

Introduction

- Yemilab new underground laboratory in Korea.
- Dark Matter
 - COSINE-100
 - COSINE-200
 - Low mass DM
- DBD
 - AMoRE-I
 - AMoRE-II
- LSC
 - IsoDAR
 - Dark boson search
 - Solar Nu

Yemilab for new discoveries.

- Yangyang underground lab (Y2L) is too small to perform larger experiments.
- IBS decided to build a new underground laboratory at Jeonseon area in South Korea.
- Tried to separate the lab from the mine operation as much as possible.
- Two access ways, ramp-way and man-riding elevator are utilized.
- Open to other researchers than IBS.

- 1000 meter underground.
- Construction cost ~30 M\$
- · 2018-2022

Muon rates

Access Tunnel

Large Scintillation Counter (LSC)

Yemilab halls

AMoRE

Room

Dark Matter Searches

DAMA/LIBRA confirmation

Low mass DM

Dark Sector searches

Recent achievements

Background modeling (1keV threshold)

WIMP Search (1.7 years)

Sci. Adv. 7, eabk2699, (2021)

Low-mass DM with Migdal

Annual & diurnal modulation of muon

19

New isomers in ²²⁸Ac

EPJC 81, 746 (2021)

Annual modulation (3 years data)

PRD 106, 052005 (2022)

Time dependent background modeling

$$R(t) = \sum_{i} \left[C^{i} + \sum_{j}^{8} A_{j}^{i} e^{-\lambda_{j} t} \right] + S_{m} \cos \left(\frac{2\pi (t - t_{0})}{T} \right)$$

Precise understanding of the time-dependent backgrounds is crucial for the annual modulation searches.

1-6 keV modulation amplitude

COSINE-100	0.0067 ± 0.0042
DAMA/LIBRA	0.0105 ± 0.0011
ANAIS-112	-0.0034 ± 0.0042

ANAIS-112 (3 years data revisiting)

NaI crystal development for COSINE-200

Powder purification performance

Hyunsu Lee

K.A. Shin et al., J. Rad. Nucl. Chem. 317, 1329 (2018)

K.A. Shin et al., JINST 15, C07031 (2020)

	K (ppb)	Pb (ppb)	U (ppb)	Th (ppb)
Initial Nal	248	19.0	<0.01	<0.01
Purified Nal	<16	0.4	<0.01	<0.01

We produced ~ 400 kg low-background NaI powder (Maximum production rate ~ 100 kg/month)

Crystal ingots

A proof of principle for low background NaI Large crystal growing is going on

Low temperature (-30°C) response

PMT measurement

SiPM measurement

~ 5-15% increased light yield at -30°C

COSINE-200 can be operated at -30°C

Yemilab facility is under construction

Sensitivites of COSINE-200

- Unambiguous conclusion on the DAMA/LIBRA with modulation data.
- Low mass spin dependent searches with new parameter space exploration.

Low mass search with Migdal

- A world best sensitive detector for low-mass WIMP-proton spindependent interaction
- Feasibility test of the COSINE-1T experiment

Low mass DM searches

"Testing spin-dependent dark matter interactions with lithium aluminate targets in CRESST-III", PRD 106, 092008 (2022)

Spin dependent interacting isotopes: ^{6,7}₃Li, ¹⁹₉F, ²⁷₁₃Al etc.

10.46 g LiAlO₂ crystal @ Gran Sasso lab.

Results on spin-dependent DM searches

Low Mass DM search @ Yemilab

- It is promising to see good PSD even w/o light detector.
- Energy threshold ~ 50 eV.
- Will test various crystals for optimization.

Neutrinoless Double Beta Decay

Current Neutrino Mass Limits

- Majorana nature of neutrinos is 80 year old question.
- Neutrino mass is ultra small, and we don't understand its origin. It is related to if neutrinos are Majorana particles.
- Neutrino mass is constrained by beta decays and cosmology.

Recent Limits & Persepectives

Principle of AMoRE detector

AMoRE-I: Running

20

- AMoRE-I began Aug. 2020 @ Y2L and runs stable.
- Purpose Check further on detector performance & backgrounds.
- 13 $Ca^{100}MoO_4$ crystals (4.6 kg) and 5 $Li_2^{100}MoO_4$ (1.6 kg) crystals, ~3 kg of ^{100}Mo
- 20 cm Pb shields + neutron shields (boric acid+PE+b.PE)
- MMC sensor upgrade (AuEr \rightarrow AgEr)

Preliminary data

- Preliminary half-life limits are presented @ Neutrino 2022 and ICHEP 2022.
- Need the background analysis with alpha analysis.

- Background = 0.034 ± 0.005 ckky,
- $T_{1/2}^{0\nu} > 1.05 \times 10^{24}$ years at 90% C.L., Cf: $T_{1/2}^{0\nu} > 1.8 \times 10^{24}$. By Cupid-Mo group

MeV	Total (5.28 kg y)	CMO (4.06)	LMO (1.22)
2.9-3.1	33 (evt.)	27	6
	0.031 (ckky)	0.033	0.025
2.86-3.2	61 (evt.)	48	13
	0.034 (ckky)	0.035	0.031

AMoRE-II: under preparation

- 100 kg of ¹⁰⁰Mo @ Yemilab for 5 years
- Li₂¹⁰⁰MoO₄ crystals in 5 and 6 cm cylinder. $(\sim 410 \text{ crystals}) + 13^{40}\text{Ca}^{100}\text{MoO}_4$
- DR inside heavy shielding with Pb, PE, and water. s
- 132 Plastic Scintillator muon detectors installed
- WC detector
 - Reflector (tyvek) was installed on the surf ace inside detector.
 - PMTs are installed and the door will be fin ished after installing DR.
 - Water purification system has been ready.

Overview of AMoRE-II setup

Sensitive of AMoRE-II

Discovery sensitivity:

The half-life for which an experiment has a 50% chance to measure a signal above background with a significance of at least 3 sigma (99.7%).

Background Unit:

ckky=counts/(keV kg year)

- Three "Active" neutrinos are left-handed.
- Sterile neutrinos are right-handed neutrinos, so sterile.
 - → 4th Flavor
- They can be Majorana particles.
- Being sterile, they can, in principle, have an arbitrarily mass.
- Sterile neutrinos can oscillate with active neutrinos.
- Heavy sterile neutrinos are dark matter candidates.

 $V_e V_\mu V_\tau V_s$

$$v_e, v_{\mu}, v_{\tau}. \rightarrow v_s \rightarrow v_e, v_{\mu}, v_{\tau}$$
Disapperance Apperance

Liquid Scintillator Counter (LSC) @ Yemilab

LSC is multi-purpose large liquid scintillator detector.

Sunny Seo

Target Acrylic tank: 2.26 kton
Buffer SUS tank: 1.14 kton
Veto Concrete tank: 2.41 kton

Photocathode coverage with 3000 20" PMTs : 49% \rightarrow E_{resol} $\sim 5.5\%/\sqrt{E(MeV)}$ expected. Cf. KamLAND : 34%, E_{resol} $\sim 6.5\%/\sqrt{E(MeV)}$

IsoDAR @ Yemilab

"IsoDAR@Yemilab: A report on the technology, capabilities, and deployment", JINST 17, P090429 (2022)

IsoDAR(isotope decay at rest) uses ⁸Li Isotope Decay-at-rest

New J.Phys. 24 (2022) 2, 023038, htt ps://arxiv.org/abs/2103.09352

Protons $\overline{\nu}_e$ $\overline{$

$p + {}^{9}\mathrm{Be} \rightarrow$	${}^{9}B + n$
$n+{}^7{\rm Li} \to$	$^{8}\text{Li} + \gamma$

 $p + {}^{9}\mathrm{Be} \rightarrow {}^{8}\mathrm{Li} + 2p$

$^{8}\text{Li} \rightarrow$	⁸ Be	+	e^{-}	+	$\overline{\nu}_e$
-----------------------------	-----------------	---	---------	---	--------------------

Runtime	5 calendar years
IsoDAR duty factor	80%
Livetime	4 years
Protons on target/year	$1.97 \cdot 10^{24}$
8 Li/proton ($\bar{\nu}_{e}$ /proton)	0.0146
$\bar{\nu}_e$ in 4 years livetime	$1.15 \cdot 10^{23}$
IsoDAR@Yemilab mid-baseline	l
IsoDAR@Yemilab depth	985 m (2700 m.w.e.)

2M IBD events in 5 years.

~ 1000 events/day

Slide from Maxim Pospelov @ IDM2022

- Some of the underground Labs that host Dark Matter detectors, also have nuclear accelerators (e.g. LUNA, JUNA etc) in a completely different setting: studies of nuclear reactions.
- We propose to couple nuclear accelerators and dark matter detectors: accelerated protons (or other nuclei) can strike DM particles that can subsequently be detected with a nearby detector.

■ This is going to be relevant for models with large DM-nuclear cross section (blind spot #2), where A. interaction is enhanced, B. density is enhanced.

"Neutrino Physics Opportunities with the IsoDAR Source at Yemilab", PRD 105, 052009 (2022)

- With inverse beta decay, $\overline{v_e}p \rightarrow e^+n$, short baseline oscillation is searched.
- Well known energy spectra and cross section unlikely with other experiments; reactor neutrinos, ~GeV neutrino-nuclear cross section, neutrino-nucleus CC interaction etc.
- With energy resolution $E_{resol} \sim 6.5\%/\sqrt{E(MeV)}$ and vertex resolution, $\sigma(vertex) = 12cm/\sqrt{E(MeV)}$

Sterile neutrino searches.

 5σ sensitivity with 5 year run Cover most of the confusing parameter spaces.

- Wave packet effect will show damping of the oscillation with a wave packet width $\sigma_x = 2.1 \times 10^{-4} nm$, which is lowest limit.
- Comment from Akhmedov and Smirnov: packet width should be much larger → No effect expected.

Akhmedov and Sminov, arXiv:2208.03736

Dark boson searches with IsoDAR

• Low mass mediators, light boson(X) particles, can be searched with the nuclear decays at the IsoDAR target and $X \rightarrow \nu \bar{\nu}$ decay and $\bar{\nu}$ detection in the LSC.

Expected $\bar{\nu}$ energy spectra for $X \to \nu \bar{\nu}$

Dark boson searches with IsoDAR

- Assume that the generic mediator X is coupled to both quarks and neutrinos.
- The production rate of this new mediator depends on its coupling with quarks and the mass, which can be expressed as a branching ratio for a given transition.

Other physics

• $\bar{\nu}e \rightarrow \bar{\nu}e$, 7000 detected events

Non-standard interaction

Standard Model:

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{2G_{\rm F}^2 m_e}{\pi} \left[\bar{g}_L^2 + \bar{g}_R^2 \left(1 - \frac{T}{E_{\nu}} \right)^2 - \bar{g}_L \bar{g}_R \frac{m_e T}{E_{\nu}^2} \right],$$

NSI's alter the Standard Model couplings:

$$ar{g}_R \equiv g_R^e + arepsilon_{ee}^{eR}, \qquad ar{g}_L \equiv 1 + g_L^e + arepsilon_{ee}^{eL}.$$

$$\sigma(arepsilon_{ee}^{eR}, arepsilon_{ee}^{eL}) = rac{2m_e G_{
m F}^2 E_{
u}}{\pi} \Big(ar{g}_L^2 + rac{1}{3} ar{g}_R^2 \Big).$$

Solar Neutrinos

- Borexino data: **2007(2008) 2016** @LNGS
- 300 ton LS (~2200 8" PMTs, ~6% @1MeV)
- Very low radioactive BKG

Slow scintillator can reduce backgrounds.

"Slow-fluor scintillator for low energy solar neutrinos and neutrinoless double beta decay", Dunger et al., PRD 105, 092006 (2022)

Reconstructed solar direction for ⁸B neutrino events.

5 year operation @Yemilab2.26 kton LSOnly satistical errors are counted.

Summary

- We constructed Yemilab to house new experiments for dark matter and neutrinos.
- COSINE-100, 200 experiments will close in the DAMA conundrum.
- COSINE-200 and low mass DM search R&D show promising capabilities.
- AMoRE experiment aims to be sensitive $\sim 5 \times 10^{26}$ years range for 100 Mo isotope and will be installed by end of 2024 in full scale.
- LSC coupled with a powerful accelerator have a large potential for dark sector physics and sterile neutrinos.
- We welcome researchers who utilize Yemilab for basic and applied sciences.