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What is “Physics Intelligence™?

One key aspect:
Making scientific decisions in the
presence of uncertainties
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Machine Learning to Quantify Uncertainties

When used correctly, machine learning is a fantastic strategy
to incorporate certain kinds of uncertainties

Distributions for Gen pr € [695, 705] GeV
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Today’s talk: Quantifying and improving experimental
“resolution” using our Gaussian Ansatz

[Gambhir, Nachman, |DT, PRL 2022]
[see also Gambhir, Nachman, |DT, PRD 2022]

e
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https://arxiv.org/abs/2205.03413
https://arxiv.org/abs/2205.05084

Outline

Learning and Uncertainties

Correlation for Calibration

The Next Frontier for UQ in HEP/ML
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Learning and Uncertainties
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Disclaimer

| am a statistics novice, and | am still
learning how to speak the language

For the purpose of this talk:
Bayesian Inference:  Making scientific decisions with a
probabilistic interpretation (casino);
Requires choice of priors
Frequentist Inference:  Making scientific decisions
without reference to priors;

I’'m still amazed this is possible!

| wish | had a formal education in these topics...
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New! PhD in Physics, Statistics & Data Science

=~ Physics PhD + 4 courses (probability, statistics, computation, data analysis)

" ; MITSTATISTICS
|||II Physics DATA SCIENCE

CENTER

How interested would you be in submitting and defending a
PhD thesis that uses statistical methods in a substantial way?

83 responses

~30% of all Physics students (!)

60

40

Respondent #1 1: “I think ML is the
most important thing happening in
the world right now and should be

incorporated into any STEM degree.”

20

il : Congratulations,

Dr. Constantin Weisser!
(March 30, 2021)

MIT PhysSDS PhD Co-Chairs: JDT & Mike Williams
[https://physics.mit.edu/academic-programs/graduate-students/psds-phd/]
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Stats |01: Two Typical Point Estimates

| measure x_,,, and want to infer/estimate the parameter 0

Bayesian: QMSE — Jde 6’]9(‘9 ‘ xobs)

Posterior Mean T (9)
o Ly = plxgys | 6) ——
| d6 p(x 45| 0) p(6)
likelihood
(prior-independent) prior dependence

Frequentist: Oy g = argmaxy p(x . | 0)

Maximum Likelihood

Which one of these is more “natural” from the machine learning perspective?

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way |0



I’ll do a similar

Naive Machine Learning Inference clalton e
| have a sample of {x, 8} pairs...
2
Training Loss: £y qp = <(6’ —f(x)) >
Asymptotically: <> = de dl p(x, 0)
0L
Minimum: ;;;ISE =0 = fx)= Jd@ dp0|x)

Same as Bayesian
Posterior Mean!

Machine Learned:  By;qp = f(X o)
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Because machine learning involves training on data,
you naively have prior dependence built in

Later this talk: How to nevertheless derive
frequentist quantities using clever tricks!
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What do we mean by “Uncertainty’”?

This word is heavily overloaded, which makes it
challenging to discuss “uncertainty quantification™

Uncertainty = Lack of Information

Lack of information about what?

ML Tutorials:  Aleatoric (intrinsic randomness)
vs. Epistemic (modeling inadequacies)

Wikipedia: Parameter, parametric variability, structural,
algorithmic, experimental, interpolation, ...
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Zooming Out: Al Ethics

“A Framework for Understanding Unintended Consequences of Machine Learning”
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(b) Model Building and Implementation

model ™ ' = integratg into system, —>
human interpretation
DEPLOYMENT

1. Historical bias arises when there is a misalignment be-
tween world as it is and the values or objectives to be
encoded and propagated in a model. It is a normative con-
cern with the state of the world, and exists even given per-
fect sampling and feature selection.

2. Representation bias arises while defining and sampling
a development population. It occurs when the develop-
ment population under-represents, and subsequently fails
to generalize well, for some part of the use population.

3. Measurement Bias arises when choosing and measur-
ing features and labels to use; these are often proxies for
the desired quantities. The chosen set of features and la-
bels may leave out important factors or introduce group-
or input-dependent noise that leads to differential perfor-
mance.

4. Aggregation bias arises during model construction, when
distinct populations are inappropriately combined. In
many applications, the population of interest is heteroge-
neous and a single model is unlikely to suit all subgroups.

5. Evaluation bias occurs during model iteration and evalu-
ation. It can arise when the testing or external benchmark
populations do not equally represent the various parts of
the use population. Evaluation bias can also arise from the
use of performance metrics that are not appropriate for the
way in which the model will be used.

6. Deployment Bias occurs after model deployment, when
a system is used or interpreted in inapppropriate ways.

In physics, “bias” = “systematic uncertainty”
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[h/t David Kaiser, MIT SERC; Suresh, Guttag, EAAMO 2021]
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https://computing.mit.edu/cross-cutting/social-and-ethical-responsibilities-of-computing/
https://arxiv.org/abs/1901.10002

Three Levels of Uncertainty

Not exhaustive!
P(X)

p(®) 4

etruth
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All affect
scientific
decisions

“Resolution”

E.g. gaussian smearing with known O
Aleatoric, easy to estimate with ML

“Parameter”

E.g. gaussian smearing with unknown O
Usual HEP meaning of “uncertainty”

“Model Selection”

E.g. unknown non-gaussian smearing
Epistemic, hard to estimate with ML



New approach using
Gaussian Ansatz

Solvable with enough
coffee/compute

The Frontier for UQ
in ML/HEP

“Resolution”

E.g. gaussian smearing with known O
Aleatoric, easy to estimate with ML

“Parameter”

E.g. gaussian smearing with unknown O
Usual HEP meaning of “uncertainty”

“Model Selection”

E.g. unknown non-gaussian smearing
Epistemic, hard to estimate with ML
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(b) Model Building and Implementation

Uncertainty quantification for machine learning
is as multi-faceted as UQ for traditional statistics
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Correlation for Calibration
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My Research Focus: Jets at the LHC
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As a theorist, ’'m as

Si m u Iation-based Cal i bration surprised as you are that |

care about this problem

Point estimate for single observation

Measured Quantity: x Inferred Quantity: z

Assumption: p(x|z) is perfectly known
through detector simulation

Separate “data-based calibration” is needed if detector is not perfectly modeled

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way
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Even if inferred quantities are low dimensional,
measured quantities can be high dimensional

By simultaneously measuring more quantities,
we can improve the resolution




Aside: Why calibrate when you can just unfold?

Calibration: Correcting individual observation
Unfolding: Correcting distribution of observations

Folk Theorem: Calibration yields a more diagonal
response matrix for better unfolding

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way
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Analytic Calibration
If you had perfect knowledge of p(x|z)

independent of prior on p(z)

Log Likelihood: T(.x, Z) — log + any function of x alone

Calibration: ~ Z(x) = argmax, 7(x, 2)

T |

dz,- aZ]

Resolution: [8?()6)]1.]. — _

7=z
This is textbook frequentist maximum likelihood calibration
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Question: How can we ensure learned
vestion. T(x,z) is nicely differentiable?

Use Gaussian Ansatz

A ;
YR to set form of T(x,z)!




How can machine learning
be used to estimate T(x,z)?

Question:

Estimate mutual information

Answer:
between x and z!




Introducing the Gaussian Ansatz

Named because of its resemblance to log of Gaussian likelihood density

Modern machine learning uses differentiable programming, but
some activation functions have poorly-behaved derivatives

Second-order Taylor expansion around z = B(x):

T(x,2) = A(X) + (z — B(x)) - D(x) + %(z —B()) - C(x,2) - (z — Bx))
T

Note full z dependence here

Functions A, B, C, and D are parametrized as neural networks

Dots indicate index contractions

[Gambhir, Nachman, JDT, PRL 2022] !_
26
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https://arxiv.org/abs/2205.03413

Introducing the Gaussian Ansatz

Named because of its resemblance to log of Gaussian likelihood density

Modern machine learning uses differentiable programming, but
some activation functions have poorly-behaved derivatives

Second-order Taylor expansion around z = B(x):

T(x,z) = Alx) + @}3&@+ %(Z - B(x))T- C(x,2) - (z— B))
!

Note full z dependence here

Functions A, B, C, and D are parametrized as neural networks
Dots indicate index contractions

No loss of expressivity with this form even if D(x) = 0

[Gambhir, Nachman, |DT, PRL 2022] !-
27
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_1
Easy to read off 5(x) = B(x) 5%(35) = — [C(x, B(x))]

calibration!



https://arxiv.org/abs/2205.03413

Re-introducing Mutual Information

Using Donsker-Varadhan representation of Kullback-Leibler divergence

Mutual Information: ](X; Z) — de dzp(x, Z) log

a.k.a. KL divergence between
joint distribution and
product of marginals

DV Representation:  LhyrlT] = — (

p(x, 2)

_PXZ[T] — IOg

T

Saturated When:

This is what we
need for calibration!

p(x) p(2)

porfe’])

+ any constant

[Donsker,Varadhan, CPAM 1975; used in Belghazi, Baratin, Rajeswar, Ozair, Bengio, Courville, Hjelm, ICML 2018]
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https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160280102
https://arxiv.org/abs/1801.04062

Bottom Line:

To do frequentist calibration, all* you have to do is
input the Gaussian Ansatz for T(x,z) = log p(x|z)/p(x)
and use machine learning to minimize the DVR loss

See ACORE-LFI for alternative frequentist approach

[Dalmasso, Masserano, Zhao, Izbicki, Lee, arXiv 2022]
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Bottom Line:

To do frequentist calibration, all* you have to do is
input the Gaussian Ansatz for T(x,z) = log p(x|z)/p(x)
and use machine learning to minimize the DVR loss

See ACORE-LFI for alternative frequentist approach

[Dalmasso, Masserano, Zhao, Izbicki, Lee, arXiv 2022]

If you are anything like me, then the

above derivation is not very satisfying...
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Results using Public Collider Data
Simulated jets with pr € [695,705] GeV from CMS

e
s CERN

\\\

Model M D M 5 I1(X;Z
s [Jet PT] ode ean pr [GeV] ean 6, [GeV] [I(X;Z)
5 DNN 698 4+ 37.7 35.7T £ 2.1 1.23
EFN 695 + 37.3 32.6 £ 2.3 1.26
z(x) = argmax, 7(x, z) PFN 697+ 36.9 32.5 4 2.5 1.27
—1 _
. T(x. 7) PEFN-PID 695 £+ 35.1 30.8 1+ 3.6 1.32
620 = — | ——=—=
0z; 0z CMS 2011 695 + 38.4 36.9 &+ 1.7 —

More expressive model = increasing Ml = imp

roved resolution

Gains primarily from using jet substructure to assist jet calibration

[Gambhir, Nachman, DT, PRL 2022;

using CMS Open Data processed by Komiske, Mastandrea, Metodiev, Naik, JDT, PRD 2020]
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https://arxiv.org/abs/1908.08542

Distributions for Gen pr €[695, 705] GeV

CMS 2011 Open Simulation
DNN

EFN <_"| .
| Gaussian Ansatz:

" PFN-PID

Using high-dimensional

inference to improve
experimental resolution

25 30 40
Jet Energy Resolution 6pT [GeV]



https://arxiv.org/abs/2205.03413
http://opendata.cern.ch/
https://arxiv.org/abs/1908.08542

Extracting some broader lessons
Gaussian Ansatz = Model Engineering

DV Representation = Loss Engineering

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way
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Signal Background

Quark/Gluon Classification [8388] [8858]
“Hello, World!” of et Physics | [ Gl [0
Quark Gluon
= 4/3 C,=3=9/3
h Quark — 1]

Find © such that
h(GIuon)

|
-

p(J|G)
Bestyoucando: A(J) = |1
s ande M) =\ @i

Likelihood ratio yields optimal binary classifier (and vice versa)

[see e.g. Gras, Hoche, Kar, Larkoski, Lonnblad, Platzer, Siodmok, Skands, Soyez, JDT, JHEP 2017;
Komiske, Metodiev, Schwartz, JHEP 2017; Komiske, Metodiey, |DT, JHEP 2018]
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https://arxiv.org/abs/1704.03878
https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1809.01140

Find function h that captures
known structure of problem

Model Engineering:

Find functional L[h] whose

Loss Engineering:
minimum Yields desired properties



https://arxiv.org/abs/1704.03878
https://arxiv.org/abs/1612.01551
https://arxiv.org/abs/1809.01140

Re-introducing the Likelihood Ratio Trick

Key example of simulation-based inference

Goal:
Training Data:

Learnable Function:

Loss Function(al):

Asymptotically:

Estimate p(x) / q(x)
Finite samples P and Q

f(x) parametrized by, e.g., neural networks

L= —(log f(x > + (f(x) >Q

. XL
arg 11in L — ]& Likelihood ratio

f(x) q()

—min L = / dz p(z)log % Kullback—Leibler divergence

f(x)

[see e.g. D’Agnolo,Wulzer, PRD 2019; simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;

relation to f-divergences in Nguyen,Wainwright, Jordan,AoS 2009; Nachman, JDT, PRD 2021]
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https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

Asymptotically, same structure as Lagrangian mechanics!

Action: L = /da: L(x)

Lagrangian:  L(z) = —p(z)log f(x) + q(x)(f(x) — 1)

oL _
of

Requires shift in focus from solving problems to specifying problems

Euler-Lagrange: 0 Solution: f ()



https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

The Landscape of Losses

Lifl = = [ do (plal6a) A (=) + plaloi) B(f(2)))

Loss Name A(f) B(f) argmin, L[f] Integrand of —miny L[f] Related Divergence/Distance
Binary Cross Entropy log f log(1 — f) pApTAmg pa log pAppr + (A < B) 2(Jensen—Shannon — log 2)
Mean Squared Error —(1 = f)? — £ pApTAmg —% %(Triangular — 1)
Square Root \_/—1? —f ﬁ—g —2./PApPB 2<Hellinger2 — 1)
Maximum Likelihood CI. log f 1—f ﬁ—g pa log g—g Kullback—Leibler

We have considerable flexibility in choosing the loss

[table from Nachman, |DT, PRD 2021]
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The Trick Behind the DVR Loss

“Local: Lwicll]l=—1dxpx)T(x) + |[dxgx) (eT(x) — 1)

“Non-local”:  ZpyrlT] = — |dxp(x) T(x) + log | dx g(x) (eT(X)>

5%“;“ = —p) + g)e’™ = T(x) = log ’;E—jg
OLpvR _ g(x)e'™ _ . pX)
e p(x) + fdy () eTO) = T(x) =log 0 + c

This can be set to any constant!

DVR provides a stricter bound on KL divergence than MLC,
which is why DVR is preferred for our calibration purposes

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way
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Distributions for Gen pr € [695, 705] GeV

CMS 2011 Open Simulation
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Jet Energy Resolution d,, [GeV]

To learn (resolution-style) uncertainties the frequentist way,
first use simulation-based inference to extract likelihoods

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way
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The Next Frontier for UQ in HEP/ML
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Y. ¢¢ . ”»
The Frontier for UQ Model Selection

in M L/ H EP E.g. unknown non-gaussian smearing

Epistemic, hard to estimate with ML




From Models to Parameters

With enough nuisance parameters,
model selection is “solved” via parameter estimation

Modern machine learning involves setting a
huge range of hyperparameters, including
those related to initialization and optimization

O(N) parameters means O(N?2) covariance entries

Does model selection even make sense at large N?
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Machine learning is worming its way into
all aspects of the HEP workflow,
increasing the importance of robust UQ

Jesse Thaler (MIT, IAIFI) — Learning Uncertainties the Frequentist Way
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LRT: From Tautology to Essential Tool

p(x)
q(x)

Generate samples Weight each sample by Obtain weighted samples
according to Q likelihood ratio distributed according to P

7 % i N Yoo # F

£ FFE v, (Casifer] 7 Y4
* *
0‘.. “"0

g(x) X p(x)

With large enough data samples,
binary classification yields weighted simulation
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E.g. Neural Resampling for MC Beyond LO

*
.

Sample with wrong physics Sample with correct physics
but some negative weights

but all positive weights

“-llI-IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII...

*
*

L 3

‘-IIIIIIIIIIIIIII..

“

*
L4
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U
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*
*
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Generated events

108,

106,

104,

102,

100

MC@NLO: large
weight cancellations

Initial Weights
Neural Resampler, K=1
=== Neural Resampler, Optimal K

MG5_aMC + Pythia 8
pp - tt, NLO QCD

v Weights

Reweighting recovers
desired distribution

200000——m———————————
Initial Weights
Neural Resampler, K=1
150000; ——=- Neural Resampler, Optimal K
s MG5 aMC + Pythia 8
=~ 100000¢ == - 1
W ——l —=7 pp~—tt, NLO QCD
]
| b= "i
50000} _._ b
it |
| N —
0
)
g 1.2]
Blﬂ_ﬁ ot ot Tt fat = = £
g
T 0.8}
A 0 2 4 6 8

Number of ISR jets

[Nachman, JDT, PRD 2020; inspired by Andersen, Gutschow, Maier, Prestel, EPJC 2020]
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Resampling recovers
desired uncertainties

800+ Initial Weights

¢ Neural Resampler, K=1
——- Neural Resampler, Optimal K
600+ 1
MG5 aMC + Pythia 8
5y pp - tf, NLO QCD
™ 400} T L
1 [ J—
I 1
] . )
200(. : - o __1__;
0

0O 1 2 3 4 5 6 7 8
Number of ISR jets

Using custom ML strategy
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E.g.: Detector Unfolding

: Multi-dimensional unbinned detector corrections
OmniFold . . . -
via iterated application of machine-learned reweighting

Detector-level

\
-

Step 1:

Reweight Sim. to Data

Natural

Data
v Un—1 —7 Wn

Simulation

L R

Synthetic

—

Pull Weights

—
R ——

Push Weights

[Andreassen, Komiske, Metodiev, Nachman, |DT, PRL 2020; + Suresh, ICLR SimDL 2021;
Komiske, McCormack, Nachman, PRD 2021; see unfolding comparison in Petr Baron, APPB 2021]
[see alternative in Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe, SciPost 2020]
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Particle-level

Step 2:

Reweight Gen.

W,
Vnp—1 > Un

-

Generation

=

—
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https://arxiv.org/abs/1911.09107
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https://arxiv.org/abs/2006.06685

Back to the Future with ALEPH Archival Data
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[talk by Badea, ICHEP 2020; cf. ALEPH, EP|C 2004]
[see also Badea, Baty, Chang, Innocenti, Maggi, McGinn, Peters, Sheng, DT, Lee, PRL 2019; HI, DIS2021]
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How do you estimate uncertainties
on the learned likelihood itself?

How do you even know if you
remembered to train your model?!

This is a type of “algorithmic” uncertainty
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Progress in uncertainty quantification must keep pace with
the development of exciting new ML/HEP strategies
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Summary

Learning and Uncertainties

Different types of uncertainty require
different strategies for uncertainty quantification

Correlation for Calibration

With help from the Gaussian Ansatz and DVR loss,
we can do frequentist calibration with improved resolution

The Next Frontier for UQ in HEP/ML

Machine learning will force us to confront the challenge of
model selection with very large numbers of (hyper)parameters
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