 Cradi i A
2 redits: oeatrice sorga

The fluxes computed on the faces of the fiducial cell
&t D2
4

: . Dy Rotation >

P1

Geometric operators depend on diagonal fluxes only!

Basis states of the Hilbert space: |p1,p,, 03, 6,Y, d)
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Abelianization of the Gauss constraint

Gauge freedom

G, |<§0Mt =( Pue =1{a1,02,a3,0,9, P, mq, 5, T3, Tg, Ty, T }
M. Bojowald’s suggestion in [Bojowald '00, “13]

Af(t, %) = pf (D) w; (x)
_ _ Gq = Eabcgb}?pé
Eq(t,x) = |det(w(x))|pa (£)§; (x)

Recover the gauge freedom adding a rotation

SOM_t s {al; az; a3; 8; l/); ¢; a, B; Y, T, 705, 7T3; n@; T[l/); 7T¢, T[a; T[B; 77:-}/}

T, =0
Three abelian constraints {7 =0
T, =0
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Mismatch in
the number
of degrees of
freedom!
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Abelianization of the Gauss constraint

Canonical transformation

Lie condition ¢#dpl, — m,dq,, = 0 provides, perturbative in configurational variables, a linear
dependence between Gauss constraint and gauge momenta

Ansatz
Gauss constraint is linear in the gauge momenta G, = Ly 47,

90¢
System of 9 independent equations €,,. = L,,(0Y)4—— )
y P 0] abc ag( )a 0qg Admits a
unique
solution!

cscfsiny cosy —cotfsiny
0 0 1

Log

(—csc,[)’cosy siny Cotﬁcosy>
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Abelianization of the Gauss constraint

The Abelian contraints

—cscfcosym, sinymg cotfcosym, From a SU(2)
y _ . : symmetry,
G, =| cscfsinym, cosymg cotfsiny m, three U(L)
0 0 Ty appear!

The Gauss constraint is recast into three abelian constraints, namely the gauge momenta

This feature holds at the quantum level G,|¥) =0 < #,|¥)=0
The wavefunction factorizes l‘l’,(pl, P2, P3, 01, 92, 93, a, B, )/) = go(a, ﬂ, ]/)Cb(pl, P2, P3, 01, 02, 93)

fig|¥) =0 = ¢ = const

The Hilbert space previously defined is the gauge-invariant one
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Cosmological sector of Loop Quantum Gravity
A Yang-Mills approach

[Brodbeck ‘96]
[Bojowald, Kastrup ‘00]

[MB 24]
[MB 24]
pSpin ) Yang-Mills variables |
Connection w is a 1-form on PSP (%) with value in the Lie algebra of SU(2)
Sol Dreibein e is a section in P°9 (%)
P>"(2)
l Ashtekar variables
) Connection A is the local field A = e*w

Electric field E is built from the dreibein E = \/qd*x Q@ e

The request of homogeneity for w yields to a homogeneous geometry for X
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Cosmological sector of Loop Quantum Gravity

Quantum states

Configurational space A = {A | A = e*w, w homogeneous}

The set of constraints are the same of LQG

Spin-network states as cylindric functions on A

Some properties analogous to the usual cosmological states naturally emerge:

« the spin networks are homogeneous, namely the curves of the graph are
integral curves of linear combinations of &;

* the invariant states bring pointwise holonomy
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Conclusions

o The diagonal quantization in LQC is quite general within the minisuperspace
approach

o The Abelianization of the quantum theory is a feature of the minisuperspace.
The three U(1) simmetries arise from decomposing the Gauss constraint in
three abelian ones

o We can identify a cosmological sector with the same constraints as LQG and
perform a quantization that yields spin-network states exhibiting properties
akin to those in LQC
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