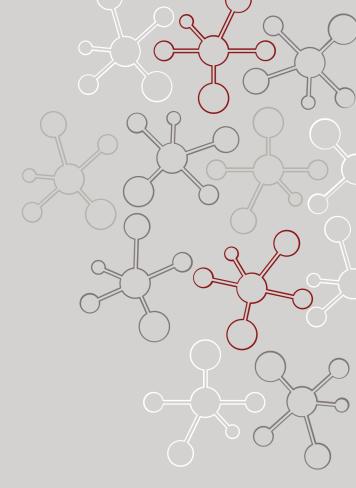
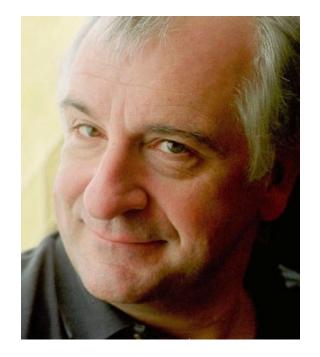
On Relating Uncertainties in Machine Learning and High Energy Physics

Michael Kagan SLAC

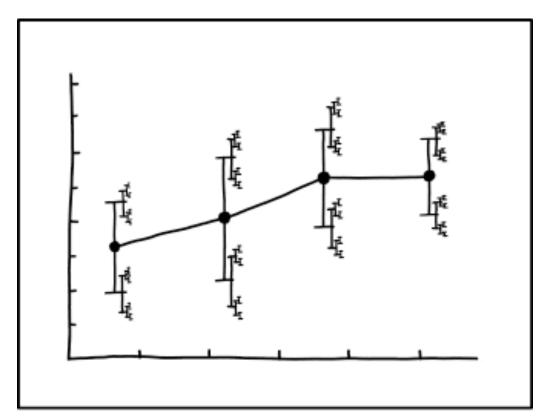
PHYSTAT / CERN Data Science Seminar November 16, 2022



We demand rigidly defined areas of doubt and uncertainty!



- Douglas Adams, The Hitchhikers Guide to the Galaxy



I DON'T KNOW HOW TO PROPAGATE ERROR CORRECTLY, SO I JUST PUT ERROR BARS ON ALL MY ERROR BARS.

https://xkcd.wtf/2110/

Snowmass Machine Learning Report

CompF3: Machine Learning

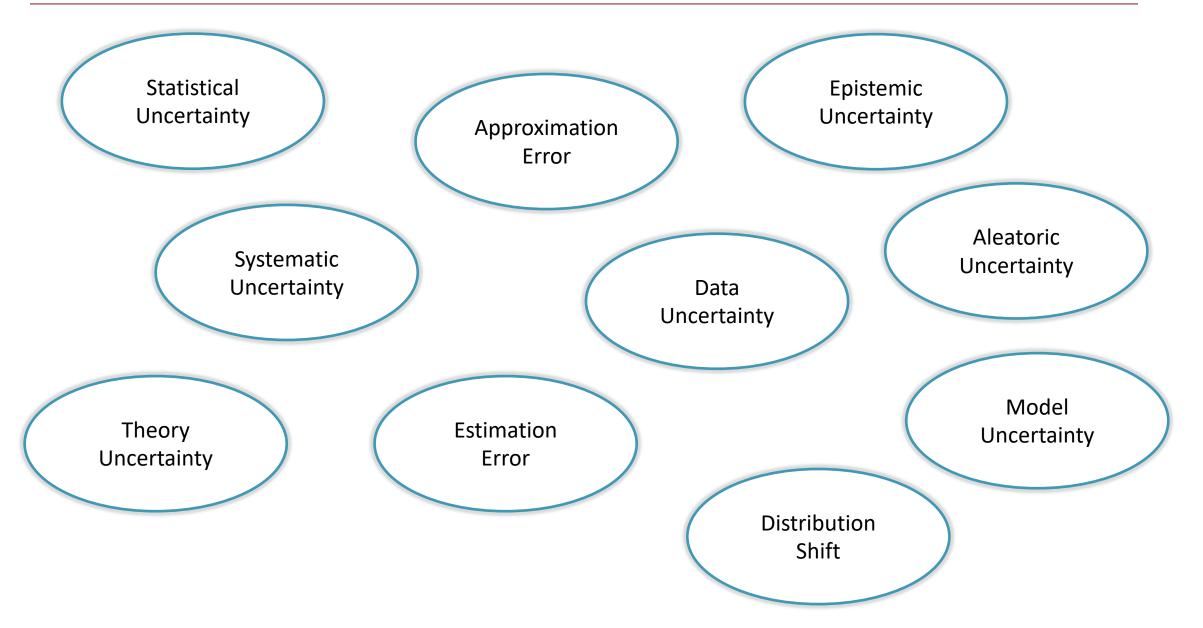
Phiala Shanahan, Kazuhiro Terao, Daniel Whiteson (Editors)

Including contributions from White Paper authors:

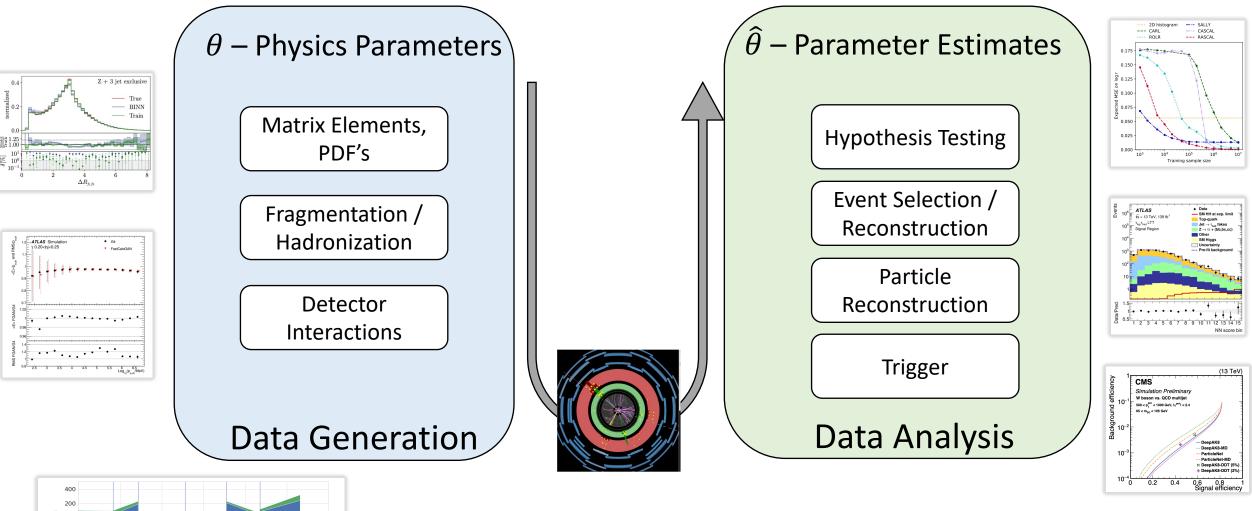
Gert Aarts^{1,2}, Andreas Adelmann³, N. Akchurin⁴, Andrei Alexandru^{5,6}, Oz Amram⁷, Anders Andreassen⁸, Artur Apresyan⁹, Camille Avestruz¹⁰, Rainer Bartoldus¹¹,
 Keith Bechtol¹², Kees Benkendorfer^{13,14}, Gabriele Benelli⁵⁹, Cartin Bernius¹¹, Alexandre Bogatskiy¹⁵, Blaz Bortolato¹⁶, Denis Boyda^{17,18}, Gustaf Brooijmans¹⁹, Paolo Calafura¹³, Salvatore Cal^{20,18}, Florencia Canell¹², Grigorios Chachamis²², S.V. Chekanov¹⁷, Deming Chen²³, Thomas Y. Chen⁴⁰, Aleksandra Ciprijanovič⁹, Jack H. Collins¹¹, Andrew J. Connolly²⁴, Michael Coughlin²⁵, Biwei Dai²⁶, J. Damgov⁴, Gage DeZoort²⁷, Daniel Diaz²⁸, Barry M. Dillon^{16,29}, Ioan-Mihail Dinu⁷, Zhongtian Dong³⁰, Julien Donini³¹, Javier Duarte²⁸, S. Dugad²², Cora Dvorkin³³, D. A. Faroughy²¹, Matthew Feickert²⁸, Yongbin Feng⁹, Michael Fenton⁵⁸, Sam Foreman¹⁷, Felipe F. De Freitas²⁴, Lena Funcke^{20,18,35}, P. G. G⁴, Abhijith Gandrakota⁹, Sammay Ganguly³⁶, Lehman H. Garrison¹⁵, Spencer Gessner¹¹, Aishik Ghosh⁵⁸, Julia Gonsk¹⁹, Matthew Graham⁴⁸, Lindsey Gray⁹, S. Grönroos⁵⁷, Daniel C. Hackett^{20,18}, Philip Harris²⁰, Scott Hauck²⁴, Christian Herwig⁹, Burt Holzman⁹, Walter Hopkins¹⁷, Shih-Chieh Hsu²⁴, Jin Huang³⁸, Xiao-Yong Jin¹⁷, Michael Kagan¹¹, Jalan Kah¹⁹, Jermej F. Kamenik^{16,39}, Raghav Kansal²⁸, Georgia Karagiorgi⁴⁰, Gregor Kasieczka⁴¹, Erik Katsavounidis²⁰, Elimam E Khoda²⁴, Charaji H. Kahs²⁴, Antomas Kip⁷⁴, Patrick Komiske²⁰, Matthias Kommi³⁷, Risi Kondor⁴⁵, Evangelos Kourlitis¹⁷, Claudius Krause⁴⁶, K. Lamichhane⁴, Luc Le Pottier^{13,10}, Meifeng Lin³⁸, Yin Lin^{20,18}, Mia Liu⁴⁷, Nan Lu⁴⁸, Biagio Lucini^{49,1}, J. Martine²⁴, Pablo Martín-Ramiro^{13,50}, Andrej Matev^{16,39}, Weilina Patrick McCormack²⁰, Eric Metodiev²⁰, Vinicius Mikuni²¹, David W. Miller⁴⁵, Siddharth Mishra-Sharma^{3,18,6}, Samadrita Mukherjee²², Janni C. Mifermann⁴⁶, Avark Roy²³, Veronica Sanz^{42,43}, Ruanwa²³, Mar

Uncertainty Quantification, Validation and Interpretability It is vital that physicists can validate the decisions of ML models and quantify their uncertainty, a goal made easier if the inner workings of the models are conceptually accessible to physicists. HEP is not alone in this concern, and can benefit from work in the wider community. The HEP community should support continued research into interpretable AI and uncertainty quantification (UQ), including making public benchmark data sets for rigorous testing and comparison of approaches to physically interpretable AI-UQ for physics, and supporting challenges and competitions to create and compare methods of uncertainty quantification, including bias mitigation.

Many Terminologies Around Uncertainty



Machine Learning in the Data Analysis Pipeline



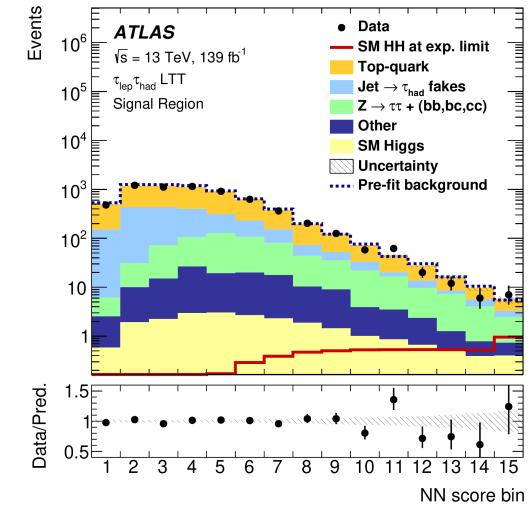
-200 -400 0 500 How to deal with *Systematic Uncertainties* when using Machine Learning Models?

Is there uncertainty from using the ML Model?

ML "Model Uncertainty":

What if the ML model did not "perfectly" fit the data?

When does it matter?



Supervised Learning Setup

Training Data:

D = {x_i, y_i} = features and target
x, y ~ p(x, y)

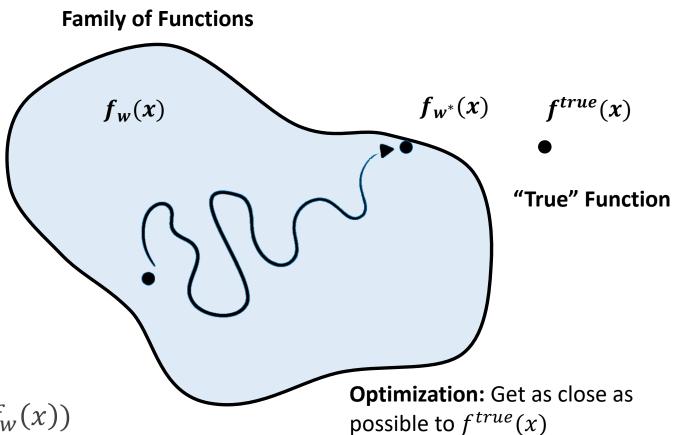
Goal:

- Learn $f_w(x) = \hat{y}$
- *w* = model weights

Learning:

• Optimize Loss

$$w^* = \arg \min_{w} L = \arg \min_{w} \frac{1}{N} \sum_{i} \mathcal{L}(y, f_w(x))$$



Optimal vs. Correct

Reconstruction, data selection, event classification enable us to define powerful summary statistics

$$T_{w^*,\phi}(x): \mathbb{R}^{10^8} \to \mathbb{R}$$

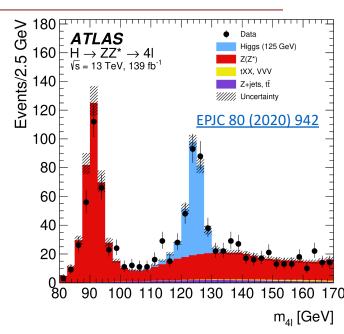
Estimate likelihood for frequentist parameter inference:

 $p\big(T_{w^*,\phi}(x)\big|\,\lambda(\theta)\,)$

- θ = physics parameters of interest
- $w^* =$ Learned params, $\phi =$ Reco / analysis params
- $\lambda(\cdot)$ = parameters of probability density e.g. mean of Poisson / Gaussian density

Related / similar discussions: Cranmer <u>talk</u>, Nachman, <u>1909.03081</u>

† Ignoring Systematics for the moment



Optimal vs. Correct

Reconstruction, data selection, event classification enable us to define powerful summary statistics

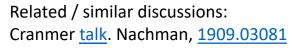
$$T_{w^*,\phi}(x): \mathbb{R}^{10^8} \to \mathbb{R}$$

Estimate likelihood for frequentist parameter inference:

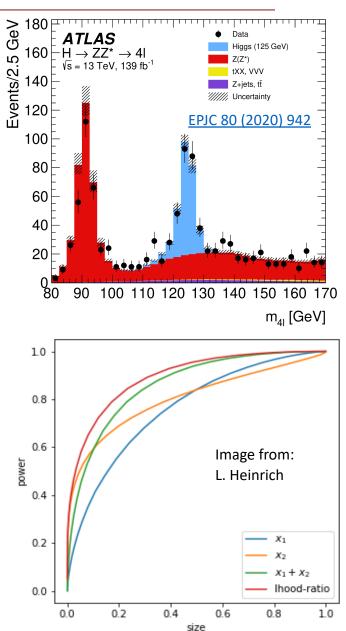
 $p(T_{w^*,\phi}(x) | \lambda(\theta))$

Changing summary statistic T(x) affects optimality of result, but not correctness

- Reconstruction, event classification, ...
- Not a question of ML model uncertainty



† Ignoring Systematics for the moment



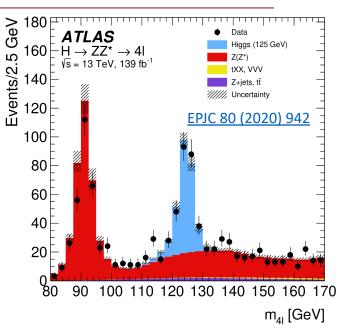
Optimal vs. Correct

Reconstruction, data selection, event classification enable us to define powerful summary statistics

$$T_{w^*,\phi}(x): \mathbb{R}^{10^8} \to \mathbb{R}$$

Estimate likelihood for frequentist parameter inference:

 $p(T_{w^*,\phi}(x)|\lambda(\theta))$



– ML models that affect $\lambda(\cdot)$

- Background estimation, simulations, ...
- Affects compatibility of statistical model with data
- Quality of ML model could lead to uncertainty,

Or requires additional systematic uncertainties

† Ignoring Systematics for the moment

The Effect of Systematic Uncertainties

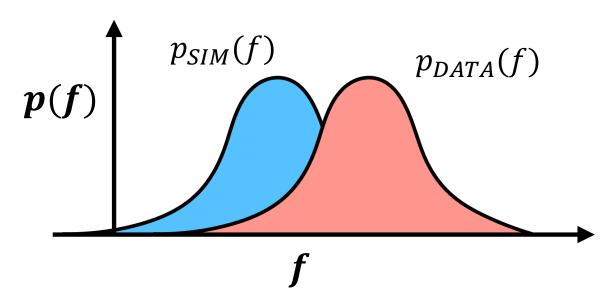
Systematic Uncertainties

- Simulation used for training $f_w(x)$
- Simulation not a perfect model of data
- $p_{SIM}(x, y) \neq p_{DATA}(x, y)$

Problem:

• Evaluating $f_w(x)$ will result in different distributions in simulation and data

Must consider how to handle systematic uncertainties for all ML models



How do Machine Learners think about uncertainty?

What kinds of uncertainty is relevant?

How do we estimate these uncertainties, when we need to?

How can we incorporate systematic uncertainties in HEP ML models?

This talk: An incomplete look at an ongoing research area

- <u>Uncertainties workshop</u> at Learning to Discover \rightarrow this talk started there
- Great new ML review in PDG: [Cranmer, Seljak, Terao, 2021]
- Snowmass paper on uncertainty for ML in HEP: [2208:03284]
- Book Chapter: [Dorigo, de Castro Manzano]

Uncertainties in Machine Learning

Types of Uncertainties

Aleatoric Uncertainty: Inherent variations in data, e.g. due to randomness of the process

Epistemic Uncertainty: Due to lack of knowledge, lack of data, incomplete information

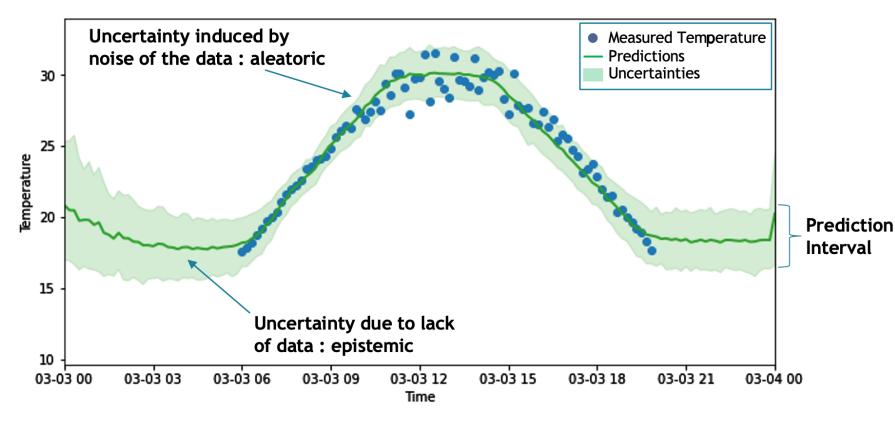
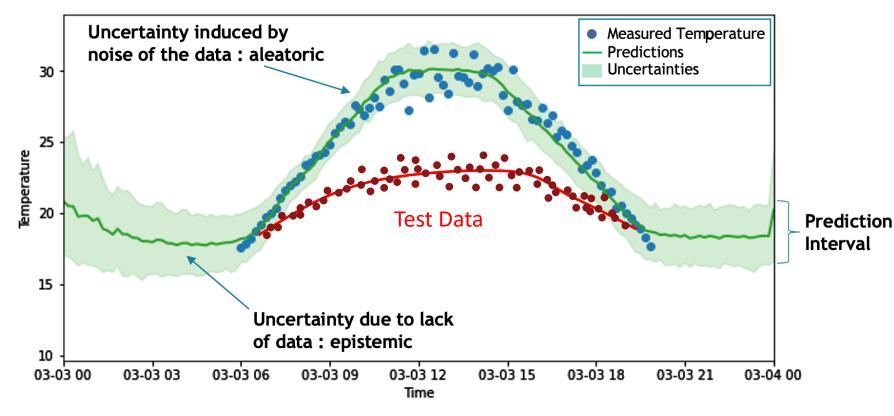


Image Credit: N. Brunel

Types of Uncertainties

Aleatoric Uncertainty: Inherent variations in data, e.g. due to randomness of the process

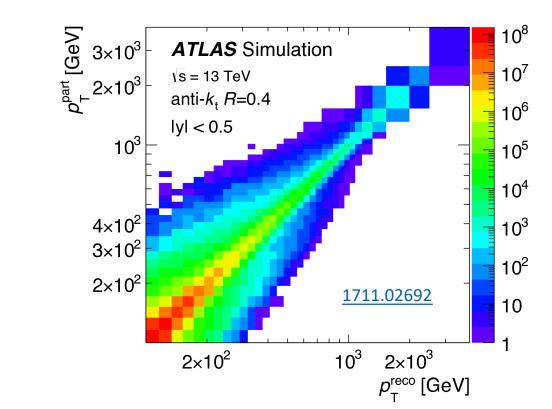
Epistemic Uncertainty: Due to lack of knowledge, lack of data, incomplete information

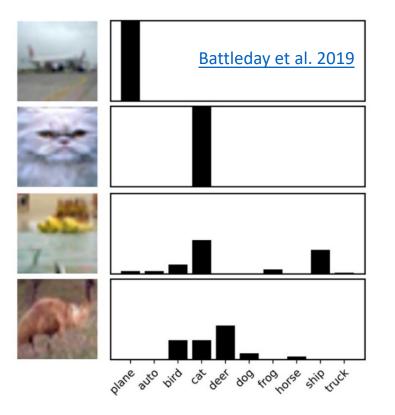


Domain Shift: Test data is different from training data Often called "Statistical Uncertainty"

Variability in outcome of experiment due to inherently random effects

Often considered "irreducible"





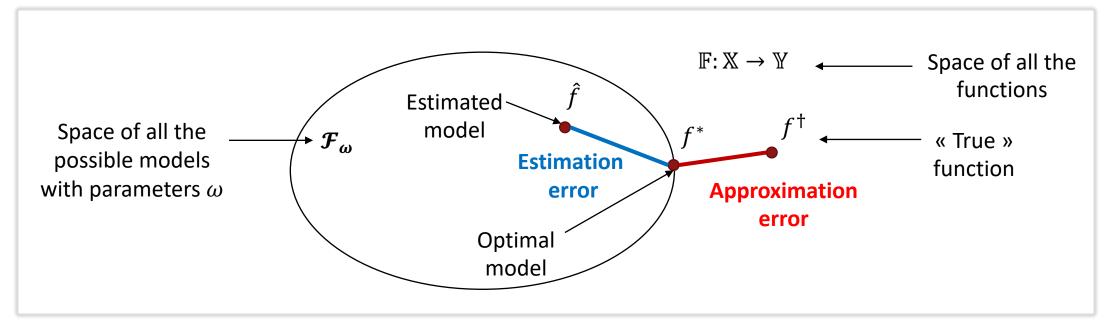
Epistemic Uncertainty

Lack of knowledge about the best model

Main origins in ML

- Estimation error: Training data just a sample of possible observations
- Approximation error: no model (in model class) can capture unknown true model

Often considered "reducible" with more data or more complex model



Domain / Distribution / Dataset Shift

$$p_{TEST}(x,y) \neq p_{TRAIN}(x,y)$$

Examples:

- Covariate Shift: p
- Label Shift:
- Concept Shift:

p(y|x) fixed but $p_{TEST}(x) \neq p_{TRAIN}(x)$ p(x|y) fixed but $p_{TEST}(y) \neq p_{TRAIN}(y)$ p(y) fixed but $p_{TEST}(x|y) \neq p_{TRAIN}(x|y)$

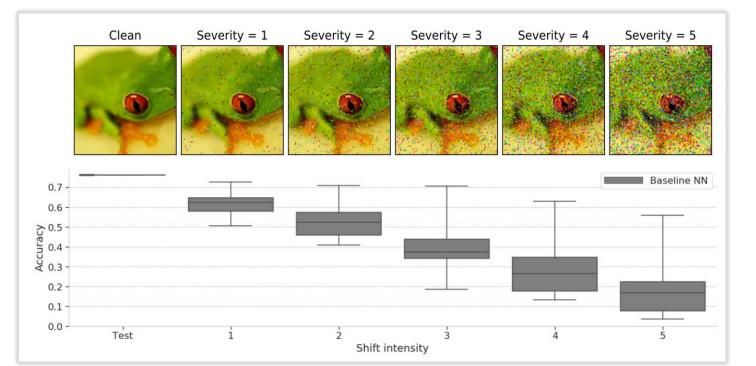


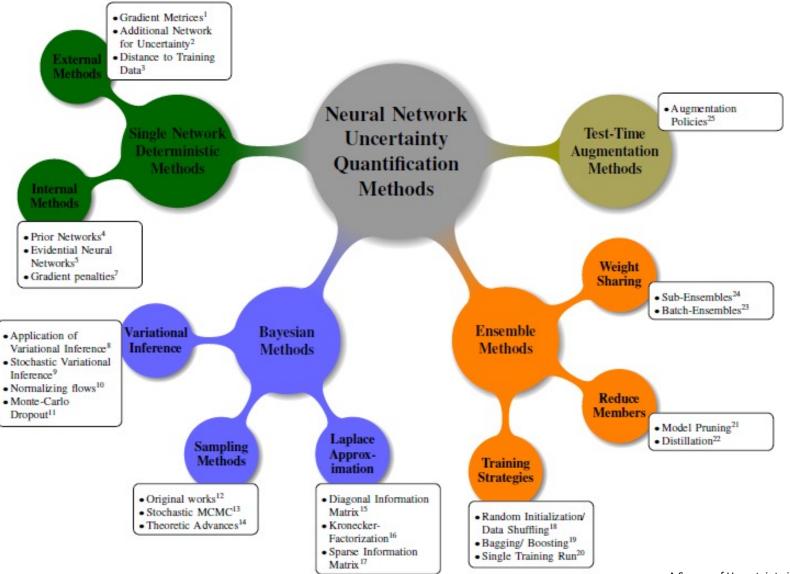
Image: 1903.12261

Imperfect Correspondence: My View*

Machine Learning	HEP
Aleatoric uncertainty	Detector Noise
 "Statistical" / "Data" Uncertainty 	Resolutions
Uncertainty Inherent to data	7
 Not reduced w/ more data Epistemic uncertainty "Model" Uncertainty Uncertainty from Imperfect knowledge Reduces with more data 	Stat. errors in HEP (? Systematic errors induced by ML model training on finite stats.
Domain Shift • Imperfect model of data generation process	Systematic Uncertainties from data / simulation differences

*Even within the ML community, these terms can be ambiguous

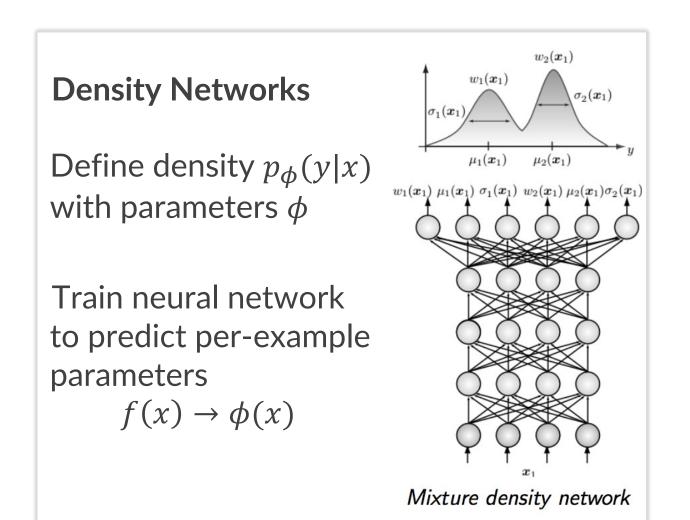
Uncertainty Estimation Approaches in Deep Learning



A Survey of Uncertainty in Deep Neural Networks, J. Gawlikowski et al,, arXiv:2107.03342

21

Randomness of data \rightarrow Typically described by probability distributions



Aleatoric Uncertainty

Randomness of data \rightarrow Typically described by probability distributions

Generative Models: Aim to approximate a density, p(x)

Train NN to transform noise $z \sim p(z)$ into data:

$$\hat{x} = f_w(z), \qquad p(\hat{x}) \approx p_{data}(x)$$

Implicit models: can only generate sample synthetic data, e.g. GANS

Explicit models: can also evaluate density, e.g. Normalizing Flows

StyleGAN v2

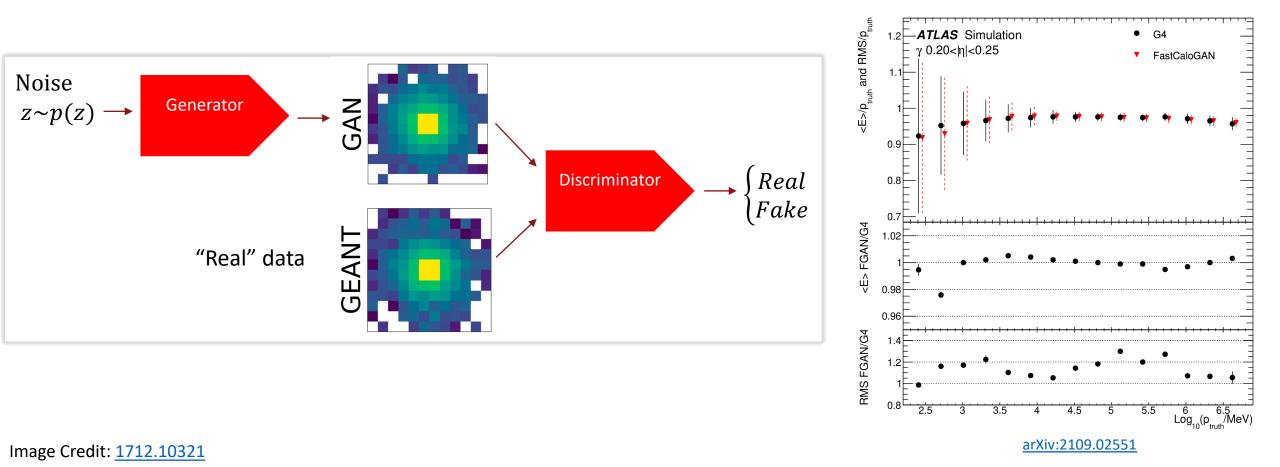
(Karras et al, 2019)

Aleatoric Uncertainty in HEP with Generative Models

Simulators slow / hard to sample from \rightarrow approximate with Generative Model

24

Generative Adversarial Networks:

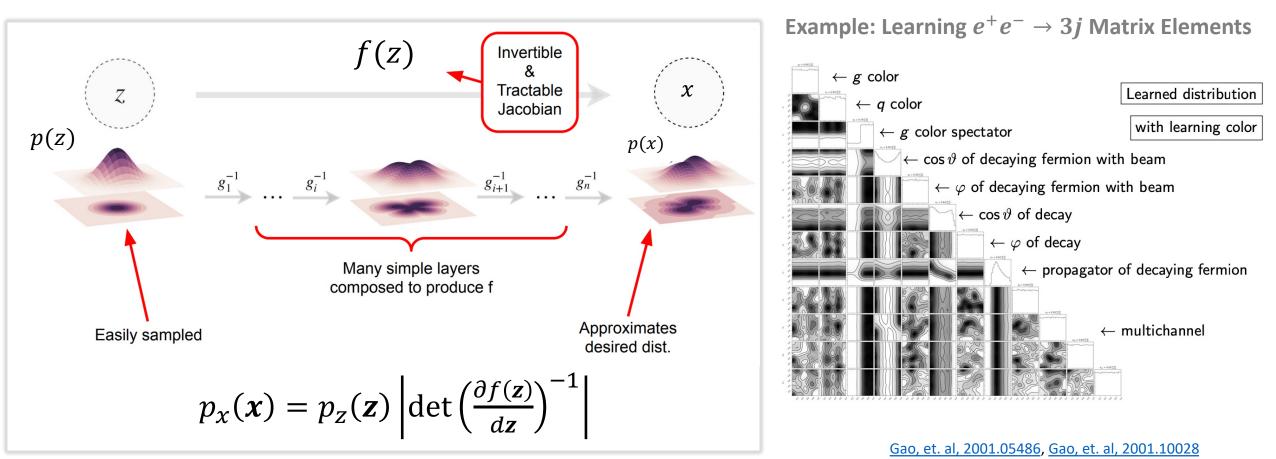


Aleatoric Uncertainty in HEP with Generative Models

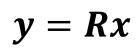
Simulators slow / hard to sample from \rightarrow approximate with Generative Model

25

Normalizing Flows



$$p_{reco}(y) = \int p(y|x)p_{true}(x)$$

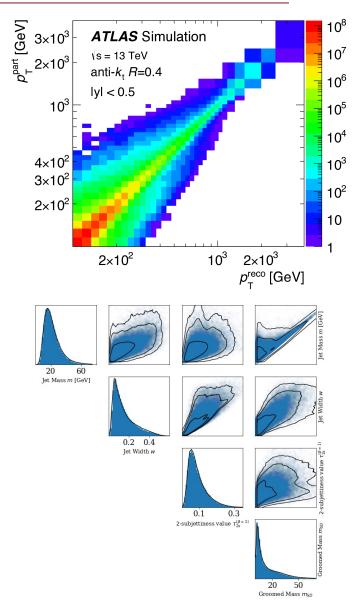


Discrete Form

Response Matrix in unfolding → Aleatoric Uncertainty

Several recent methods using ML to model the response and enable high-dimensional continuous unfolding

• E.g. <u>2011.05836</u>, <u>2006.06685</u>, <u>1911.09107</u>



26

What if ML learns the wrong generative model or response? \rightarrow Understanding ML Model / Epistemic Uncertainties

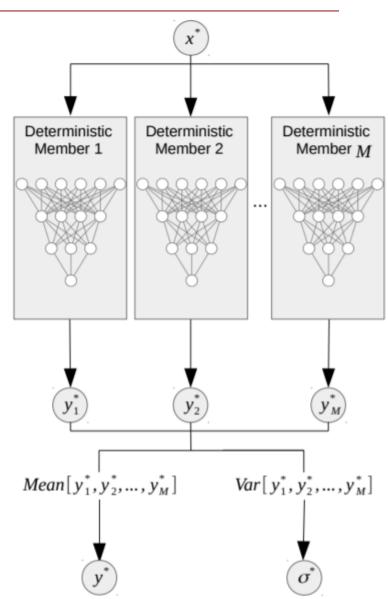
Epistemic Uncertainty with Deep Ensembles

Ensembling:

• Retrain network from multiple initializations

Can be coupled with Bootstrapping

• Randomly sample data, with replacement, to define each model's training set

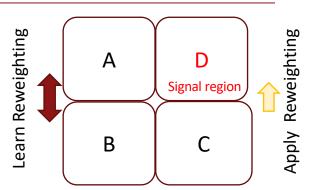


Model Uncertainty in ML-based Background Estimation

High-Dimensional "ABCD" method with NN's

- Learn reweighting using classifiers: $w(x) \approx \frac{p_A(x)}{p_B(x)}$
- Estimate background:

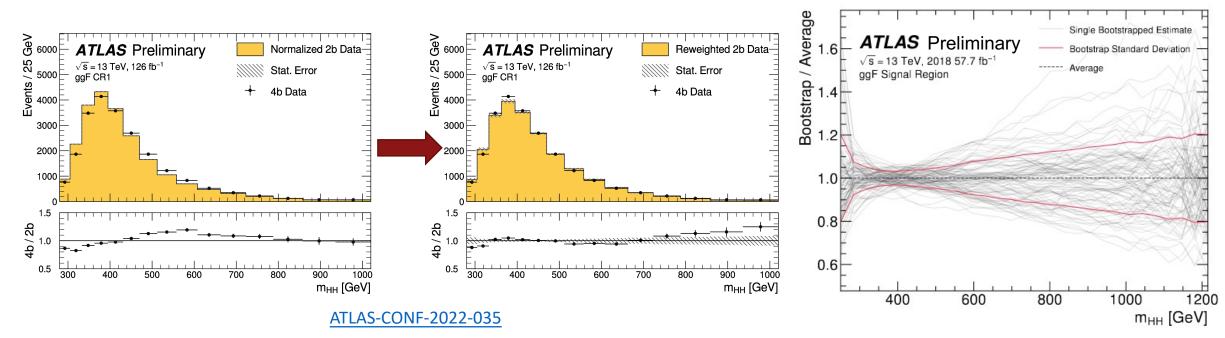
 $\hat{p}_B(x) = w(x)p_C(x)$



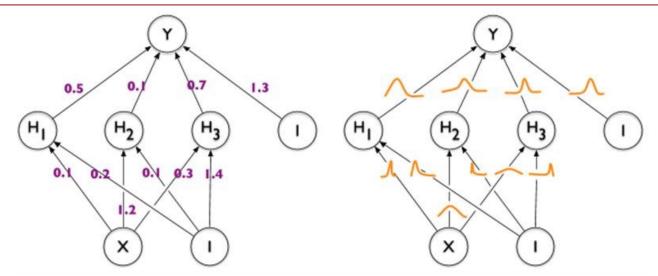
29

What if we didn't learn accurate weights?

• ATLAS $hh \rightarrow 4b$ example: Uncertainties from Deep ensembles & data bootstrap

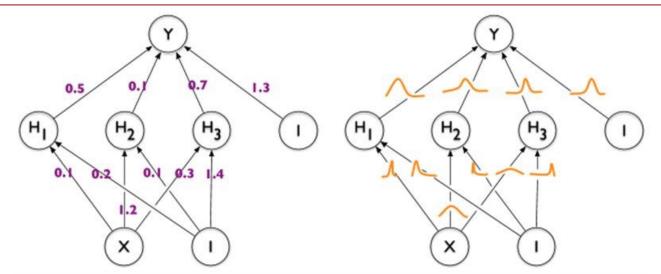


Bayesian Methods



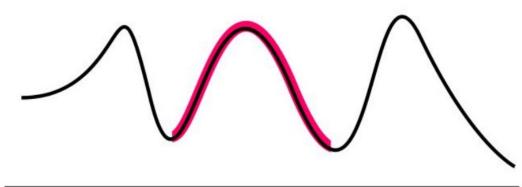
 $p(y|x,\mathcal{D}) = \int p(y|x,w)p(w|\mathcal{D})dw \approx \frac{1}{N} \sum_{\substack{i=1...N\\w_i \sim p(w|\mathcal{D})}} p(y|x,w_i)$ Aleatoric Uncertainty: Density Model Posterior on weights

Bayesian Methods



Approximating the Posterior

 $p(w|\mathcal{D})$ is multi-modal and complex in NN \rightarrow approximation methods

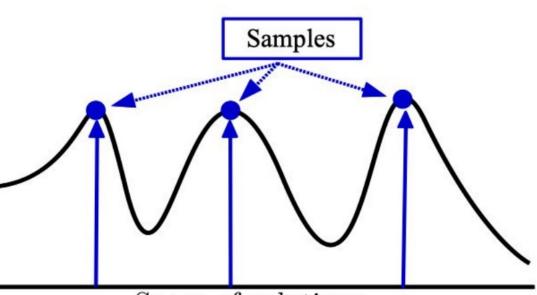


Space of solutions

Local approximations

- Locally, covering one mode well e.g. with a simpler distribution $q(w; \lambda)$
 - Variational inference
 - Laplace approximation

Slide credit: B. Lakshminarayanan



Space of solutions

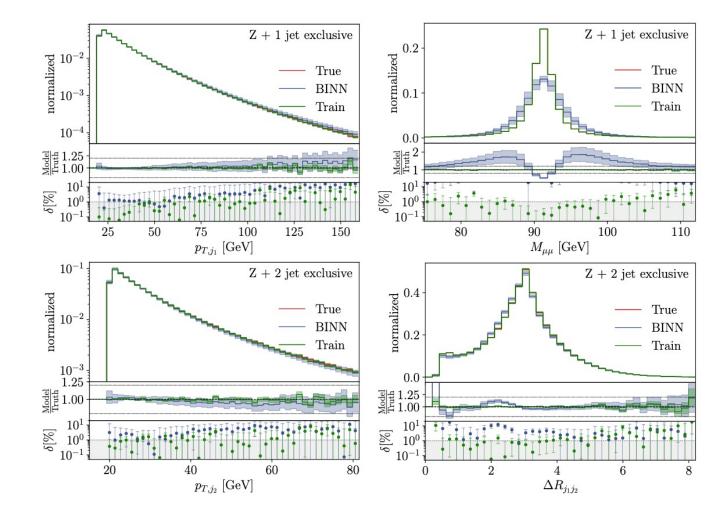
Sampling

- Summarize using samples
 - MCMC
 - Hamiltonian Monte Carlo
 - Stochastic Gradient Langevin
 Dynamics

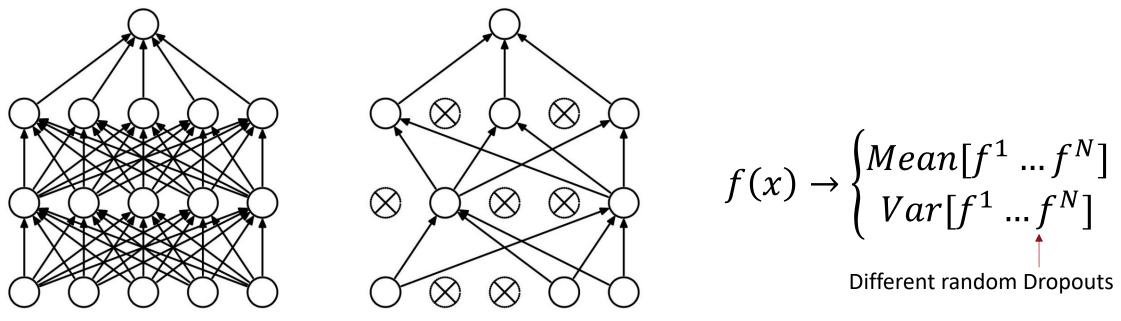
Model Uncertainty on ML models for Event Generators

"Bayesian Normalizing Flow"

- Density Model: Normalizing Flow
- Model Uncertainty: Variational Posterior over weights



Monte Carlo Dropout



(a) Standard Neural Net

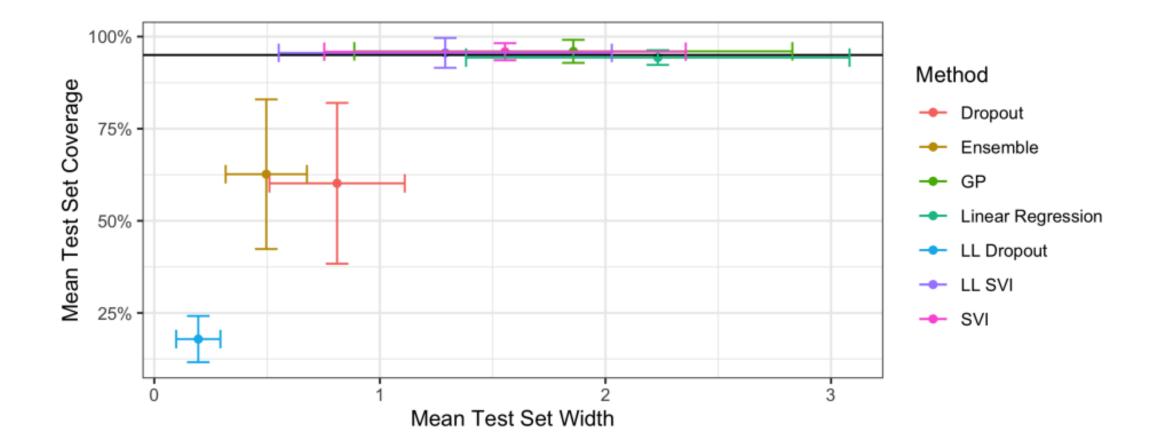
(b) After applying dropout.

Randomly drop connections between neurons, using Bernoulli distribution

Can be viewed as a Variational Approximation

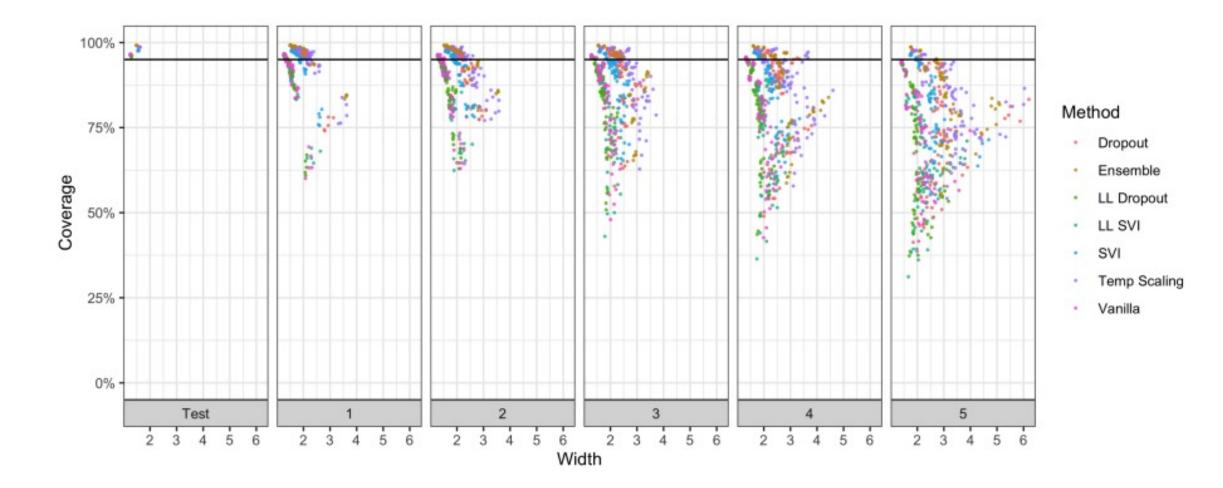
Gal, Ghahramani, 1506.02142

Comparisons



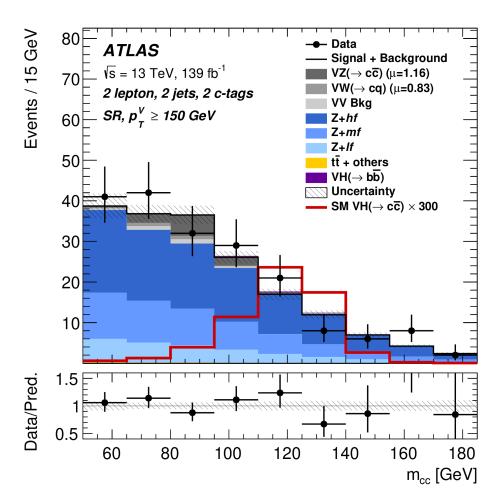
Kompa et. al, 2010.03039

Comparisons with Data Corruptions

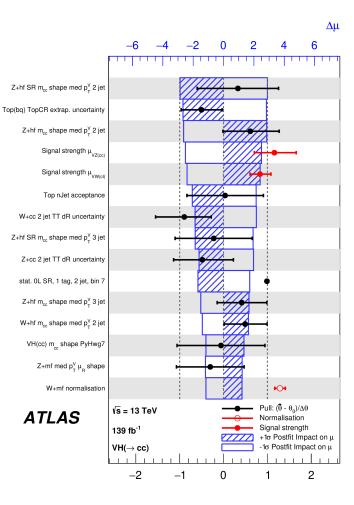


Systematic Uncertainties / Domain Shift in HEP

Systematic Uncertainties



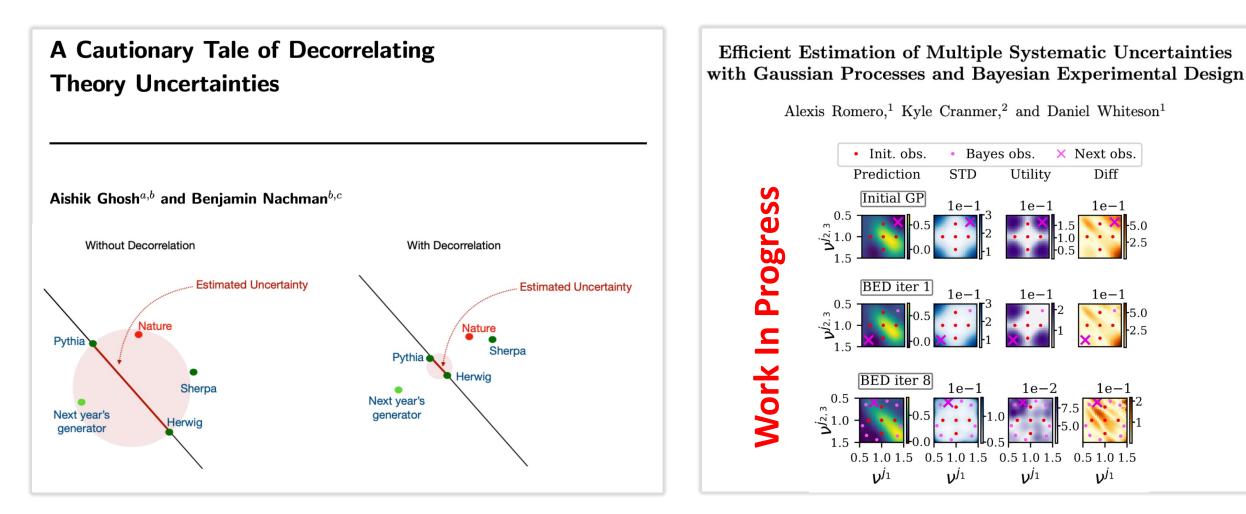
Source of uncertainty		$\mu_{VH(c\bar{c})}$
Total		21.5
Statistical		16.2
Systematics		14.0
Statistical uncertainties	5	
Data statistics only		13.0
Floating normalisations		7.2
Theoretical and model	ling uncertainties	
$VH(\rightarrow c\bar{c})$		2.1
Z+jets		7.7
Top-quark		5.6
<i>W</i> +jets		3.4
Diboson		0.8
$VH(\rightarrow b\bar{b})$		0.8
Multi-Jet		1.0
Simulation statistics		5.1
Experimental uncertain	nties	
Jets		3.7
Leptons		0.4
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.5
Pile-up and luminosity		0.4
Flavour tagging	<i>c</i> -jets	2.3
	<i>b</i> -jets	1.2
	light-jets	0.7
	au-jets	0.4
Truth-flavour tagging	ΔR correction	3.0
	Residual non-closure	1.4



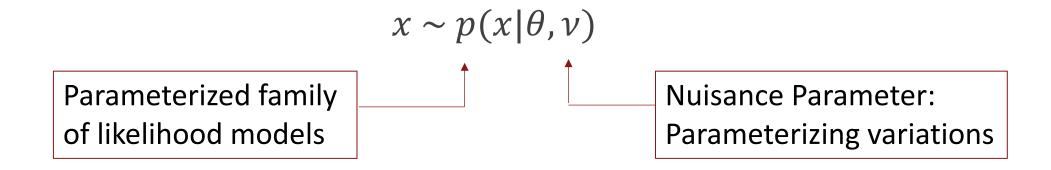
arXiv:2201.11428

Theory uncertainties? ... Not going to discuss here

See nice recent PHYSTAT talk from D. Whiteson See nice recent paper: Ghosh, Nachman, <u>2109.08159</u>



Unlike ML, we measure / parameterize possible variations over domains



Often can constrain from auxiliary measurements: $p(x_{aux}|\nu)$ (i.e. from calibrations for reconstructed objects)

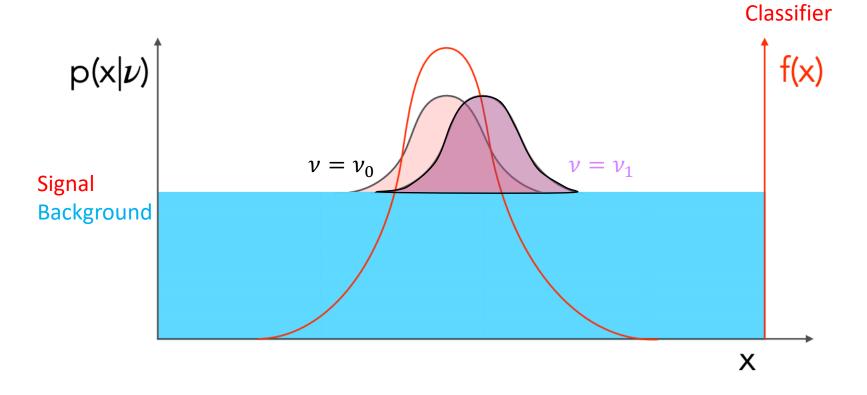
How to deal w/ systematic uncertainties in HEP-ML models? 41

- propagation of errors: one works with a model f(x) and simply characterizes how uncertainty in the data distribution propagate through the function to the down-stream task irrespective of how it was trained.
- domain adaptation: one incorporates knowledge of the distribution for domains (or the parameterized family of distributions $p(x|y,\nu)$) into the training procedure so that the performance of f(x) for the down-stream task is robust or insensitive to the uncertainty in ν .
- parameterized models: instead of learning a single function of the data f(x), one learns a family of functions $f(x; \nu)$ that is explicitly parameterized in terms of nuisance parameters and then accounts for the dependence on the nuisance parameters in the down-stream task.
- data augmentation: one trains a model f(x) in the usual way using training dataset from multiple domains by sampling from some distribution over ν .

Error Propagation – Standard Approach

Train on $\{x_i^0, y_i^0\}$ w/ nominal nuisance $v_0 \rightarrow$ learn fixed model f(x)

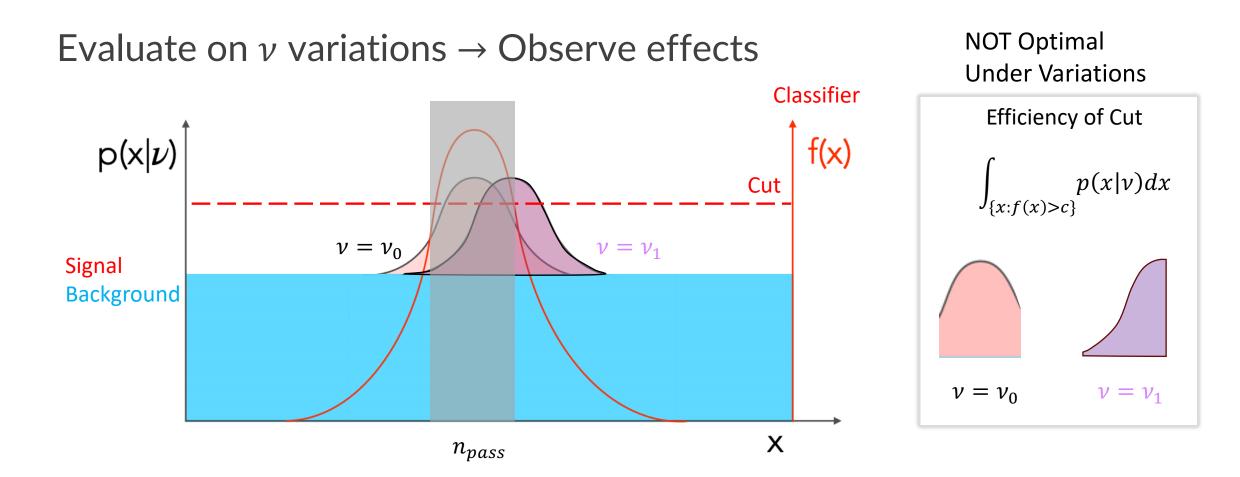
Evaluate on ν variations \rightarrow Observe effects



Slide Credit: K. Cranmer

Error Propagation – Standard Approach

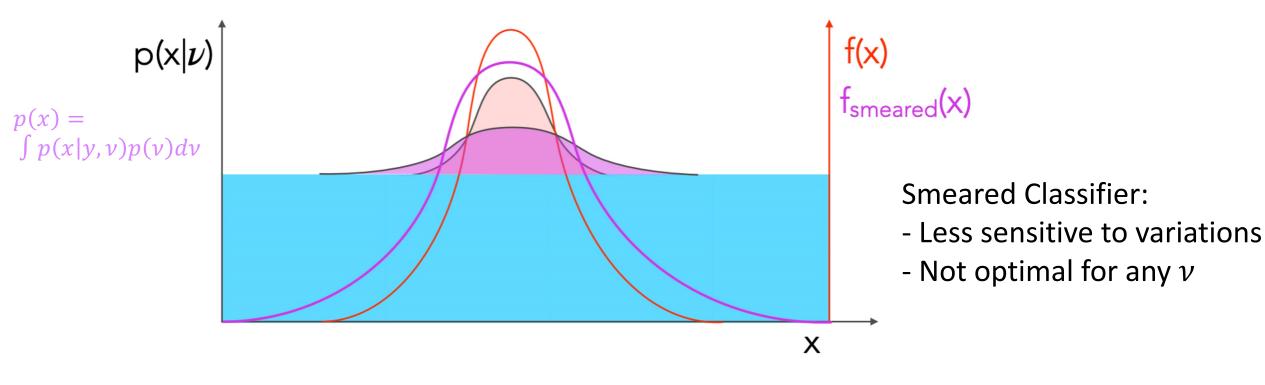
Train on $\{x_i^0, y_i^0\}$ w/ nominal nuisance $v_0 \rightarrow$ learn fixed model f(x)



Data Augmentation / Marginalization

Training sample includes v variations: $x \sim \int p(x|y,v)p(v)dv$

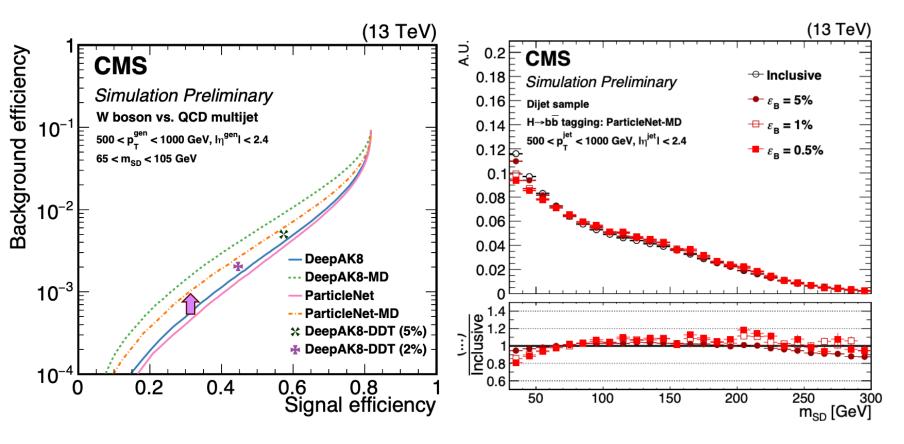
Smeared samples \rightarrow "smeared" fixed model $f_{smeared}(x)$



Data Augmentation / Marginalization

Training sample includes v variations: $x \sim \int p(x|y,v)p(v)dv$

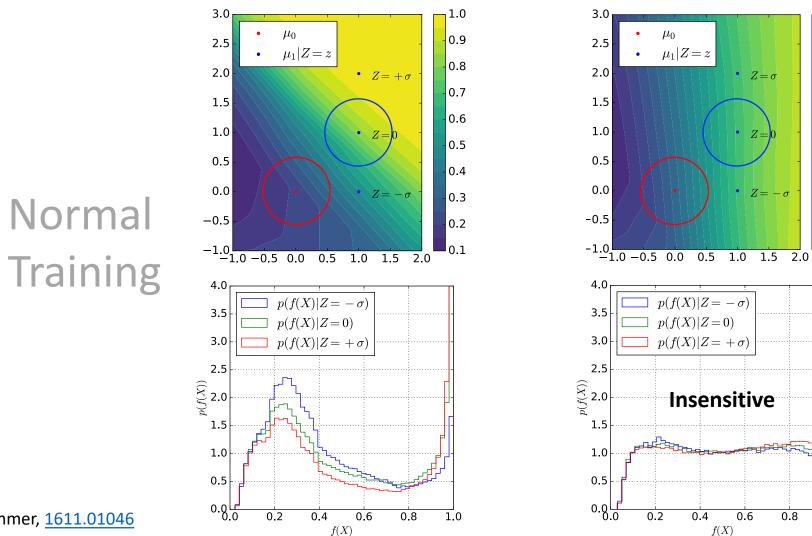
Smeared samples \rightarrow "smeared" fixed model $f_{smeared}(x)$



Related Example: CMS Boosted Jet Tagging w/ ParticleNet Graph NN

Training on flat mass distribution

Want to train model f(x) such that: p(f|v) = p(f)f is a pivotal quantity



Louppe, MK, Cranmer, 1611.01046

0.84

0.72

0.60

0.48

0.36

0.24

0.12

Pivot

• $Z = \sigma$

Z =

 $\cdot Z = -\sigma$

0.6

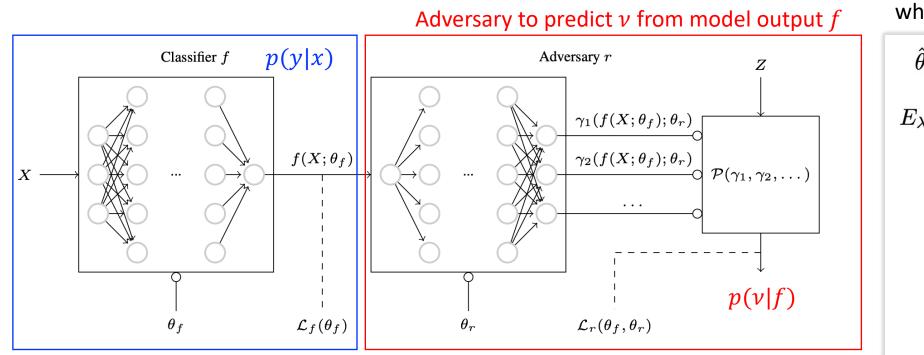
f(X)

0.8

1.0

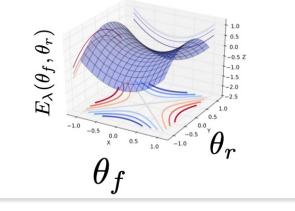
Pivoting / Enforcing Domain Invariance

Adversarial Approach:



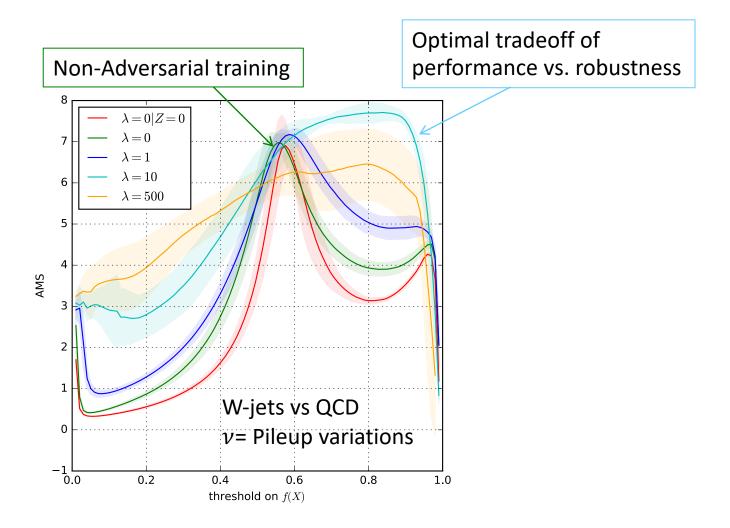
Min-Max Game: Penalize Classifier when Adversary succeeds $\hat{\theta}_f, \hat{\theta}_r = \arg\min_{\theta_f} \max_{\theta_r} E(\theta_f, \theta_r).$

$$E_{\lambda}(\theta_f, \theta_r) = \mathcal{L}_f(\theta_f) - \lambda \mathcal{L}_r(\theta_f, \theta_r)$$



"Regularize" training with Adversary

Adversarial Approach:



Louppe, MK, Cranmer, <u>1611.01046</u>

Pivoting / Enforcing Domain Invariance

Regularizing Correlations: Non-adversarial approach

Example: Disco Fever: Robust Networks Through Distance Correlation

$$L = L_{classifier}(\vec{y}, \vec{y}_{true}) + \lambda \operatorname{dCorr}_{y_{true}=0}^{2}(\vec{m}, \vec{y})$$

$$\operatorname{dCov}^{2}(X, Y) = \langle |X - X'| |Y - Y'| \rangle$$

$$+ \langle |X - X'| \rangle \langle |Y - Y'| \rangle$$

$$- 2 \langle |X - X'| |Y - Y''| \rangle$$

$$10^{-6}$$

$$10^{-6}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

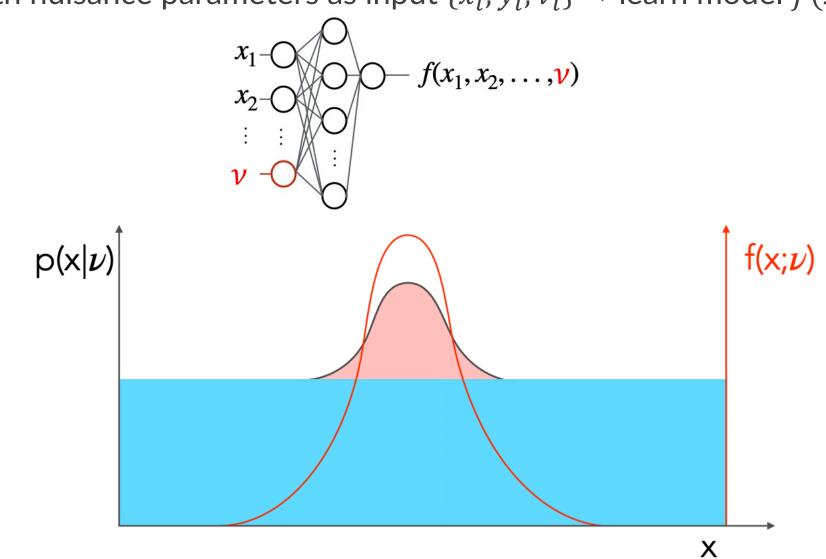
$$10^{-1}$$

$$10^{-1}$$

$$10^{-1}$$

Parameterizing Models

Train with nuisance parameters as input $\{x_i, y_i, v_i\} \rightarrow \text{learn model } f(x; v)$

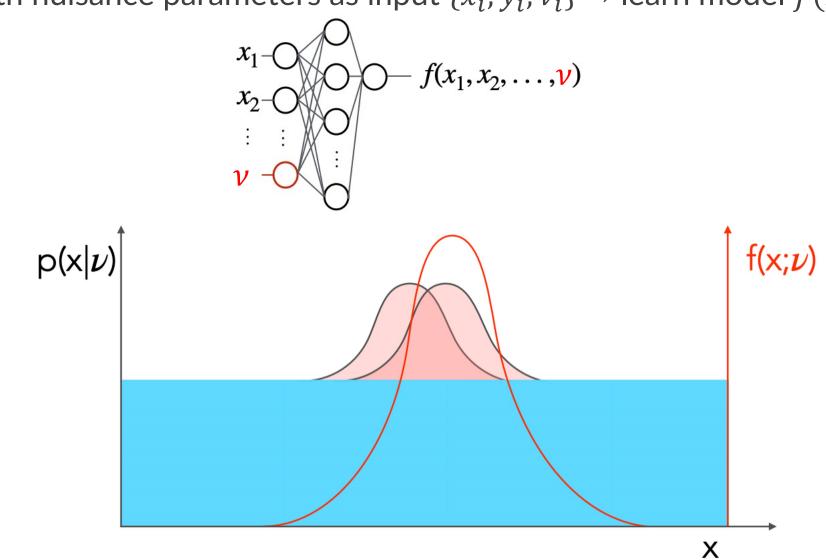


Cranmer, Louppe, Pavez, 1506.02169

Slide Credit: K. Cranmer

Parameterizing Models

Train with nuisance parameters as input $\{x_i, y_i, v_i\} \rightarrow \text{learn model } f(x; v)$

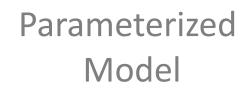


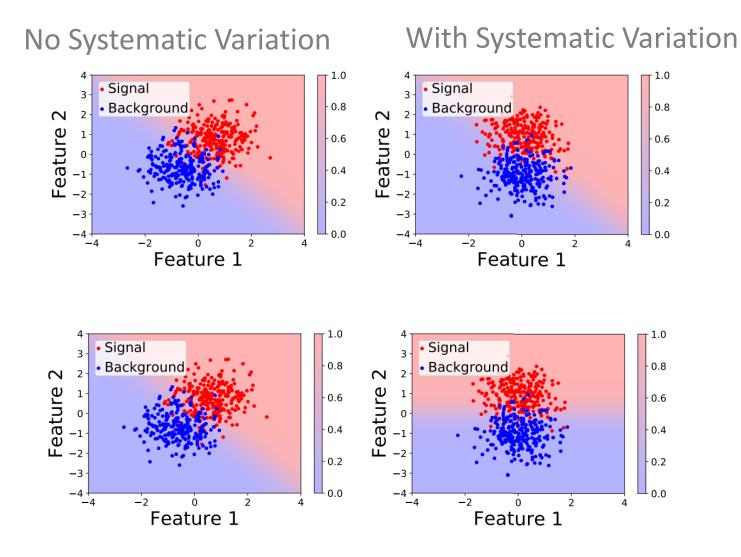
Cranmer, Louppe, Pavez, 1506.02169

Slide Credit: K. Cranmer

Parameterizing Models

Fixed Model





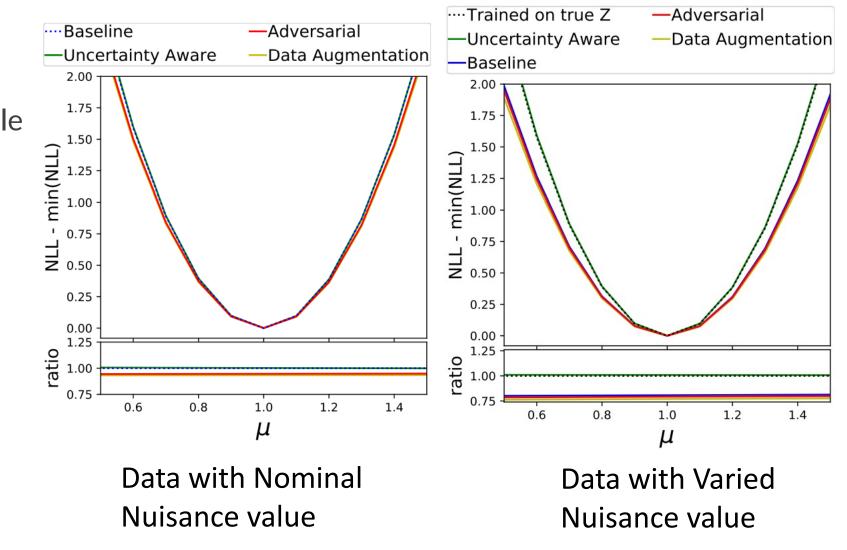
Ghosh, Nachman, Whiteson, 2105.08742

Example:

- Classifier: $h \rightarrow \tau \tau$ vs Bkg
- Uncertainty: τ energy scale

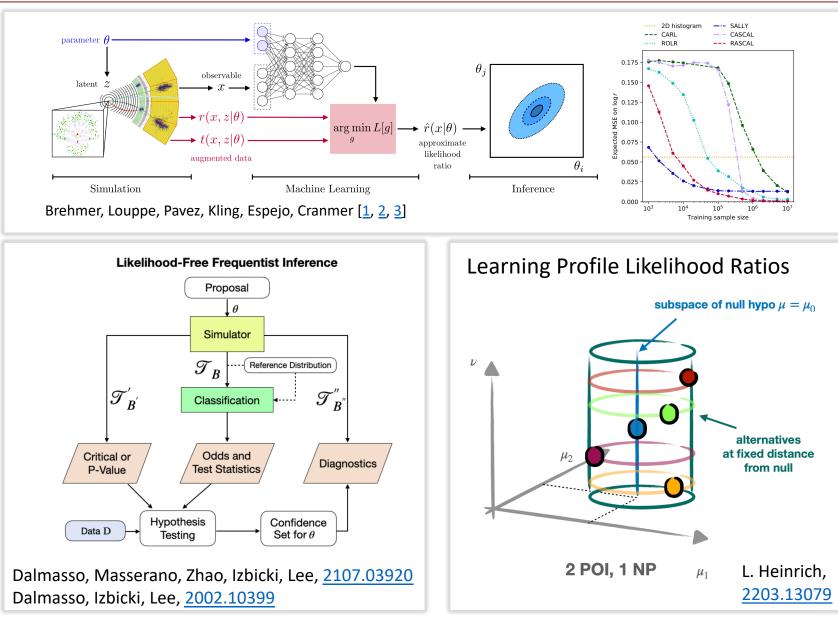
Parameterized Classifier: f(x; v)

How to choose the v? \rightarrow Profile in Likelihood



Ghosh, Nachman, Whiteson, 2105.08742

Simulation-Based Inference: Estimating Likelihood Ratios with parameterized Models



Uncertainty when using ML in HEP \rightarrow How and Where?

- Lots of ML research on estimating Data uncertainty & Model Uncertainty
- Must examine each application & how well calibrated the methods are?

Many areas where Model Uncertainty may be important (not all discussed today)

- ML-based Simulation and Background estimation
- Fast ML in the Trigger Uncertainty in real-time decision making
- Simulation-based inference estimating likelihood ratio directly with ML
- Anomaly Detection

•

Systematics will always remain a challenge, and understanding how to deal with them in ML models has made progress on several fronts

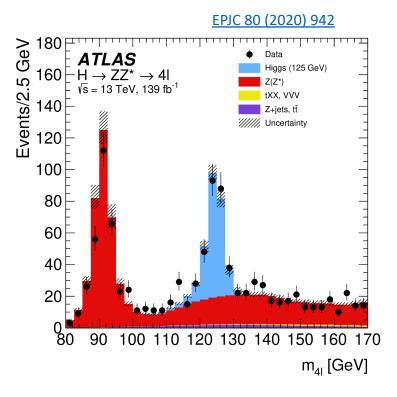
Backup

Standard HEP Inference

Reconstruction, data selection, event classification enable us to define powerful summary statistics

$$T(x): \mathbb{R}^{10^8} \to \mathbb{R}$$

Histogram for density estimation, with bin counts: $\{t_i\}_{i=1\ldots n_{bins}}$



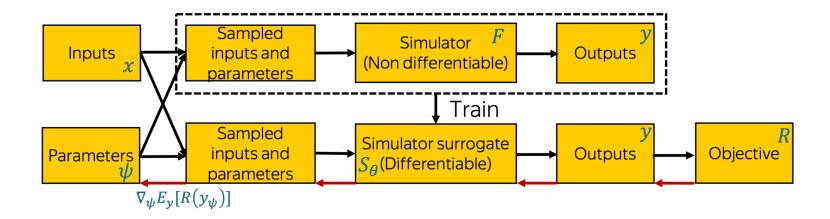
Binned Likelihood: $p(t_i|\theta, v) = Poiss(t_i|\mu(\theta, v))$

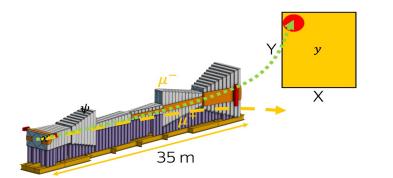
 $p(T(x)|\theta)$

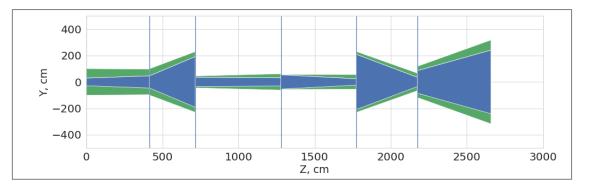
Test Statistic:
$$\lambda(\theta) = \log \frac{\prod_i p(t_i | \theta, \hat{\hat{v}})}{\prod_i p(t_i | \hat{\theta}, \hat{v})}$$

Aleatoric Uncertainty in HEP with Generative Models

Optimizing detector design with Generative Model base Surrogate Simulator



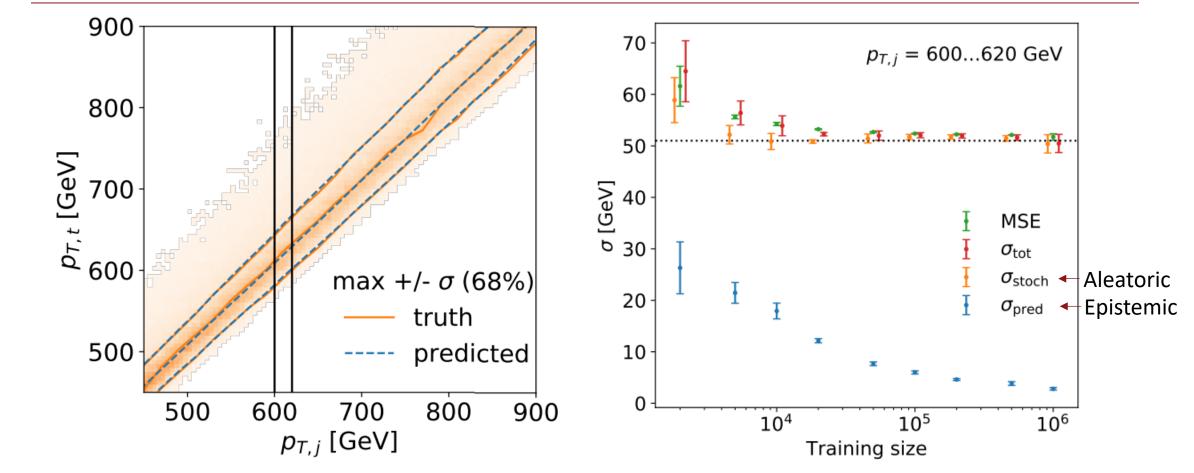




Example: SHiP Magnet Optimization Reduced length and weight over previous design!

Shirobokov, Belavin, MK, Ustyuzhanin, Baydin, <u>2002.04632</u>

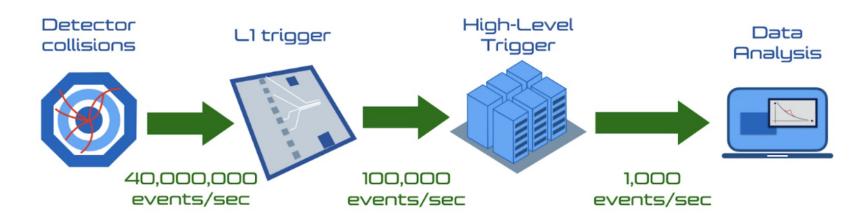
Bayesian Neural Networks for Jet Energy Estimation



Gaussian Variational Posterior over weights Gaussian Density Network for p_T predictions

Kasieczka, Luchman, Otterpohl, Plehn, <u>2003.11099</u>

Uncertainties for ML in Trigger Systems



Decision Theory / Risk Management Problems

• Decisions are irrevocable and constrained by total rate

How certain we are about an ML prediction could change our decision!

Consideration for ML model uncertainties is important here

What if the generative model doesn't perfectly fit data?

Potentially bad description of data! → Case for Epistemic / Model Uncertainty

"Bayesian Normalizing Flow" with Variational Inference

Start with

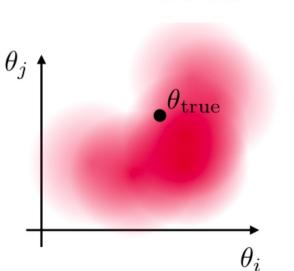
- a simulator that can generate N samples $x_i \sim p(x_i | heta_i)$,
- a prior model $p(\theta)$,
- observed data $x_{
 m obs} \sim p(x_{
 m obs}| heta_{
 m true}).$

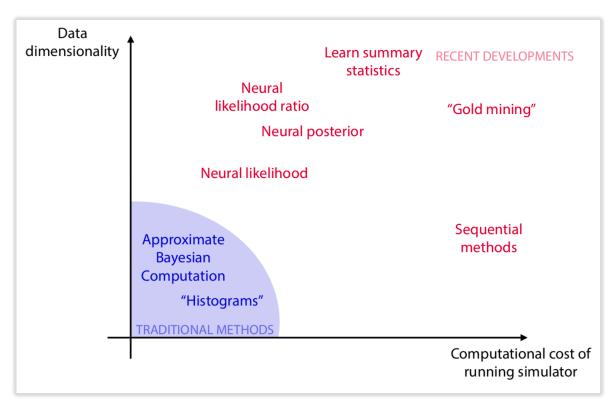
Then, estimate the posterior

$$p(heta|x_{ ext{obs}}) = rac{p(x_{ ext{obs}}| heta)p(heta)}{p(x_{ ext{obs}})}$$

Or a likelihood ratio

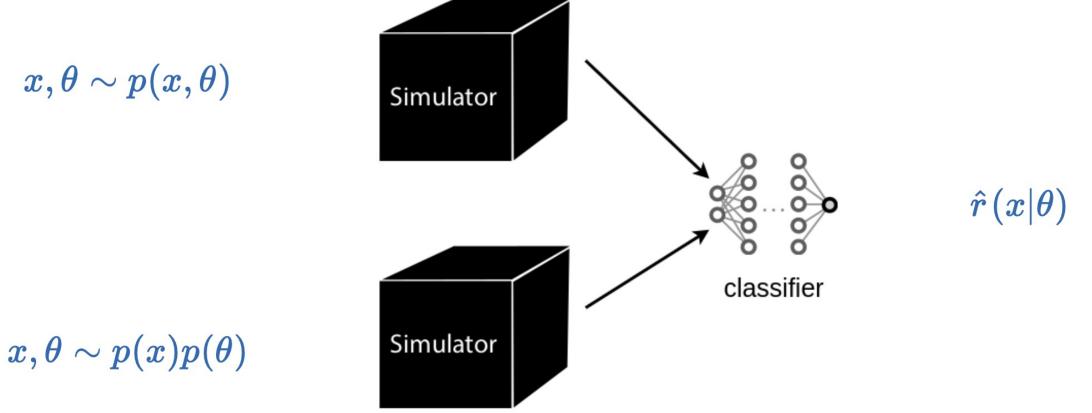
$$r(\theta) = \frac{p(x_{obs}|\theta)}{p(x_{obs}|\theta_0)}$$





Neural Ratio Estimation

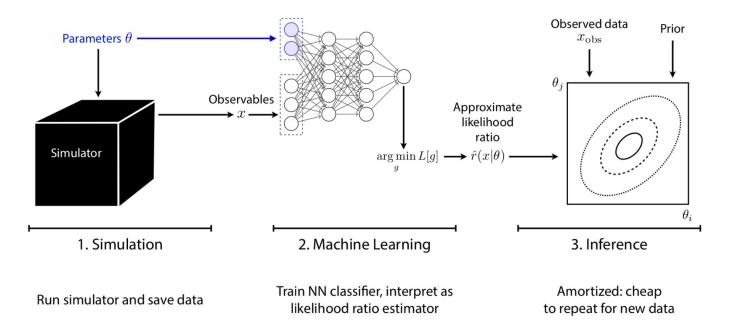
The likelihood-to-evidence $r(x|\theta) = \frac{p(x|\theta)}{p(x)} = \frac{p(x,\theta)}{p(x)p(\theta)}$ ratio can be learned, even if neither the likelihood nor the evidence can be evaluated:



Neural Ratio Estimation

The likelihood-to-evidence $r(x|\theta) = \frac{p(x|\theta)}{p(x)} = \frac{p(x,\theta)}{p(x)p(\theta)}$ ratio can be learned, even if neither the likelihood nor the evidence can be evaluated:

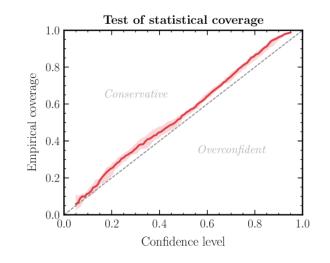
$$p(heta|x) = rac{p(x| heta)p(heta)}{p(x)} pprox \hat{r}(x| heta)p(heta)$$

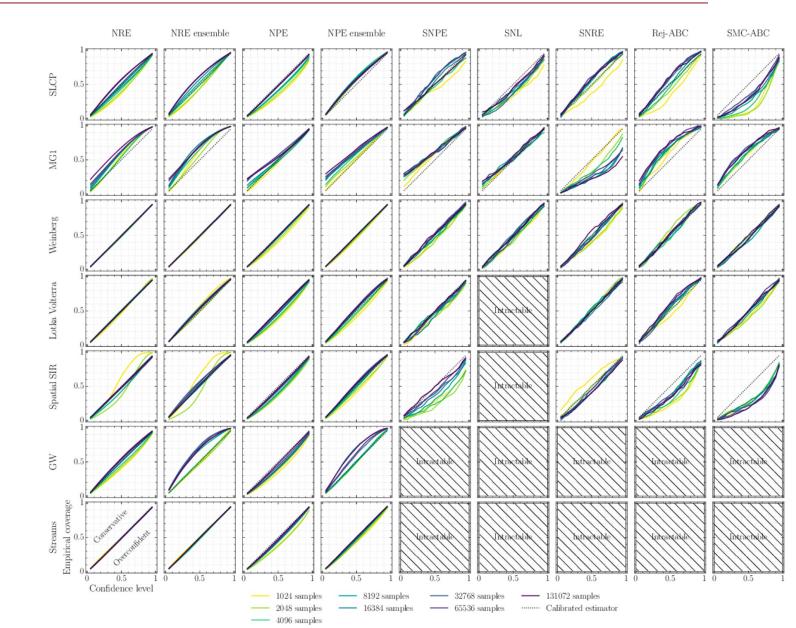


But proceed with caution! ... model checking, evaluation, and criticism

Coverage diagnostic:

- For $x, heta \sim p(x, heta)$, compute the 1 lpha credible interval based on $\hat{p}(heta | x)$.
- If the fraction of samples for which θ is contained within the interval is larger than the nominal coverage probability $1 - \alpha$, then the approximate posterior $\hat{p}(\theta|x)$ has coverage.

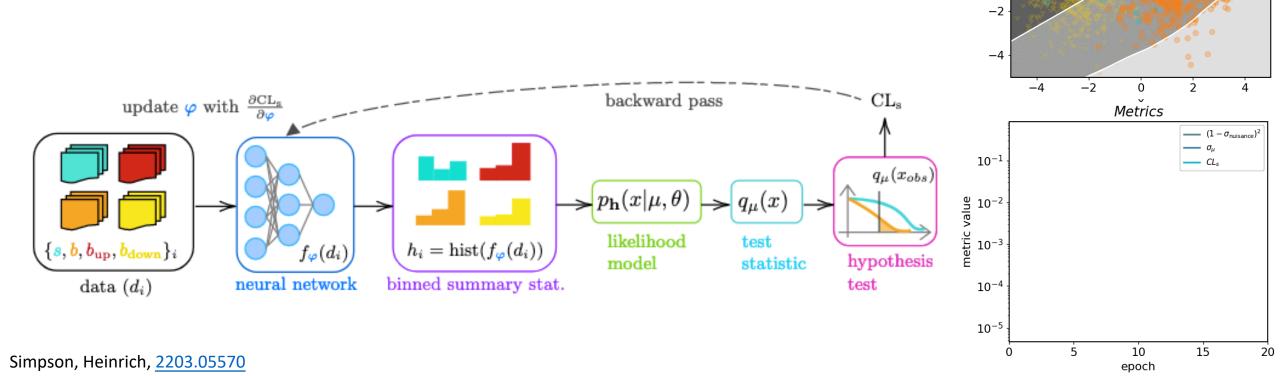




65

Train summary statistic $T_w(x)$ to optimize inference goal

Examples: <u>NEOS</u> and <u>INFERNO</u>



signal

bkg up bkg down bka

Data space

4

2

> 0·