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What can you expect?

A glimpse at how to solve  
optimal transport problems

A glimpse at (present and future)  
applications in particle physics

Illustration of one method; interplay with  
machine learning

A self-contained introduction 

to the world of optimal transport
Intuition instead of (complex) mathematics

x

v1 v2 v3 vk g(x)…

…

…

…



3

Why should you care?
In particle physics, we manipulate (probability) distributions  
on a daily basis …

… optimal transport provides useful tools  
(and a unifying perspective) for many of these!

Extrapolation across phase space  
(e.g. control region → signal region)

Calibration of simulation 
(e.g. Monte Carlo prediction 

 against data side bands)

Interpretation of data

(e.g. jet clustering)

CR SR
Sim. Data

Calibrated  
sim.



The theory of  
optimal transportation
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What is optimal transportation?
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The answer to a logistics problem!

“How to transport commodities from  factories to  stores …N M

Assume total production  equals total demand p(A) + p(B) q(1) + q(2) + q(3)

… in the presence of a transportation cost  between factory  and store  …c(a, i) a i
… so that the total cost is minimized?

A

B

1

2
3

Production

Demand

p(A)

p(B)

q(1)

q(3)

q(2)

c(A,1)

c(B,1)

c(A,2)c(A,3)

c(B,2)

c(B,3)
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What is optimal transportation?
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The answer to a logistics problem!

A

B

1

2
3

p(A)

p(B)

q(1)

q(3)

q(2)

c(A,1)

c(B,1)

c(A,2)c(A,3)

c(B,2)

c(B,3)

Production

Demand

π(A,1) π(B,1)

π(A,2)

π(A,3)

π(B,2)
π(B,3)

= arg min
π ∑

a
∑

i

π(a, i) c(a, i)

Transportation cost  
(per unit mass)

Mass transported from factory   
to store  
(“transportation plan”)

a
iOptimization over all possible  

transportation plans

Optimal 
transportation plan ̂π

Assume total production  equals total demand p(A) + p(B) q(1) + q(2) + q(3)
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q(1)

q(3)

c(A,1)
c(A,2)c(A,3)

π(A,1)

π(A,2)

π(A,3)

What is optimal transportation?
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The answer to a logistics problem!

A

B

1

2
3

p(B)

q(1)

q(2) c(B,1)c(B,2)

c(B,3)

Production

Demand

π(B,1)

π(B,2)
π(B,3)

= arg min
π ∑

a
∑

i

π(a, i) c(a, i)

Transportation cost  
(per unit mass)

Optimization over all possible  
transportation plans

Optimal 
transportation plan ̂π

“All possible” transportation plans?

∑
i

π(a, i) = p(a)

∑
a

π(a, i) = q(i)

Must satisfy two conditions:

“Entire production is shipped”

∀a

∀i

“Entire demand is satisfied”

p(A)

Mass transported from factory   
to store  
(“transportation plan”)

a
i

Assume total production  equals total demand p(A) + p(B) q(1) + q(2) + q(3)
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Optimal transport, now continuous
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How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

x y

p(x) q(y)

Cost to transport one 

unit of mass from  to : x y c(x, y)

Transport plan:  
move an amount  from  to π(x, y) x y

“Kantorovich optimal transport problem”

Transport plan with  
minimal cost:
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Optimal transport, now continuous
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= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

x y

p(x) q(y)

Cost to transport one 

unit of mass from  to : x y c(x, y)

Transport plan:  
move an amount  from  to π(x, y) x y

“Kantorovich optimal transport problem”

Transport plan with  
minimal cost:

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

Remember: the marginals of any admissible 
transport plan must give the source and  
target distributions:

“Entire mass picked up” “Entire mass delivered”

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)
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Optimal transport, now continuous
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p(x)

q(y)

∫ dx π(x, y) = q(y)

∫ dy π(x, y) = p(x)

π(x, y) Constraints:

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)
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Optimal transport, now continuous
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p(x)

q(y)

∫ dx π(x, y) = q(y)

∫ dy π(x, y) = p(x)

π(x, y) Constraints:

It is not difficult to satisfy these 
constraints!

π(x, y) = p(x) q(y)
(Is admissible, but rarely minimal)

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)
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Optimal transport, now continuous
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p(x)

q(y)

∫ dx π(x, y) = q(y)

∫ dy π(x, y) = p(x)

π(x, y) Constraints:

It is not difficult to satisfy these 
constraints!

π(x, y) = p(x) q(y)
(Is admissible, but rarely minimal)

π(x0, y) ∼ q(y)x0

This transport plan distributes

Mass from  across all x0 y

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)
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Optimal transport, now continuous
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p(x)

q(y)

∫ dx π(x, y) = q(y)

∫ dy π(x, y) = p(x)

π(x, y) Constraints:

Transport plans can also be 
“deterministic”:

π(x, y) = p(x) δ[y − T(x)]

This is a change of coordinates

; must satisfyx → y = T(x)

q(y) = p(x)( dT
dx )

−1

How about a continuous distribution of production  and a  
continuous distribution of demand ?

p(x)
q(y)

x0

y0 = T(x0)
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Optimal transport à la Monge
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= arg min
π ∫ dx dy π(x, y) c(x, y)̂π ∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

 
Kantorovich problem
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Optimal transport à la Monge
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= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

 
Kantorovich problem

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

 
          “Monge optimal transport problem”

q(y) = p(x)( dT
dx )

−1

π(x, y) = p(x) δ[y − T(x)]
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Optimal transport à la Monge
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= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

If both  and  are sufficiently continuous*, the solution to the  
Kantorovich problem …

p(x) q(y)

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

… is guaranteed to be of the “deterministic” kind, i.e. it solves the  
          “Monge optimal transport problem”

q(y) = p(x)( dT
dx )

−1

* and the cost function  is a convex functionc(x, y)

π(x, y) = p(x) δ[y − T(x)]
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Monge vs. Kantorovich
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Transport between two smooth distributions:

Transport between non-smooth and smooth distribution:

Deterministic transport  
(“reordering of samples”) sufficient  

→ Monge problem

Need stochastic transport  
(“random smearing of samples”) 

→ Kantorovich problem

x y

p(x)
q(y)

x y

q(y)
p(x) = δ(x − x0)

x0

̂T(x)

̂π(x, y)

Samples drawn from distribution
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Optimal transport à la Monge
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= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

If both p(x) and q(y) are sufficiently continuous*, the solution to the  
Kantorovich problem …

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

… is guaranteed to be of the “deterministic” kind, i.e. it satisfies the  
          “Monge optimal transport problem”

q(y) = p(x)( dT
dx )

−1

* and the cost function  is a convex functionc(x, y)

The beginning of transportation theory > 240 years ago
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240 years of optimal transport
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Today we know a lot about the structure of optimal transport solutions
(High-profile, Fields-medal winning research!)

The character of the solution depends strongly on the cost function c(x, y)
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240 years of optimal transport
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Today we know a lot about the structure of optimal transport solutions
(High-profile, Fields-medal winning research!)

The character of the solution depends strongly on the cost function c(x, y)

For “smooth” distributions and convex cost functions: 

Solution to Kantorovich problem  
(“stochastic transport”)

Solution to Monge problem  
(“deterministic transport”)=

x

Convex 

functionLine segment


is above function



Philipp Windischhofer

The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!



Philipp Windischhofer

The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 2 c(x, y) = |x − y |2

̂T(x) = ∇g(x)

The optimal transport function is the gradient of a convex potential!
(“Brenier’s theorem”)

“Transport potential”

(Also convex!)

For this case: 
Optimal transport ⇔ Electrostatics

The transport vector field  
has zero curl!

̂T
“Don’t ship your stuff in circles.”
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

x1, y1

x2, y2

p(x)

q(y)

Example:

Source distribution  populates 
inside of axis-aligned square

p(x)

Target distribution  populates 
“rotated” square

q(y)

, i.e. p = 2 c(x, y) = |x − y |2

But: rotation is not a gradient  
vector field!
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

x1, y1

x2, y2

p(x)

q(y)

Example:

Source distribution  populates 
inside of axis-aligned square

p(x)

Target distribution  populates 
“rotated” square

q(y)

, i.e. p = 2 c(x, y) = |x − y |2

But: rotation is not a gradient  
vector field!

The optimal transport solution 
looks like this
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 2 c(x, y) = |x − y |2

The optimal transport solution performs 
quantile-matching (works for all convex  
cost functions!)

For 1-dimensional distributions:

x

y

p(x)

q(y)
  ̂T(x) = Q−1(P(x))

Cumulative distributions  
of , :p(x) q(y)

F(x) = ∫
x

0
dx′￼f(x′￼)Generically:

P(x0)

x0

y0 = ̂T(x0)

  Q(y0) = P(x0)
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 1 c(x, y) = |x − y | (Monge’s original problem)

This is a much more complicated case!
Solutions exist for smooth distributions, but no longer unique!

0
x

y
0

N

1 N + 1

p(x)

q(y)

…

…

Example:

Uniform source and target distributions

(e.g. rows of N books, shifted by one)
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The choice of cost function
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Many useful cost functions are convex!

E.g.  for c(x, y) = |x − y |p p > 1
… let’s look at a few examples!

, i.e. p = 1 c(x, y) = |x − y | (Monge’s original problem)

This is a much more complicated case!
Solutions exist for smooth distributions, but no longer unique!

0
x

N

p(x)

…

0 N

…

N N + 1

0 N

…

N N + 1

1

1

“Move 1 book by N”

“Move N books by 1”

y
0 1 N + 1

q(y)

…



Solving  
optimal transport problems

x

v1 v2 v3 vk g(x)
…

…
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Solving the Monge problem
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= arg min
T ∫ dx p(x) c(x, )̂T T(x)

q(y) = p(x)( dT
dx )

−1

Want to find  to solvêT

, subject to the constraint

(Highly nonlinear!)

In general, this is a very difficult problem!

, starting from samples drawn from  and .p(x) q(y)

Many different algorithms exist! Two main classes:

(Continuous, as usual in particle physics)

x ↦ y = T(x)



Philipp Windischhofer

Solving the Monge problem
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q(y) = p(x)( dT
dx )

−1

, subject to the constraint

(Highly nonlinear!)

In general, this is a very difficult problem!

, starting from samples drawn from  and .p(x) q(y)
(Continuous, as usual in particle physics)

Many different algorithms exist! Two main classes:

“Discrete”  
optimal transport

“Continuous”  
optimal transport

p(x)
q(y)

Transport empirical distributions  
by pairing up samples ~ 𝒪(N2)

Construct (continuous) transport function, 
implicit regularization

p(x)
q(y)

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

Want to find  to solvêT

̂T ̂T

x ↦ y = T(x)
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Continuous optimal transport: an illustration
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In the following: look at continuous optimal transport with  
quadratic cost function

(Theoretically well-understood, synergies with modern machine learning)

c(x, y) = |x − y |2 ̂T(x) = ∇g(x)

Reminder: solution is a gradient field

Convex 

potential “Electrostatics”

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

q(y) = p(x)( dT
dx )

−1

Cost function:

Constraint:

Still not trivial to solve: highly problem-dependent and nonlinear constraint!
→ try to find an alternative formulation with simpler constraints
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A solution sketch
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q(y) = p(x)( dT
dx )

−1Nonlinear constraint

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

Monge problem

Linear constraints!
Kantorovich problem

Equivalence for  
smooth distributions

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

π(x, y) = p(x) δ[y − T(x)]
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A solution sketch
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Nonlinear constraint

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

Monge problem

Linear constraints!
Kantorovich problem

Equivalence for  
smooth distributions

Dual Kantorovich problem

Kantorovich-Rubinstein 
duality

Convex constraints 
→ manageable!

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

g(x) + f(y) ≤ c(x, y)

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y)+

+∫ dx p(x)g(x)

q(y) = p(x)( dT
dx )

−1
π(x, y) = p(x) δ[y − T(x)]
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A solution sketch
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Nonlinear constraint

∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

Monge problem

Linear constraints!
Kantorovich problem

Equivalence for  
smooth distributions

Dual Kantorovich problem

Kantorovich-Rubinstein 
duality

Convex constraints 
→ manageable!

̂T = ∇ ̂g

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

g(x) + f(y) ≤ c(x, y)

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y)+

+∫ dx p(x)g(x)

q(y) = p(x)( dT
dx )

−1
π(x, y) = p(x) δ[y − T(x)]
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The Kantorovich-Rubinstein duality
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∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

Primal problem:

x
y

c(x, y)
q(y)

p(x)

Optimise transportation plan based

on point-to-point cost c(x, y)

“Operative perspective”:
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The Kantorovich-Rubinstein duality
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∫ dx π(x, y) = q(y)∫ dy π(x, y) = p(x)

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

Primal problem:

Dual problem:

g(x) + f(y) ≤ c(x, y)

x
y

c(x, y)

f(y)

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y)+

+∫ dx p(x)g(x)

q(y)
p(x)

Optimise transportation plan based

on point-to-point cost c(x, y)

y

q(y)p(x)

“Operative perspective”:

“Black-box perspective”:

x

Optimize prices  and : 
maximize revenue while underbidding 
point-to-point transport

g(x) f(y)

g(x)
Price to  
depopulate at 

(“pick up”)

x
Price to  

populate at 

(“deliver”)

yTransport details  
hidden!
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The dual problem
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g(x) + f(y) ≤ c(x, y)

The dual problem is (much) easier to solve numerically:

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y) +∫ dx p(x)g(x)

Legendre transform in classical  
mechanics:

H(p) + L( ·q) = p ·q

Hamiltonian Lagrangian
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The dual problem
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g(x) + f(y) ≤ c(x, y)

The dual problem is (much) easier to solve numerically:

 ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y) +∫ dx p(x)g(x)

Legendre transform in classical  
mechanics:

 ̂g = arg max
g∈cvx ∫ dy q(y) g*(y) +∫ dx p(x)g(x)

For , 
 and  are  

Legendre-conjugates!

c(x, y) = |x − y |2

̂f ̂g

Maximise this “loss function” over all convex functions g(x)

Recover optimal transport function ̂T = ∇ ̂g

H(p) + L( ·q) = p ·q

Hamiltonian Lagrangian

Legendre transform: g*(y) = max
x

[x ⋅ y − g(x)]
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A numerical solution
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Idea: parameterize set of convex functions, find maximum numerically

Input-convex neural networks [1609.07152]

Takes both mathematical groundwork and modern neural network architectures  
to make large-scale optimal transport feasible in practice! 

Very recent! 

x

v1 v2 v3 vk g(x)
…

…

“Compositions of convex functions with convex nondecreasing functions remain convex”

Very similar to standard feedforward networks,  
but require convex nondecreasing activation functions and nonnegative weights

Optimal transport becomes tractable with modern Machine Learning infrastructure
“Just another loss function”

https://arxiv.org/abs/1609.07152


Applications in  
high-energy physics
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Synergies with high-energy physics
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In particle physics, we manipulate (probability) distributions  
on a daily basis …

… optimal transport provides useful tools  
(and a unifying perspective) for many of these!

Extrapolation across phase space  
(e.g. control region → signal region)

Calibration of simulation 
(e.g. Monte Carlo prediction 

 against data side bands)

Interpretation of data

(e.g. jet clustering)

CR SR
Sim. Data

Calibrated  
sim.[2208.02807]

[2107.08648]

[2004.04159]

https://arxiv.org/abs/2208.02807
https://arxiv.org/abs/2107.08648
https://arxiv.org/abs/2004.04159


Philipp Windischhofer

Detailed simulation models encompass collective domain knowledge,  
from matrix elements (TeV) to detector signals (eV) … tuned over decades!

Calibrating stochastic simulation

42

Collider-based particle physics is in a simulation-driven era!

→ Maximizes physics potential of our instruments

But: simulations still need to be fine-tuned (“calibrated”)  
to faithfully represent reality
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Detailed simulation models encompass collective domain knowledge,  
from matrix elements (TeV) to detector signals (eV) … tuned over decades!

Calibrating stochastic simulation

43

Collider-based particle physics is in a simulation-driven era!

→ Maximizes physics potential of our instruments

But: simulations still need to be fine-tuned (“calibrated”)  
to faithfully represent reality

Hard scattering

Parton shower

Hadronization

Detector

Uncalibrated simulation

Uncalibrated  
events

Calibrated  
events

Compare with calibration data set 
(Well-understood data side-bands)

e → e′￼

Apply calibration

e e′￼
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Detailed simulation models encompass collective domain knowledge,  
from matrix elements (TeV) to detector signals (eV) … tuned over decades!

Calibrating stochastic simulation

44

Collider-based particle physics is in a simulation-driven era!

→ Maximizes physics potential of our instruments

But: simulations still need to be fine-tuned (“calibrated”)  
to faithfully represent reality

Hard scattering

Parton shower

Hadronization

Detector

Uncalibrated simulation

Uncalibrated  
events

Calibrated  
events

Compare with calibration data set 
(Well-understood data side-bands)

e → e′￼

Apply calibration

e e′￼

Calibration applies a small, 
event-by-event correction to  
the output of the simulation …

… to make predicted and 
observed distributions agree 

(e.g. through reweighting)
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Optimal transport for calibrations
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Want to preserve domain knowledge in simulation!

Calibration should result in the smallest possible modification of the original simulator  
that makes it consistent with the data 

e, e′￼

 … uncalibrated distributionp(e)
 … calibration dataq(e′￼)

= arg min
T ∫ de p(e) c(e, )̂T T(e) q(e′￼) = p(e)(∇T )−1

“Smallest possible modification” … … “consistent with the data”

    e ↦ e′￼= ̂T(e)

This is just the optimal transport problem! 
(In Monge’s form in case distributions are continuous)

E E′￼

Calibration: unbinned 
per-event modification

[2107.08648]

https://arxiv.org/abs/2107.08648
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Optimal transport for calibrations
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Want to preserve domain knowledge in simulation!

Calibration should result in the smallest possible modification of the original simulator  
that makes it consistent with the data 

e, e′￼

 … uncalibrated distributionp(e)
 … calibration dataq(e′￼)

= arg min
T ∫ de p(e) c(e, )̂T T(e) q(e′￼) = p(e)(∇T )−1

… “consistent with the data”

    e ↦ e′￼= ̂T(e)

This is just the optimal transport problem! 
(In Monge’s form in case distributions are continuous)

E E′￼

Calibration: unbinned 
per-event modification

[2107.08648]

Which cost function to use?
Part of the problem specification!

Encodes degree of confidence in  
different aspects of the simulation

“Smallest possible modification” …

https://arxiv.org/abs/2107.08648
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Calibrating simulations: the right cost function
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x1, y1

x2, y2

p(x)

q(y)

Uncalibrated simulation Calibration data

Optimal in Euclidean plane
ds2 = dr2 + r2dϕ2

Example from before: simulation of a square, but rotation angle incorrectly modeled
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x1, y1

x2, y2

p(x)

q(y)
x1, y1

x2, y2

p(x)

q(y)

Example from before: simulation of a square, but rotation angle incorrectly modeled

Uncalibrated simulation Calibration data

Optimal in Euclidean plane Optimal on a cone manifold

Use this if rotational degree of freedom 
is known to be poorly modeled

, ds2 = α2dr2 + r2dϕ2 α > 1ds2 = dr2 + r2dϕ2
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Extrapolation models
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The calibration transfers information about one distribution (calibration data)  
onto another (uncalibrated simulation)

[2208.02807]

CR

SR

Very similar setting: extrapolation of backgrounds  
from control region into signal region

Optimal transport: ∃ unbinned, high-dimensional equivalents  
to many established analysis techniques (but also no panacea!)

CR

SR

̂T

Bkg. simulation Data

“Derive on simulation,  
apply to data”

A

B

C

D

Data Data

“ABCD method”

̂T

[2203.09470]

https://arxiv.org/abs/2208.02807
https://arxiv.org/abs/2203.09470
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Summary and outlook
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Optimal transport: from a question in mathematics …

… starting to enter  
high-energy physics!

… with deep and intriguing solutions …

= arg min
π ∫ dx dy π(x, y) c(x, y)̂π

= arg min
T ∫ dx p(x) c(x, )̂T T(x)

Kantorovich

Monge

x

v1 v2 v3 vk g(x)…

…

…

…

… made accessible through modern

         machine learning

0 N
…

N N + 11
x1, y1

x2, y2

p(x)

q(y)

E E′￼
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Optimal transport
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Applications in high-energy physics
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How to compute the Legendre transform?
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g(x) ∼ f*(x) = max
y

[x ⋅ y − f(y)]
= max

h
[x ⋅ ∇h(x) − f(∇h(x))]

̂f = arg min
f∈cvx

max
h∈cvx ∫ dy q(y) f(y) + ∫ dx p(x) [x ⋅ ∇h(x) − f(∇h(x))]

g(x) + f(y) ≤ c(x, y) ̂f, ̂g = arg max
f,g ∫ dy q(y) f(y) +∫ dx p(x)g(x)

Original form:

Turns out: maximum attained when  and  are Legendre-conjugatesg(x) f(y)

The problem then becomes

… where both  and  are convex functions.f h

(  is an auxiliary function)h
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General convex cost functions
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For general convex cost functions :c(x, y)

Cost-minimising transport function is of the form x ↦ x − ∇c−1(∇ ̂g(x))

Becomes the identity for 

  
(as used in main body)

c(x, y) =
1
2

|x − y |2

Transport  
potential

The transport potential is a -concave function …c

For , this specializes to the standard definition of convexity for the potential on slide 38c(x, y) =
1
2

|x − y |2

̂g(x) = inf
x′￼,λ

c(x, x′￼) + λ

… it can be written as the superposition of shifted copies of the cost function
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Concave cost functions
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What about concave :c(x, y) = h( |x − y | )

Useful in economics: absolute cost for transport increases with distance,  
but cost per distance decreases for longer legs

Solution has intricate structure: long-distance legs interspersed with local transport

Excess production Excess demand Excess production Excess demand

R. McCann, “Exact solutions to the transportation problem on the line” [link]

https://www.jstor.org/stable/53375

