

Effective LTB: from dust collapses to regular black holes

arXiv: 2308.10949 and 2308.10953, submitted to Phys. Rev. D

Stefan Andreas Weigl joint work with Prof. K. Giesel, H. Liu, E. Rullit, Prof. P. Singh

06.05.2024, Loops'24 Fort Lauderdale, Florida

Black Holes

Gain insights by modeling the dynamical process of a gravitational collapse scenario with corrections from LQG.

- Our playground: spherical symmetric model with dust (perfect fluid, no pressure), solving Einstein's field equations: Lemaître-Tolman-Bondi spacetimes
- Effective description: classical model with corrections from LQG

General strategy of our approach:

- **Mimic** classical gauge fixing procedure in effective model
 - \Rightarrow Reduce general spherical symmetric spacetime to its LTB sector
- Start with **general** ansatz for effective model (not only motivated from $\overline{\mu}$ -scheme and its reduced quantization [Chiou, Ni, Tang '12], [Gambini, Olmedo, Pullin '20])
- Receive effective LTB models as a 1+1 field theory model

Classical LTB model

classical LTB sector in spherical sym. spacetimes

FAU

• Impose spherical symmetry on triad and connection (A, E) and fix Gauß constraint [Bengtsson '90], [Bojowald Kastrup '00], [Bojowald, Swiderski '06]

$$H = \int dx \, (NC + N^x C_x), \qquad \{K_x(x), E^x(y)\} = \{K_\phi(x), E^\phi(y)\} = G\delta(x, y)$$

• Spherical symmetric metric has form

$$\mathrm{d}s^2 = -N(x,t)^2 dt^2 + \frac{(E^{\phi})^2}{|E^x|} (dx + N^x dt)^2 + |E^x| d\Omega^2 \,.$$

To get to the LTB solution, we need

$$N = 1$$
 $N^{x} = 0$ $G_{x}(x) = \frac{E^{x'}}{2E^{\phi}}(x) - \sqrt{1 + \mathcal{E}(x)} = 0$

Gauge Fixings

The LTB sector can be reached by the two gauge fixings

$$\left(C \longrightarrow G_T = T(x) - t\right), \qquad \left(C_x \longrightarrow G_x = \frac{E^{x'}}{2E^{\phi}}(x) - \sqrt{1 + \mathcal{E}(x)}\right)$$

Effective LTB models

Effective primary Hamiltonian

Consider effective model with temporal gauge fixed primary Hamiltonian

$$H_P^{\Delta}[N^x] = \int \mathrm{d}x \left(C^{\Delta} + N^x C_x\right)(x) \,,$$

and the polymerized gravitational contribution of the scalar constraint

$$C^{\Delta}(x) = \frac{E^{\phi}}{2G\sqrt{E^{x}}} \left[-(1+f)E^{x} \left(\frac{4K_{x}K_{\phi}}{E^{\phi}} + \frac{K_{\phi}^{2}}{E^{x}}\right) + h_{1} \left(\left(\frac{E^{x'}}{2E^{\phi}}\right)^{2} - 1\right) + 2\frac{E^{x}}{E^{\phi}}h_{2} \left(\frac{E^{x'}}{2E^{\phi}}\right)' \right]$$

The polymerization functions have classical limit

$$h_1(E^x) \to 1$$
 $h_2(E^x) \to 1$ $f(K_x/E^{\phi}, K_{\phi}, E^x) \to 0$

 \Rightarrow Investigate dynamically stable reductions to LTB sector

effective LTB condition:
$$G_x^{\Delta} = \frac{E^{x'}}{2E^{\phi}} - g_{\Delta} \Big(\widetilde{K}_x, K_{\phi}, E^x, \mathcal{E} \Big)$$

Key results

- Closure of C^{Δ}, C_x algebra ensures existence of LTB reduction
- Can give consistency equations for various classes of effective models
 - models can have inverse triad and holonomy corrections simultaneously
 - classical LTB condition can also be embedded in certain effective models
 - K_x polymerization is very **restricted** ($\{C^{\Delta}[M], C^{\Delta}[N]\} \neq 0$ and only marginal case)
- Equations of motion in LTB sector are **decoupled** (we work in Lemaître coords.)
 ⇒ Start with eff. LQC model and reconstruct eff. LTB model with same dynamics
- Can consider **different** radial coordinates due to underlying spherical symm. model
- Sometimes we can find underlying **covariant** Lagrangian \Rightarrow regain **all** coord. trafos

dust collapse

- Due to decoupled EOM: adapt dynamics of shells to improved LQC dynamics
- Analytical solution for arbitrary dust profiles in marginally bound case $\mathcal{E}(x) = 0$
- No shell crossing singularities in vacuum and OS-collapse, but in inhomogeneous
- Underlying covariant Lagrangian given by mimetic gravity

polymerized vacuum solutions (also see Hongguang's talk)

- Consider effective LTB models with **conserved** (Hamiltonian) energy density C^{Δ} \Rightarrow To specialize on effective vacuum case set $C^{\Delta} = 0$
- Rediscover **Birkhoff-like** theorem:

gen. solution is **unique** one parameter family of stationary, asympt. flat solutions

- Schwarzschild-like coordinates: corresponds to family of metrics given by monotonic segments of solution written in Lemaître coordinates
- Vice virsa: from Schwarzschild-like metric can **reconstruct** effective sph. symm. Hamiltonian with underlying (mimetic) Lagrangian

Summary

- Our framework allows construction of effective LTB models with holonomy and inverse triad corrections under certain assumptions (no polymerization of diffeo)
- LQC model as starting point: field theoretic model for inhomogeneous dust collapses
 Underlying mimetic model provides all coordinate transformations
- Powerful framework for effective vacuum solutions: different coordinates, polymerized Hamiltonian, covariant Lagrangian

Future work

- Extend analysis to inhomogenous dust collapses \rightarrow Hongguangs talk
- Study further phenomenological properties like BH evaporation
- Consider non-marginally bound case and other types matter

Thank you for your attention!