

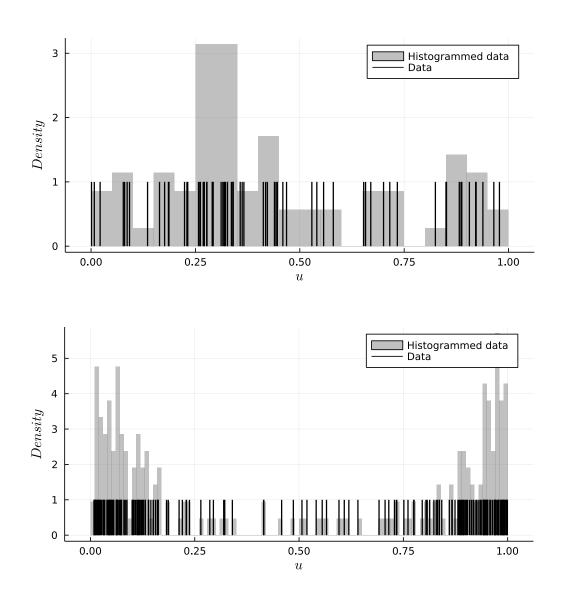
Spacing statistics: what they are and how to use them

Lolian Shtembari, Philipp Eller & Allen Caldwell

PHYSTAT Seminar 09.11.2022

Why spacings ?

- Do you notice anything strange in these datasets?
- \Box What if you expected a uniform distribution on [0,1]?
- Spacings between events correlate with the local event density
- □ How significant is the cluster?
- Given the previous expectation, can you estimate the event rate?
- General Well does the model describe the data?"
 - we need a Goodness-of-fit test (GOF)

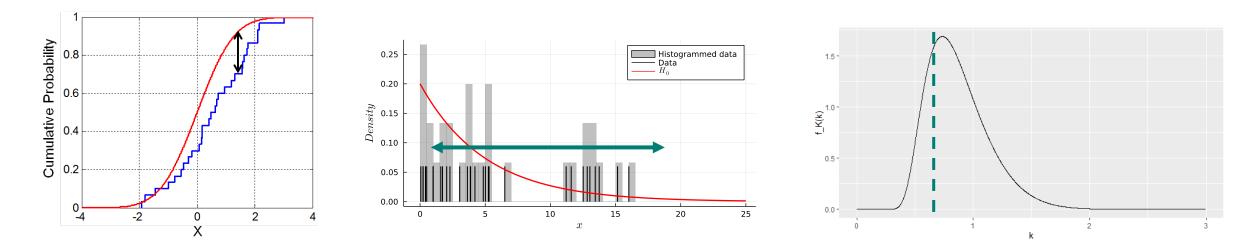


Test statistic

- □ to perform a Goodness-of-fit test we need a **test statistic** *TS*
- **Condenses the information** available in the data into one value $t = TS(x | H_0)$
- \Box each test statistic corresponds to a different question we can ask about the observed data x

 \Box we need the distribution $CDF_T(t|H_0, N)$ in order to assess the **rarity of the observation**

(**p-value**) $p_0 = \Pr(T \le t | H_0)$ or $\Pr(T \ge t | H_0)$



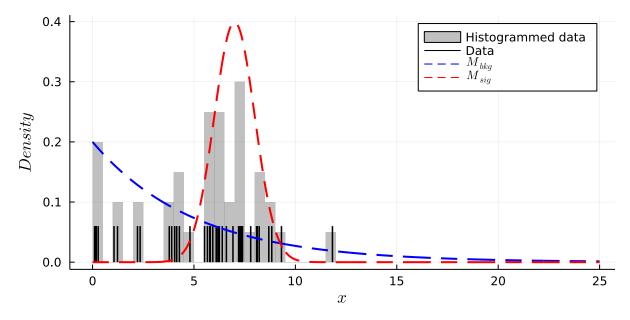
Sources of data

□ The source of data can be split in two families:

- expected
- unexpected

Depending on the scenario, we call them **background** or **signal**

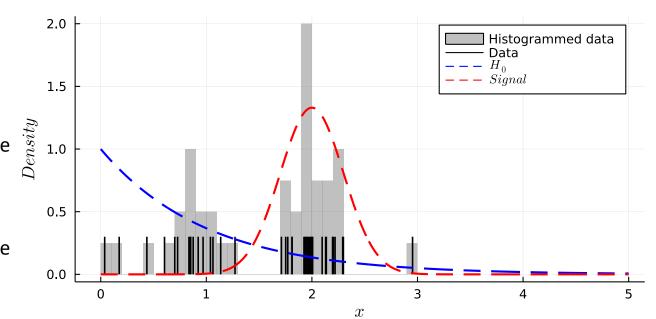
Depending on goal and knowledge, how to use a GOF?



GOF for Discovery

□ Use GOF for **discovery**:

- the **background** is known: H_0
- possibly an unexpected signal
- reject H₀ if p-value is too small (Confidence
 Level)
- no assumption on signal (no alternative hypothesis H_1)
- use model to filter data

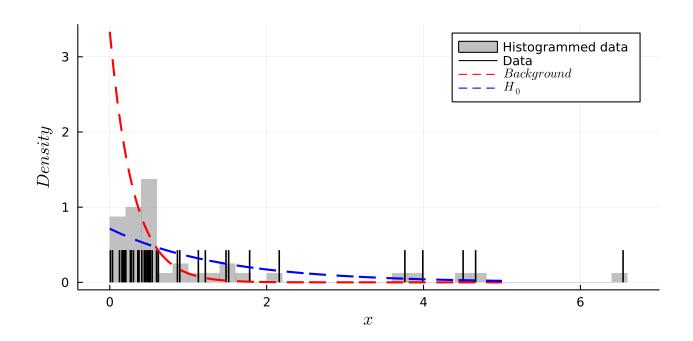


Use GOF to **set a limit**:

- the signal is know but not the rate: $H(\mu)$
- possibly an unexpected **background**
- no assumption on background shape
- select μ to match a target p-value

(Confidence Level)

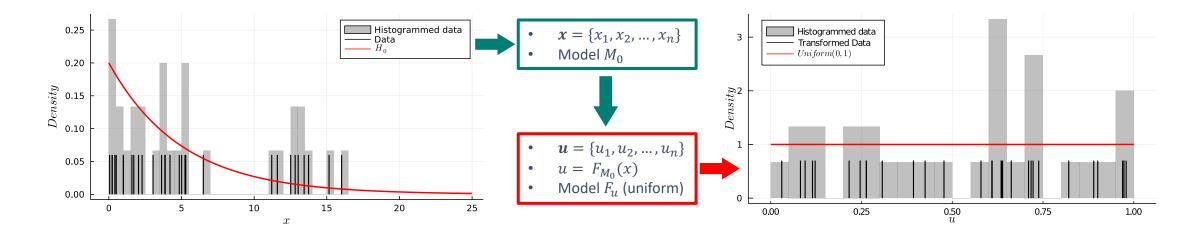
• use data to filter "models" (μ)



Probability Integral Transformation

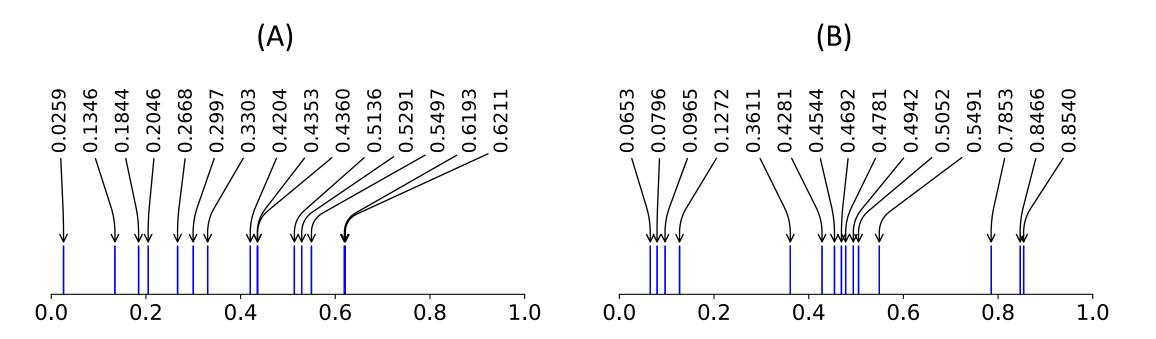
□ Often Test Statistics are developed assuming uniform distribution of the null-hypothesis

- is this enough?
- What if the null-hypothesis H_0 , is not uniform?
- □ Probability integral transformation
 - Transform the data into the cumulative space: $u_i = F_{H_0}(x_i)$
 - We now test if $m{u}$ are distributed according to the standard uniform $\mathcal{U}(0,1)$



MAX-PLANCK-INSTITUTFÜR PHYSIK

• Which set of samples is drawn from a uniform distribution?



Analysis with test statistics

A: $p_0 = 0.78613$ B: $p_0 = 0.37815$ **D** Binned analysis: χ^2 test $\chi^2 = \sum_{i=1}^{\kappa} \frac{(O_i - E_i)^2}{E_i}$ Unbinned analysis: compute the likelihood $L = \prod p(x_i)$ 1. 0 0.0 0.2 0.4 0.6 1.0 1.0 0.8 0.0 0.2 0.4 0.6 0.8 but we need the distribution of the likelihood to get a p-٠ value 1.0 A В EDF tests: 0.8 Kolmogorov-Smirnov test (KS) ۰ cumulative 9.0 70 $D_n = \sup_{x} |F_n(x) - F(x)|$ Cramér-von Mises test (CvM) ٠ $T = n \int_{-\infty}^{+\infty} (F_n(x) - F(x))^2 dF(x)$ 0.2 Anderson-Darling test (AD) • $T = n \int_{-\infty}^{+\infty} \frac{(F_n(x) - F(x))^2}{F(x)(1 - F(x))} dF(x)$ 0.0 0.0 0.2 0.4 0.6 0.8 1.0 х

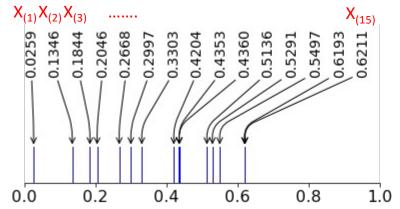
Ordered samples and spacings

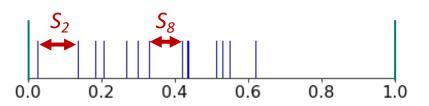
- A feature of our data that we have not yet fully explored
- We can order the data \rightarrow welcome to field of Order Statistic

$$\{x_1, x_2, \dots, x_n\} \implies \{x_{(1)}, x_{(2)}, \dots, x_{(n)}\}, \text{ where } x_{(i)} < x_{(i+1)} \forall i$$
$$x_{(k)} \sim Beta(k, n - k + 1)$$

- Given n samples we can define n + 1 ordered spacings s:
- With left and right edges $x_{(0)} = 0$ and $x_{(n+1)} = 1$

$$s_i = x_{(i)} - x_{(i-1)}$$
$$x_{(k)} - x_{(j)} \sim Beta(k - j, n - (k - 1) + 1)$$





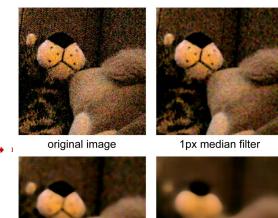
History of Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice and by no means is it a new subject...

- Extremes $X_{(1)}$ and $X_{(n)}$:
 - study of floods and droughts
 - problems of breaking strength and fatigue failure
 - auction theory
- Median $X_{(n/2)}$:
 - robust estimator of location
 - used as smoother for time series (median filter) in signal and image processing
- Linear functions of order statistics:
 - can be used to estimate parameters of location and scale of a distribution, especially with "censored" data (no time info on samples)

, E Ô E

median



3px median filter

10px median filter

□ The literature regarding tests based on spacings is very rich...

Tests based on sum: $F_n = \sum_{i=1}^n f_n(s_i)$

- Greenwood (1946): $f_n(x) = x^2$
- Kimball (1950): $f_n(x) = x^r$ for r > 0
- Irwin (1946): $f_n(x) = \left(\frac{x}{n+1}\right)^2$
- Kendall (1946): $f_n(x) = \left|\frac{x}{n+1}\right|^2$
- Moran, Darling (1953): $f_n(x) = \log(x)$
- Darling (1953): $f_n(x) = \frac{1}{x}$

Tests based on ranked spacings:

 $g_i = i$ -th smallest spacing

- Fisher (1929): g_1 and g_{n+1} (Darling, Pincus, etc...)
- Kendall (1946): $\frac{g_{n+1}}{g_1}$ and $g_{n+1} g_1$
- Mauldon (1951): $g_{(n-k+1)} + g_{(n-k+2)} + \dots + g_{(n+1)}$
- $s_1 + s_2 + ... + s_k$

arXiv:2008.02048

Recursive Product of Spacings

1.0

1.0

*S*_{*n*+1}

0.8

0.75

reduce by

1 sample

□ Using Moran's test statistic:

 $M^{n+1} = -\sum_{i=1}^{n+1} \log s_i$

- □ Reduce levels using mean value and normalize
- □ Apply Moran to all levels
- □ Sum contribution from all layers

n all layers

$$M^{j} = -\sum_{i=1}^{j} \log \left(s_{i}^{j}\right)$$

$$RPS(n) = M^{n+1} + M^{n} + \dots + M^{1}$$

$$s_{i}^{j} = \frac{s_{i}^{j+1} + s_{i+1}^{j+1}}{\sum_{i} s_{i}^{j}}$$

 S_2

0.2

0.25

0.4

0.6

0.5

0.0

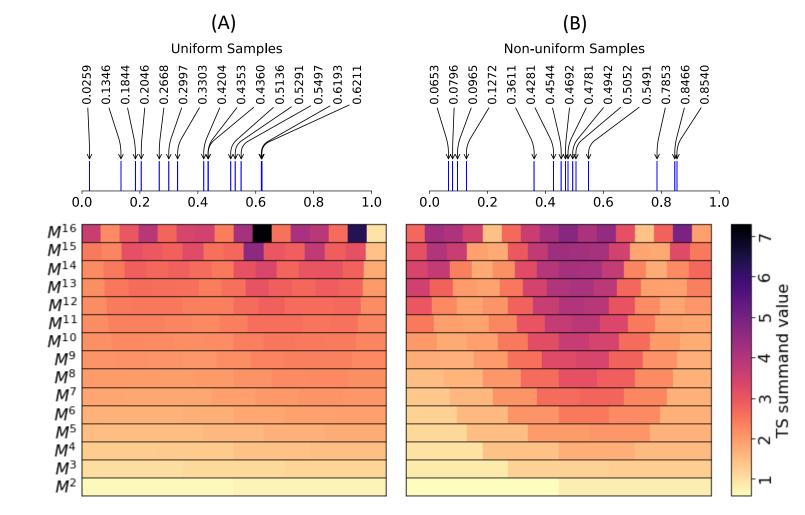
0.0

arxiv.org/abs/2111.02252

PHYSTAT Seminar – 9.11.2022

RPS in practice

MAX-PLANCK-INSTITUTFÜR PHYSIK



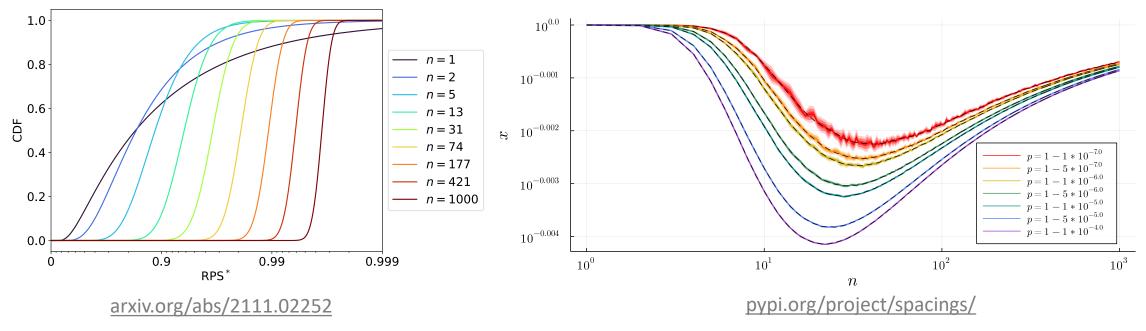
 $p_0 = 0.53$

 $p_0 = 0.057$

RPS distribution

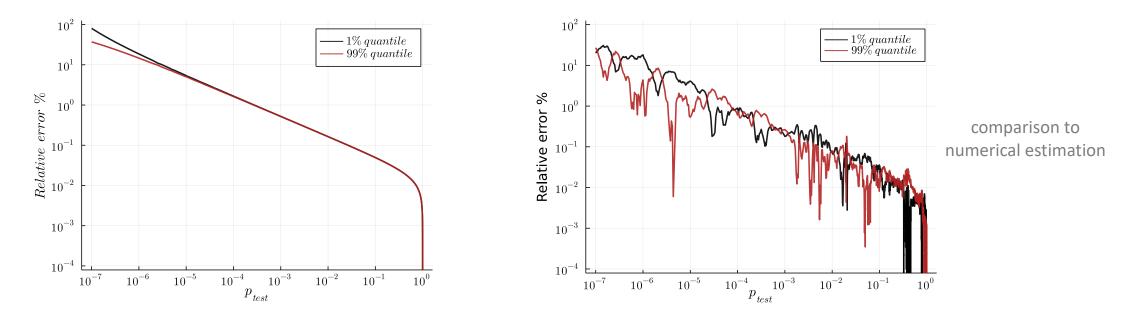
U We need the cumulative distribution $CDF(RPS \mid n)$

- deriving the distribution of combinations of spacings is not trivial for n > 2
- Instead of an analytic formula, parametrize the distribution of RPS
- 2D spline interpolation, based on a large set of simulations for $n \leq 1000$



□ It's possible to estimate the relative error of an EDF constructed with *n* samples

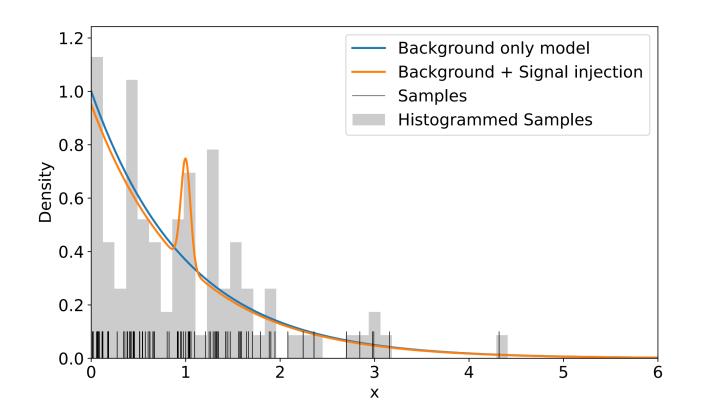
- □ For any set of i.i.d. variables, the corresponding set of EDF quantiles is a random set of uniform variables
- □ The EDF quantiles are order statistics (their distribution given *n* samples is known)
- □ We can estimate the relative error of an observed quantile against its distribution



Realistic example

Quantify how (in)compatible my observations are with a background distribution (here exponential)

 \Box For a test signal, inject some events as a narrow Gaussian $\mathcal{N}(1, 0.05)$



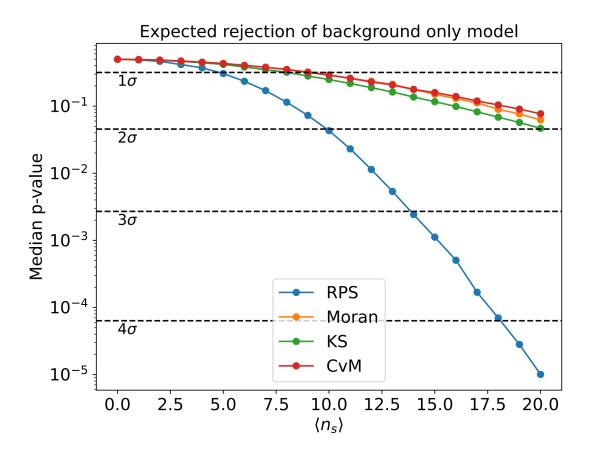
Realistic example

1.2

- Background only model Background + Signal injection 1.0 Samples Histogrammed Samples Repeated trials of random number of background events: $n_b \sim Poisson(100)$ 0.8 Density 9.0 Inject signal random number of signal events: $n_s \sim Poisson$ 0.4 0.2 0.0 KS CvM RPS Moran 10² $\langle n_s \rangle = 3$ $\langle n_{\rm s} \rangle = 0$ $\langle n_s \rangle = 4$ $\langle n_s \rangle = 1$ 10^{1} $\langle n_s \rangle = 5$ $\langle n_s \rangle = 2$ 10^{0} 10^{-1} 10^{-2} 0.2 0.8 0.2 0.6 0.2 0.6 0.8 0.2 0.6 0.8 0.4 0.6 1 0 0.4 0.8 1 0 0.4 0.4 0 1 0 p-value p-value p-value p-value
- for $\langle n_s \rangle > 0$ all p-value distributions trend towards smaller p-values \rightarrow worsened GOF for bkg only model
- RPS test offers the largest rejection probability of the null hypothesis.

Sensitivity

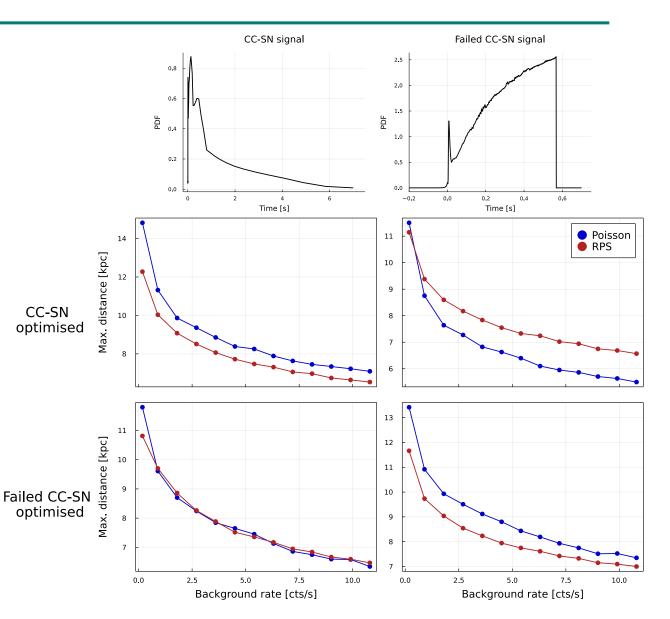
- ❑ What p-value (median) would one expect as a function of the injected signal?
- □ The TS with highest **sensitivity** can be used to validate model selections for further studies
- TS can be used as a fast filter in large datasets in order to select "interesting" sections of data to be later analyzed more in depth (Bayesian analysis for example)



RPS for online trigger of SN Neutrino Bursts

MAX-PLANCK-INSTITUT FÜR PHYSIK

- □ Successful signal recognition depends on:
 - signal distance \rightarrow signal rate
 - background rate
- Optimize analysis parameters to maximize detection horizon at set success rate:
 - optimization dependent on signal hypothesis
- □ Study how detection horizon of a frozen optimized model changes:
 - signal change
 - background increases
- RPS test more robust against signal variation and increased background
- Case study for RES-NOVA JCAP 10 (2022) 024



Setting an upper limit

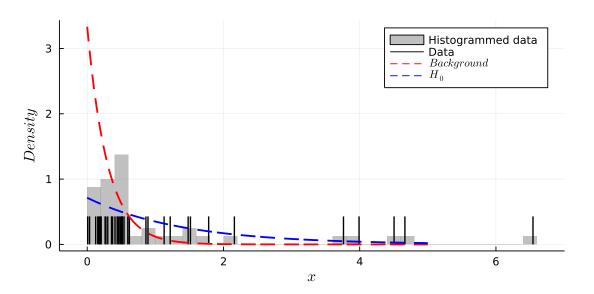
Consider a univariate dataset

- □ Suppose we know the shape of the signal distribution
- **Unknow normalization**
- □ There might also be an unknown background

G Estimate an upper limit on the signal

□ Yellin* proposes 2 methods: <u>arXiv:physics/0203002</u>

- "Maximum Gap" and "Optimum Interval"
- used in many direct dark matter search experiments (CRESST, CDMS, EDELWEISS,...)



 \Box So far, we only considered test statistics (TS) for a given number of observed events, n

- □ What if *n* is an observable (random variable) too?
 - We assign *n* a distribution and integrate TS over it:

$$F(t|\mu) = \sum_{n=N_{min}}^{\infty} p(n|\mu) \cdot F(t|n)$$

 $n \sim \text{Poisson}(\mu)$

 $t = TS(\boldsymbol{x})$

• N_{min} is the smallest number of samples that produce the desired test statistic

Maximum Gap method

MAX-PLANCK-INSTITUT FÜR PHYSIK

□ Spectrum dN/dE for a proposed cross section σ

□ Total expected number of events:

$\mu = \int_{E_{min}}^{E_{max}} \frac{dN}{dE}$

- Evaluate expected number of events in each gap
 - similar to the "probability integral transform"

□ Test statistic:

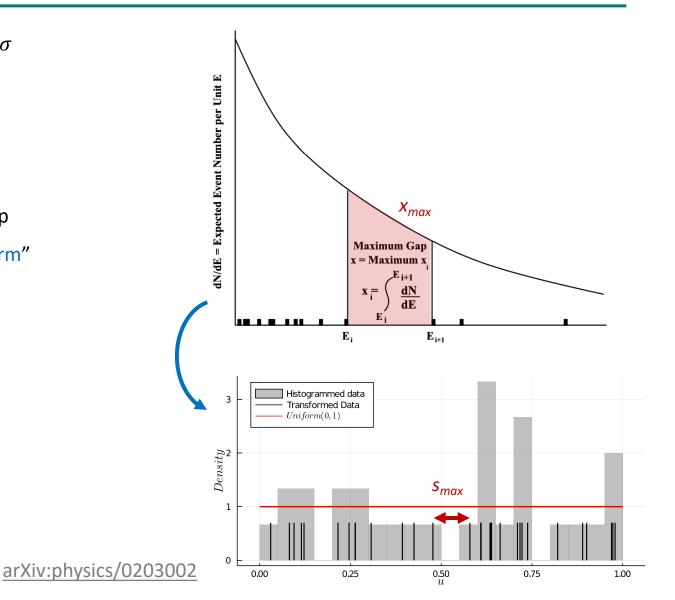
$$TS(\mathbf{E}) = \frac{x_{max}}{\mu} = s_{max} = \max_i s_i$$

p-value:

$$p = \Pr(TS \le s_{max} \mid \mu)$$

Upper limit at 90% Confidence Level:

• Find μ such that p = 0.9



Lolian Shtembari

PHYSTAT Seminar – 9.11.2022

Optimum Interval method

- Instead of looking only at one gap at a time, look at collections of gaps
 - $s_i = s_{1,i} = u_i u_{i-1}$ (Ordered Spacings)
 - $s_{k,i} = u_i u_{i-k}$ (Sum of Ordered Spacings)
- □ For each order *k*, find the largest sum or ordered spacings and its p-value:
 - $s_k^{max} = \max_i s_{k,i}$
 - $p_k = \Pr(s_k^{max} \le obs. | \mu)$
- □ Test statistic:

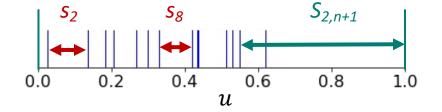
$$TS(\boldsymbol{u}) = p_{max} = \max_{k} p_k$$

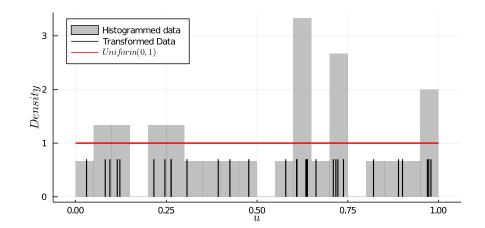
□ Final p-value:

$$p_{final} = \Pr(TS \le p_{max} | \mu)$$

Upper limit at 90% Confidence Level:

• Find μ such that $p_{final} = 0.9$





Lolian Shtembari

PHYSTAT Seminar – 9.11.2022

arXiv:physics/0203002

□ Sort spacings -> new event list

- $g_1 = \min_i s_i, \dots, g_{n+1} = \max_i s_i$ (Sorted Spacings)
- □ Consider Sum of largest Sorted spacings:

$$G_k = \sum_{i=n+2-k}^{n+1} g_i$$

□ For each order k, get p-value of the sum of largest sorted spacings:

$$p_k = \Pr(G_k \le obs. \mid \mu)$$

□ Test statistic:

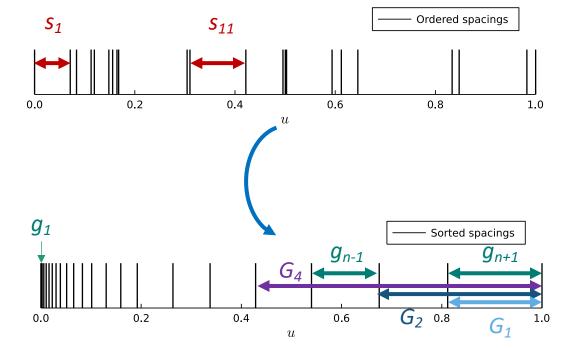
$$TS(\boldsymbol{u}) = p_{max} = \max_{k} p_k$$

□ Final p-value:

$$p_{final} = \Pr(TS \le p_{max} | \mu)$$

Upper limit at 90% Confidence Level:

• Find μ such that $p_{final} = 0.9$



PHYSTAT Seminar – 9.11.2022

arXiv:2008.02048

Product of Complementary Spacings

□ Moran's test (sensitive to small spacings):

$$M(\mathbf{s}) = -\sum_{i=1}^{n+1} \log s_i$$

□ Make this test sensitive to large spacings:

consider complementary of each spacing

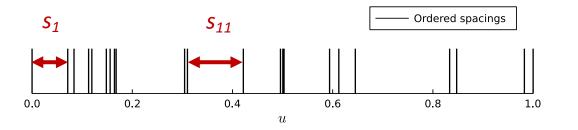
$$PCS(s) = -\sum_{i=1}^{n+1} \log(1 - s_i)$$

□ Final p-value:

 $p_{final} = \Pr(PCS \le obs. | \mu)$

Upper limit at 90% Confidence Level:

- Find μ such that $p_{final} = 0.9$
- □ Simpler definition -> easier to work with

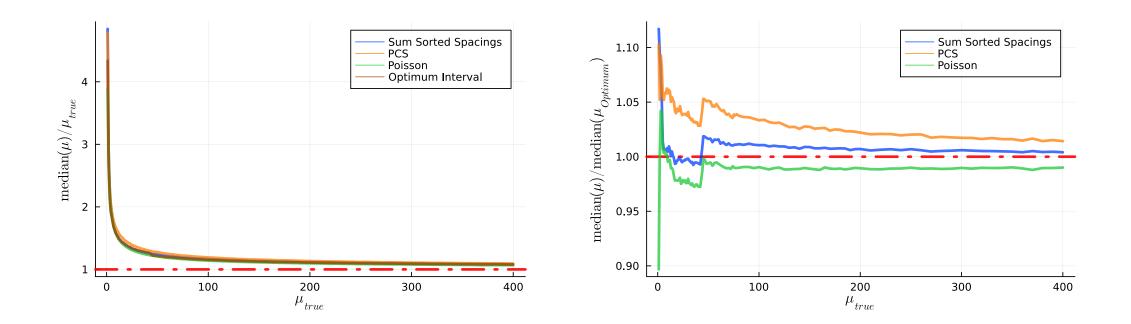


Limit setting: no Background

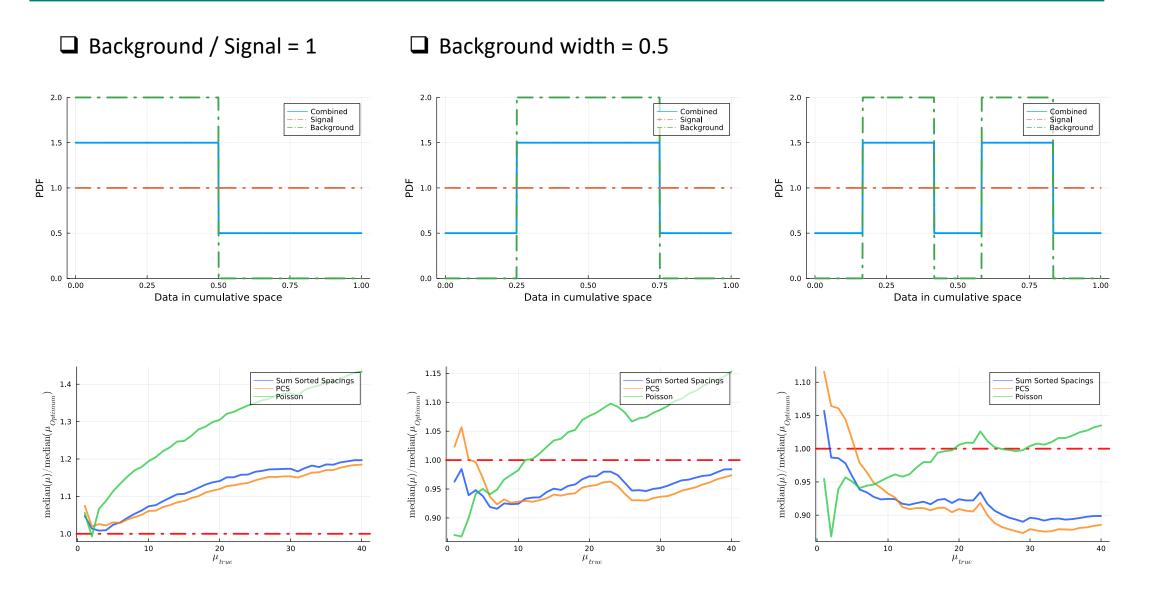
□ Repeated trial experiments to estimate 90% CL limit

Consider median of estimated event rates

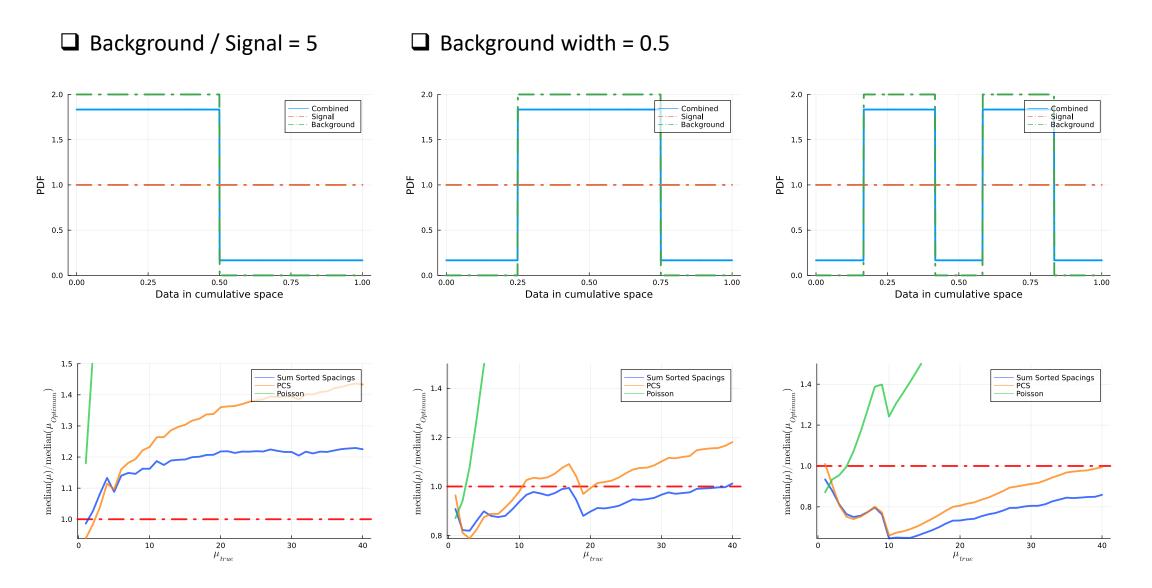
□ Compare medians to Optimum Interval method



MAX-PLANCK-INSTITUTFÜR PHYSIK



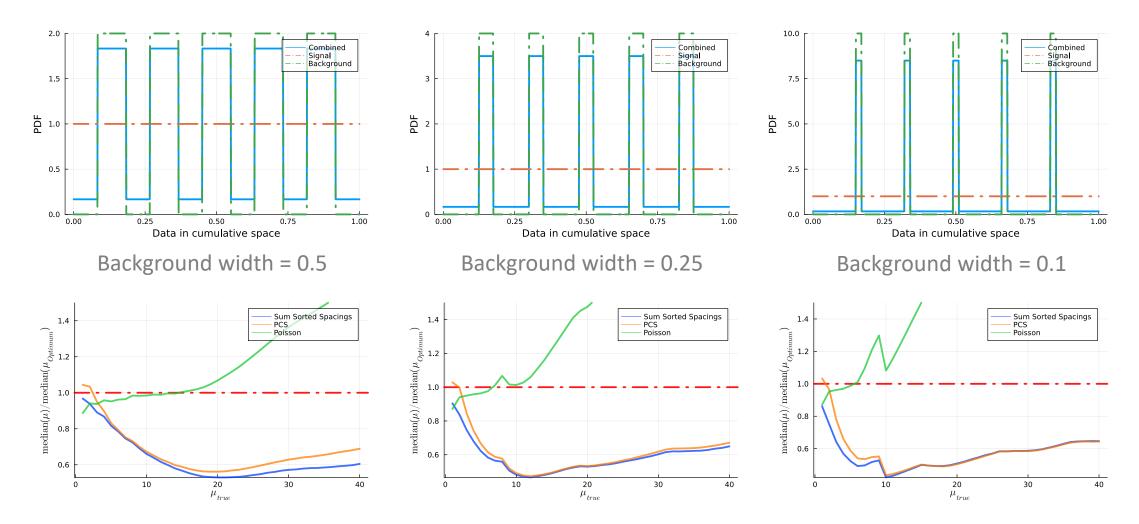
MAX-PLANCK-INSTITUTFÜR PHYSIK



Limit setting: non smooth Background

MAX-PLANCK-INSTITUT FÜR PHYSIK

□ Background / Signal = 5



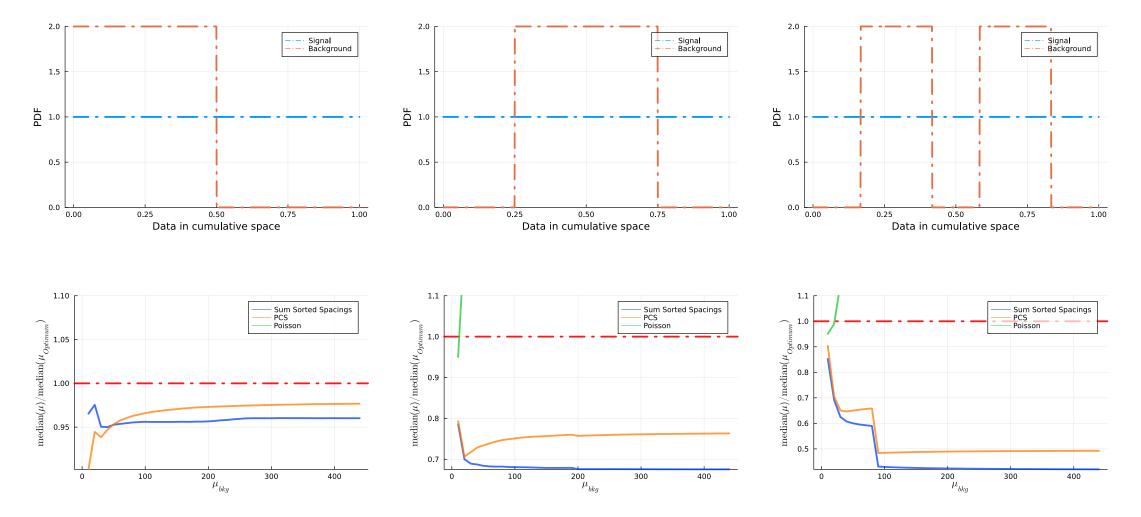
Lolian Shtembari

PHYSTAT Seminar – 9.11.2022

Limit setting: no Signal

MAX-PLANCK-INSTITUT FÜR PHYSIK

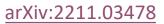
□ Background width = 0.5

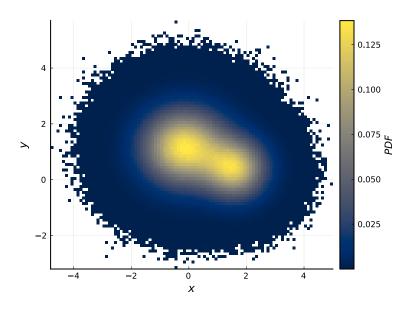


Ongoing work

□ Currently working on targeting multivariate distributions

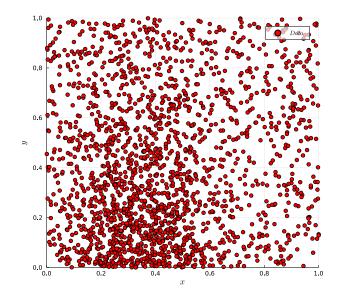
A general method for goodness-of-fit tests for arbitrary multivariate models





Limit setting in multiple dimensions

publication in preparation



Conclusions and future work

MAX-PLANCK-INSTITUT FÜR PHYSIK

□ Test Statistics and their distributions are very useful

□ There is no one right test statistic, it is very problemdependent (unfortunately)

□ Introduced **RPS** for univariate GOF

Introduced Sum of Sorted Spacings and Product of Complementary Spacings for univariate limit-setting

Develop method for **multivariate GOF**

□ [WIP] **limit-setting in** *n* **dimensions** (2 candidates)

Thank you for your attention !