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We demand rigidly defined areas of doubt and uncertainty!

- Douglas Adams,
The Hitchhikers Guide to the Galaxy



3

https://xkcd.wtf/2110/

https://xkcd.wtf/2110/


4Snowmass Machine Learning Report

2209.07559

https://arxiv.org/pdf/2209.07559.pdf


5Many Terminologies Around Uncertainty

Model 
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Statistical 
Uncertainty

Systematic 
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Data  
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Theory  
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6Machine Learning in the Data Analysis Pipeline

Matrix Elements, 
PDF’s

𝜃 – Physics Parameters

Fragmentation / 
Hadronization

Detector 
Interactions

Trigger

Particle 
Reconstruction

Event Selection / 
Reconstruction

Hypothesis Testing

"𝜃 – Parameter Estimates

Data AnalysisData Generation



7Primary Questions of Concern 
How to deal with Systematic Uncertainties 
when using Machine Learning Models?

Is there uncertainty from using the ML Model?

ML “Model Uncertainty”:

What if the ML model did not
“perfectly” fit the data?

When does it matter?

2209.10910

https://arxiv.org/abs/2209.10910


8Supervised Learning Setup
Training Data: 
•𝒟 = {𝑥! , 𝑦!} = features and target
• 𝑥, 𝑦 ~ 𝑝 𝑥, 𝑦

Goal:
• Learn 𝑓" 𝑥 = +𝑦
•𝑤 = model weights

Learning:
•Optimize Loss 
w∗ = arg min

"
𝐿 = arg min

"
$
%
∑! ℒ(𝑦, 𝑓" 𝑥 )

𝒇𝒘∗(𝒙) 𝒇𝒕𝒓𝒖𝒆(𝒙)

Family of Functions

“True” Function

Optimization: Get as close as 
possible to 𝑓&'()(𝑥)

𝒇𝒘(𝒙)



9Optimal vs. Correct

EPJC 80 (2020) 942

Reconstruction, data selection, event classification 
enable us to define powerful summary statistics

Estimate likelihood for frequentist parameter inference:

• 𝜃 = physics parameters of interest
•𝑤∗ =Learned params,  𝜙 = Reco / analysis params
• 𝜆(⋅) = parameters of probability density

e.g. mean of Poisson / Gaussian density

𝑇!∗,# 𝑥 : ℝ$%" → ℝ

𝑝 𝑇'∗,) 𝑥 𝜆 𝜃 )

Related / similar discussions: 
Cranmer talk, Nachman, 1909.03081 † Ignoring Systematics for the moment

https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015
https://indico.cern.ch/event/1051224/contributions/4534940/attachments/2338808/3986931/PhyStat-systematics-ML-2021.pdf
https://arxiv.org/abs/1909.03081


10Optimal vs. Correct
Reconstruction, data selection, event classification 
enable us to define powerful summary statistics

Estimate likelihood for frequentist parameter inference:

𝑇!∗,# 𝑥 : ℝ$%" → ℝ

Image from: 
L. Heinrich

Changing summary statistic 𝑇(𝑥) affects 
optimality of result, but not correctness
• Reconstruction, event classification, … 
•Not a question of ML model uncertainty

𝑝 𝑇'∗,) 𝑥 𝜆 𝜃 )

† Ignoring Systematics for the momentRelated / similar discussions: 
Cranmer talk. Nachman, 1909.03081

EPJC 80 (2020) 942

https://indico.cern.ch/event/1051224/contributions/4534940/attachments/2338808/3986931/PhyStat-systematics-ML-2021.pdf
https://arxiv.org/abs/1909.03081
https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015


11Optimal vs. Correct
Reconstruction, data selection, event classification 
enable us to define powerful summary statistics

Estimate likelihood for frequentist parameter inference:

𝑇!∗,# 𝑥 : ℝ$%" → ℝ

𝑝 𝑇'∗,) 𝑥 𝜆 𝜃 )

ML models that affect 𝜆(⋅)
• Background estimation, simulations, …
• Affects compatibility of statistical model with data
•Quality of ML model could lead to uncertainty,

Or requires additional systematic uncertainties

† Ignoring Systematics for the momentRelated / similar discussions: 
Cranmer talk, Nachman, 1909.03081

EPJC 80 (2020) 942

https://indico.cern.ch/event/1051224/contributions/4534940/attachments/2338808/3986931/PhyStat-systematics-ML-2021.pdf
https://arxiv.org/abs/1909.03081
https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015


12The Effect of Systematic Uncertainties
Systematic Uncertainties
• Simulation used for training 𝑓"(𝑥)
• Simulation not a perfect model of data
• 𝑝&'( 𝑥, 𝑦 ≠ 𝑝)*+* 𝑥, 𝑦

Problem:
• Evaluating 𝑓"(𝑥) will result in different 

distributions in simulation and data

Must consider how to handle systematic 
uncertainties for all ML models

𝒇

𝒑(𝒇)
𝑝*+,(𝑓) 𝑝-./.(𝑓)



13Uncertainty, ML, and HEP – Menu for Today

How do Machine Learners think about uncertainty? 

What kinds of uncertainty is relevant?

How do we estimate these uncertainties, when we need to?

How can we incorporate systematic uncertainties in HEP ML models?

This talk: An incomplete look at an ongoing research area
• Uncertainties workshop at Learning to Discover à this talk started there
• Great new ML review in PDG: [Cranmer, Seljak, Terao, 2021]
• Snowmass paper on uncertainty for ML in HEP: [2208:03284]
• Book Chapter: [Dorigo, de Castro Manzano]

https://indico.ijclab.in2p3.fr/event/5999/timetable/
https://pdg.lbl.gov/2022/web/viewer.html?file=../reviews/rpp2022-rev-machine-learning.pdf
https://arxiv.org/abs/2208.03284
https://www.worldscientific.com/doi/abs/10.1142/9789811234033_0017
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Uncertainties in Machine Learning



15Types of Uncertainties
Aleatoric Uncertainty:
Inherent variations in data, e.g.
due to randomness of the process

Epistemic Uncertainty:
Due to lack of knowledge, lack of 
data, incomplete information

p

Image Credit: N. Brunel



16Types of Uncertainties
Aleatoric Uncertainty:
Inherent variations in data, e.g.
due to randomness of the process

Epistemic Uncertainty:
Due to lack of knowledge, lack of 
data, incomplete information

Domain Shift:
Test data is different 
from training data

Test Data

p

Image Credit: N. Brunel



17Aleatoric Uncertainty

Often called “Statistical Uncertainty”

Variability in outcome of experiment due to inherently random effects

Often considered “irreducible"

1711.02692

Battleday et al. 2019

https://arxiv.org/abs/1711.02692
https://openreview.net/forum?id=rJl8BhRqF7


18Epistemic Uncertainty
Lack of knowledge about the best model

Main origins in ML
• Estimation error: Training data just a sample of possible observations
• Approximation error: no model (in model class) can capture unknown true model

Often considered “reducible” with more data or more complex model

0𝑓
𝑓∗ 𝑓+

𝔽:𝕏 → 𝕐

𝓕𝝎
Estimation

error Approximation 
error

Optimal 
model

« True » 
function

Estimated
modelSpace of all the 

possible models
with parameters 𝜔

Space of all the 
functions

Image credit: G. Daniel



19Domain / Distribution / Dataset Shift

Examples:
• Covariate Shift: 𝑝(𝑦|𝑥) fixed but 𝑝+,&+ 𝑥 ≠ 𝑝+-*'%(𝑥)
• Label Shift: 𝑝(𝑥|𝑦) fixed but 𝑝+,&+ 𝑦 ≠ 𝑝+-*'%(𝑦)
• Concept Shift: 𝑝(𝑦) fixed but 𝑝+,&+ 𝑥 𝑦 ≠ 𝑝+-*'%(𝑥|𝑦)

𝑝!"#! 𝑥, 𝑦 ≠ 𝑝!$%&'(𝑥, 𝑦)

Image: 1903.12261

https://arxiv.org/abs/1903.12261


20Imperfect Correspondence: My View* 

Aleatoric uncertainty
• “Statistical” / “Data” Uncertainty
•Uncertainty Inherent to data
•Not reduced w/ more data

Epistemic uncertainty
• “Model” Uncertainty
•Uncertainty from Imperfect knowledge
• Reduces with more data

Domain Shift
• Imperfect model of data generation 

process

Systematic Uncertainties from
data / simulation differences

Systematic errors induced by ML 
model training on finite stats.

Detector Noise
Resolutions

Machine Learning HEP

*Even within the ML community, these terms can be ambiguous

Stat. errors in HEP      ?



21Uncertainty Estimation Approaches in Deep Learning

A Survey of Uncertainty in Deep Neural Networks, J. Gawlikowski et al,,
arXiv:2107.03342

https://arxiv.org/abs/2107.03342


22Aleatoric Uncertainty

Density Networks

Define density 𝑝)(𝑦|𝑥)
with parameters 𝜙

Train neural network 
to predict per-example
parameters

𝑓 𝑥 → 𝜙(𝑥)

Randomness of data → Typically described by probability distributions



23Aleatoric Uncertainty

Generative Models:
Aim to approximate a density, 𝑝(𝑥)

Train NN to transform noise 𝑧~𝑝(𝑧) into data: 

1𝑥 = 𝑓' 𝑧 , 𝑝 1𝑥 ≈ 𝑝89:9(𝑥)

Implicit models: 
can only generate sample synthetic data, e.g. GANS

Explicit models: 
can also evaluate density, e.g. Normalizing Flows

Randomness of data → Typically described by probability distributions

StyleGAN v2



24Aleatoric Uncertainty in HEP with Generative Models
Simulators slow / hard to sample from → approximate with Generative Model

Generative Adversarial Networks:

Generator

Discriminator

Noise
𝑧~𝑝(𝑧)

“Real” data

C𝑅𝑒𝑎𝑙𝐹𝑎𝑘𝑒

arXiv:2109.02551Image Credit: 1712.10321

https://arxiv.org/abs/2109.02551
https://arxiv.org/abs/1712.10321


25Aleatoric Uncertainty in HEP with Generative Models
Simulators slow / hard to sample from → approximate with Generative Model

Normalizing Flows

𝑝(𝑧)

𝑓(𝑧)
𝑥

𝑝(𝑥)

𝑝J 𝒙 = 𝑝K 𝒛 det LM 𝒛
8𝒛

OP

Example: Learning 𝒆-𝒆. → 𝟑𝒋 Matrix Elements

Gao, et. al, 2001.05486, Gao, et. al, 2001.10028

https://arxiv.org/abs/2001.05486v1
https://arxiv.org/abs/2001.10028


26Aleatoric Uncertainty in HEP: Neural Unfolding

Response Matrix in unfolding → Aleatoric Uncertainty

Several recent methods using ML to model the response 
and enable high-dimensional continuous unfolding
• E.g. 2011.05836,  2006.06685, 1911.09107

𝑝'()* 𝑦 = ∫ 𝑝 𝑦 𝑥 𝑝+',((𝑥) 𝒚 = 𝑹𝒙

Continuous Form Discrete Form

https://arxiv.org/abs/2011.05836
https://arxiv.org/abs/2006.06685
https://arxiv.org/abs/1911.09107
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What if ML learns the wrong generative model or response?

→ Understanding ML Model / Epistemic Uncertainties



28Epistemic Uncertainty with Deep Ensembles

Ensembling: 
•Retrain network from multiple initializations

Can be coupled with Bootstrapping
•Randomly sample data, with replacement,

to define each model’s training set

Lakshminarayanan, Pritzel, Blundell, 1612.01474,
Nixon, Lakshminarayanan, Tran, 2020

https://arxiv.org/abs/1612.01474
https://openreview.net/forum?id=dTCir0ceyv0


29Model Uncertainty in ML-based Background Estimation

High-Dimensional “ABCD” method with NN’s
• Learn reweighting using classifiers:     𝑤 𝑥 ≈ ./(0)

.0(0)

• Estimate background:                           �̂�) 𝑥 = 𝑤 𝑥 𝑝2(𝑥)

ATLAS-CONF-2022-035
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Signal region

What if we didn’t learn accurate weights?
• ATLAS ℎℎ → 4𝑏 example: Uncertainties from Deep ensembles & data bootstrap

Preliminary

https://cds.cern.ch/record/2811390


30Bayesian Methods

𝑝 𝑦 𝑥, 𝒟 = ∫ 𝑝 𝑦 𝑥,𝑤 𝑝 𝑤 𝒟 𝑑𝑤 ≈
1
𝑁

8
-.$…0

!#~2(!|𝒟)

𝑝 𝑦 𝑥,𝑤-

Model Uncertainty:
Posterior on weights

Aleatoric Uncertainty:
Density Model



31Bayesian Methods

𝑝 𝑦 𝑥, 𝒟 = ∫ 𝑝 𝑦 𝑥,𝑤 𝑝 𝑤 𝒟 𝑑𝑤 ≈
1
𝑁

8
-.$…0

!#~2(!|𝒟)

𝑝 𝑦 𝑥,𝑤-

𝑝 𝑤 𝒟 =
𝑝 𝒟 𝑤 𝑝(𝑤)

∫ 𝑝 𝒟 𝑤 𝑝 𝑤 𝑑𝑤 Intractable Integral

Prior on weights



32Approximating the Posterior
𝑝(𝑤|𝒟) is multi-modal and complex in NN → approximation methods

𝑞(𝑤; 𝜆)

Slide credit: B. Lakshminarayanan



33Bayesian Methods for HEP Generative Models

Model Uncertainty on ML models for Event Generators

“Bayesian Normalizing Flow”
•Density Model: Normalizing Flow

•Model Uncertainty:  
Variational Posterior over weights

Bellagente et. al, 2104.04543
Butter et. al, 2110.13632

https://arxiv.org/abs/2104.04543
https://arxiv.org/abs/2110.13632


34Monte Carlo Dropout

Randomly drop connections between neurons, using Bernoulli distribution

Can be viewed as a Variational Approximation

𝑓 𝑥 → :
𝑀𝑒𝑎𝑛[𝑓$…𝑓0]
𝑉𝑎𝑟[𝑓$…𝑓0]

Different random Dropouts

Gal, Ghahramani, 1506.02142

https://arxiv.org/abs/1506.02142


35Comparisons

Kompa et. al, 2010.03039

https://arxiv.org/abs/2010.03039


36Comparisons with Data Corruptions

Kompa et. al, 2010.03039

https://arxiv.org/abs/2010.03039
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Systematic Uncertainties / 
Domain Shift in HEP



38Systematic Uncertainties

arXiv:2201.11428

https://arxiv.org/abs/2201.11428


39Theory uncertainties? … Not going to discuss here
See nice recent PHYSTAT talk from  D. Whiteson
See nice recent paper: Ghosh, Nachman, 2109.08159

W
or

k 
In

 P
ro

gr
es

s

https://indico.cern.ch/event/1172085/
https://arxiv.org/abs/2109.08159


40Systematic Uncertainty = Domain / Distribution Shift

Unlike ML, we measure / parameterize possible variations over domains

𝑥 ~ 𝑝(𝑥|𝜃, 𝜈)

Often can constrain from auxiliary measurements:  𝑝(𝑥9XJ|𝜈)
(i.e. from calibrations for reconstructed objects)

Parameterized family 
of likelihood models

Nuisance Parameter:
Parameterizing variations



41How to deal w/ systematic uncertainties in  HEP-ML models?

From PDG review of ML in HEP

https://pdg.lbl.gov/2021/reviews/rpp2021-rev-machine-learning.pdf


42Error Propagation – Standard Approach

𝜈 = 𝜈1 𝜈 = 𝜈2Signal
Background

Train on 𝑥-%, 𝑦-% w/ nominal nuisance 𝜈% → learn fixed model 𝑓(𝑥)

Evaluate on 𝜈 variations → Observe effects
Classifier

Slide Credit: K. Cranmer



43Error Propagation – Standard Approach

𝜈 = 𝜈1Signal
Background

Slide Credit: K. Cranmer

Cut

𝑛3455

Classifier

\
{7:9 7 :;}

𝑝 𝑥 𝜈 𝑑𝑥

Efficiency of Cut

𝜈 = 𝜈1

𝜈 = 𝜈2

𝜈 = 𝜈2

NOT Optimal 
Under Variations

Train on 𝑥-%, 𝑦-% w/ nominal nuisance 𝜈% → learn fixed model 𝑓(𝑥)

Evaluate on 𝜈 variations → Observe effects



44Data Augmentation / Marginalization

Training sample includes 𝜈 variations:     𝑥~ ∫ 𝑝 𝑥 𝑦, 𝜈 𝑝 𝜈 𝑑𝜈

Smeared samples → “smeared” fixed model 𝑓78(9'(:(𝑥)

Slide Credit: K. Cranmer

𝑝 𝑥 =
∫ 𝑝 𝑥 𝑦, 𝜈 𝑝 𝜈 𝑑𝜈

Smeared Classifier:
- Less sensitive to variations
- Not optimal for any 𝜈



45Data Augmentation / Marginalization

Related Example:
CMS Boosted Jet Tagging
w/ ParticleNet Graph NN

Training on flat mass
distribution

CMS-DP-2020-002

Training sample includes 𝜈 variations:     𝑥~ ∫ 𝑝 𝑥 𝑦, 𝜈 𝑝 𝜈 𝑑𝜈

Smeared samples → “smeared” fixed model 𝑓78(9'(:(𝑥)

https://cds.cern.ch/record/2707946?ln=en


46Pivoting / Enforcing Domain Invariance

Want to train model 𝑓(𝑥) such that:    𝑝 𝑓 𝜈 = 𝑝(𝑓) 𝑓 is a pivotal quantity

Normal 
Training

Pivot

Insensitive

Louppe, MK, Cranmer, 1611.01046

https://arxiv.org/abs/1611.01046


47Pivoting / Enforcing Domain Invariance
Adversarial Approach:

Louppe, MK, Cranmer, 1611.01046

𝑝(𝑦|𝑥)

𝑝(𝜈|𝑓)

Adversary to predict 𝜈 from model output 𝑓
Min-Max Game: Penalize Classifier
when Adversary succeeds

“Regularize” training with Adversary

https://arxiv.org/abs/1611.01046


48Pivoting / Enforcing Domain Invariance
Adversarial Approach:

Louppe, MK, Cranmer, 1611.01046

Optimal tradeoff of 
performance vs. robustnessNon-Adversarial training

W-jets vs QCD
𝜈= Pileup variations

https://arxiv.org/abs/1611.01046


49Pivoting / Enforcing Domain Invariance
Regularizing Correlations: Non-adversarial approach

Example: Disco Fever:  Robust Networks Through Distance Correlation

Kasieczka, Shih, 2001.05310

https://arxiv.org/abs/2001.05310


50Parameterizing Models
Train with nuisance parameters as input 𝑥a, 𝑦a, 𝜈a → learn model 𝑓(𝑥; 𝜈)

Slide Credit: K. Cranmer

𝜈

𝜈

Cranmer, Louppe, 
Pavez, 1506.02169

https://arxiv.org/abs/1506.02169


51Parameterizing Models
Train with nuisance parameters as input 𝑥a, 𝑦a, 𝜈a → learn model 𝑓(𝑥; 𝜈)

𝜈

𝜈

Slide Credit: K. Cranmer
Cranmer, Louppe, 
Pavez, 1506.02169

https://arxiv.org/abs/1506.02169


52Parameterizing Models

Fixed Model

Parameterized 
Model

No Systematic Variation With Systematic Variation

Ghosh, Nachman, Whiteson, 2105.08742

https://arxiv.org/abs/2105.08742


53Comparing Approaches

Example:
• Classifier: ℎ → 𝜏𝜏 vs Bkg
•Uncertainty: 𝜏 energy scale

Parameterized Classifier: 
𝑓(𝑥; 𝜈)

How to choose the 𝜈? 
→Profile in Likelihood

Data with Nominal 
Nuisance value

Data with Varied 
Nuisance value

Ghosh, Nachman, Whiteson, 2105.08742

Cranmer, Louppe, 
Pavez, 1506.02169

https://arxiv.org/abs/2105.08742
https://arxiv.org/abs/1506.02169
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Simulation-Based Inference: 
Estimating Likelihood Ratios with parameterized Models

Learning Profile Likelihood Ratios

L. Heinrich, 
2203.13079

Brehmer, Louppe, Pavez, Kling, Espejo, Cranmer [1, 2, 3]

Dalmasso, Masserano, Zhao, Izbicki, Lee, 2107.03920
Dalmasso, Izbicki, Lee, 2002.10399

https://arxiv.org/abs/2203.13079
https://arxiv.org/abs/1805.12244
https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/1907.10621
https://arxiv.org/abs/2107.03920
https://arxiv.org/abs/2002.10399


55Summary
Uncertainty when using ML in HEP → How and Where?
• Lots of ML research on estimating Data uncertainty & Model Uncertainty 
•Must examine each application & how well calibrated the methods are?

Many areas where Model Uncertainty may be important (not all discussed today)
•ML-based Simulation and Background estimation
• Fast ML in the Trigger – Uncertainty in real-time decision making
• Simulation-based inference – estimating likelihood ratio directly with ML
• Anomaly Detection
•…

Systematics will always remain a challenge, and understanding how to deal 
with them in ML models has made progress on several fronts



56

Backup



57Standard HEP Inference
EPJC 80 (2020) 942

Reconstruction, data selection, event classification 
enable us to define powerful summary statistics

Histogram for density estimation, with bin counts: 

Binned Likelihood: 𝑝 𝑡a 𝜃, 𝜈 = 𝑃𝑜𝑖𝑠𝑠 𝑡a 𝜇 𝜃, 𝜈

Test Statistic: 𝜆 𝜃 = log ∏& c(:&|d,
efg)

∏& c(:&|ed,fg)

𝑇 𝑥 : ℝ$%" → ℝ

𝑡- -.$…<$#%&

𝑝 𝑇 𝑥 𝜃)

https://link.springer.com/article/10.1140/epjc/s10052-020-8223-0?wt_mc=Internal.Event.1.SEM.ArticleAuthorIncrementalIssue&utm_source=ArticleAuthorIncrementalIssue&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorIncrementalIssue_20201015


58Aleatoric Uncertainty in HEP with Generative Models
Optimizing detector design with Generative Model base Surrogate Simulator

Example: SHiP Magnet Optimization
Reduced length and weight over previous design!Shirobokov, Belavin, MK,

Ustyuzhanin, Baydin, 2002.04632

https://arxiv.org/abs/2002.04632


59Bayesian Neural Networks for Jet Energy Estimation

Kasieczka, Luchman, 
Otterpohl, Plehn, 2003.11099

Gaussian Variational Posterior over weights
Gaussian Density Network for 𝑝/ predictions

Aleatoric
Epistemic

https://arxiv.org/abs/2003.11099


60Uncertainties for ML in Trigger Systems

Decision Theory / Risk Management Problems
•Decisions are irrevocable and constrained by total rate

How certain we are about an ML prediction could change our decision!

Consideration for ML model uncertainties is important here

Image Credit: 2107.02157

https://arxiv.org/abs/2107.02157


61What if the generative model doesn’t perfectly fit data?
Potentially bad description of data! → Case for Epistemic / Model Uncertainty

“Bayesian Normalizing Flow”
with Variational Inference

Likelihood:
Normalizing Flow

Variational Posterior:
Gaussian

Weights sampled
from posterior



62Simulation Based Inference (SBI)

Or a likelihood ratio

𝑟 𝜃 =
𝑝(𝑥=>5|𝜃)
𝑝(𝑥=>5|𝜃1)

Slide Credit: G. Louppe



63Neural Ratio Estimation

Slide Credit: G. Louppe



64Neural Ratio Estimation

Slide Credit: G. Louppe



65But proceed with caution! … model checking, evaluation, and criticism 

Slide Credit: G. Louppe



66Can Inference Goal Drive Training?

Train summary statistic 𝑇'(𝑥) to optimize inference goal

Examples: NEOS and INFERNO

Simpson, Heinrich, 2203.05570

https://arxiv.org/abs/2203.05570
https://arxiv.org/abs/1806.04743
https://arxiv.org/abs/2203.05570

