Detecting axion/dark-photon dark matter with magnon

Kazunori Nakayama (Tohoku Univ \& QUP)

2022/I2/I2 @ Light Dark World 2022, KAIST

Today's topics:

Basics of axion/dark-photon

Axion/dark photon search
 With magnon [Chigua, MoorikN (2020)
 With condensed-matter axion

QCD axion

- Strong CP problem in QCD

$$
\mathcal{L}=\theta \frac{g_{s}^{2}}{32 \pi^{2}} G_{\mu \nu}^{a} \tilde{G}^{\mu \nu a} \quad \theta \lesssim 10^{-10} \text { from neutron EDM }
$$

- Axion with coupling to QCD

$$
\mathcal{L}=\frac{g_{s}^{2}}{32 \pi^{2}} \frac{a}{F_{a}} G_{\mu \nu}^{a} \tilde{G}^{\mu \nu a} \longrightarrow \theta+\frac{a}{F_{a}}=0 \quad \text { dynamically }
$$

- Axion is Goldstone boson with spontaneous $\mathrm{U}(\mathrm{I})$ breaking (PQ symmetry)

KSVZ model: $\mathcal{L}=|\partial \phi|^{2}+(\lambda \phi Q \bar{Q}+$ h.c. $)-V(|\phi|)$
[Kim (1979),
DFSZ model: $\mathcal{L}=|\partial \phi|^{2}+\left(\mu \phi H_{u} H_{d}+\right.$ h.c. $)-V(|\phi|,|H|) \quad \begin{gathered}\text { [Dine, Fischler Srednicki (198|), } \\ \text { Zhitinitsky } \\ \text { (1980)] }\end{gathered}$
Flaxion/axiflavon
[Ema, Hamaguchi, Moroi, KN (2016), Calibbi, Goertz, Redigolo, Ziegler, Zupan (2016)]

QCD axion \& axion-like particle (ALP)

- QCD axion

- motivated by strong CP problem \& dark matter
- mass \& coupling are related: $m_{a} \simeq 6 \mu \mathrm{eV}\left(\frac{10^{12} \mathrm{GeV}}{f_{a}}\right)$
- coupling to quark/gluon: $\quad \mathcal{L}=\frac{g_{s}^{2}}{32 \pi^{2}} \frac{a}{f_{a}} G_{\mu \nu}^{a} \widetilde{G}^{\mu \nu a} \quad \mathcal{L}=\frac{\partial_{\mu} a}{f_{a}} \bar{q}^{\mu} \gamma_{5} q$
- Axion-like particle (ALP)
- motivated by string theory (axiverse) \& dark matter [Arvanitaki et al., (2009)]
- mass \& coupling are arbitrary
- coupling to photon: $\mathcal{L}=-\frac{g_{a \gamma}}{4} a F_{\mu \nu} \widetilde{F}^{\mu \nu} \longrightarrow \quad$ rich phenomenology

Constraints on axion-photon coupling $\quad \mathcal{L}=-\frac{g_{a \gamma}}{4} a F_{\mu \nu} \widetilde{F}^{\mu \nu}$

[AxionLimits, C.O'Hare]

Axion dark matter (I)

- Coherent oscillation
[Preskill,Wise,Wilczek (1983), Abbott, Sikivie (1983), Dine Fischler (1983)]
- Equation of motion of axion

$$
\begin{aligned}
& \ddot{a}+3 H \dot{a}+\frac{\partial V}{\partial a}=0 \\
& V(a)=m_{a}^{2}(T) f_{a}^{2}\left(1-\cos \frac{a}{f_{a}}\right)
\end{aligned}
$$

- For QCD axion:

$$
\Omega_{a} h^{2}=0.18 \theta_{1}^{2}\left(\frac{F_{a}}{10^{12} \mathrm{GeV}}\right)^{1.19}\left(\frac{\Lambda}{400 \mathrm{MeV}}\right)
$$

Axion dark matter (2)

- Topological defects
- PQ symmetry breaking after inflation string-wall network decay at QCD

[Hiramatsu et al., (2010)]

$$
\Omega_{a, \text { tot }} h^{2}=(8.4 \pm 3.0)\left(\frac{F_{a}}{10^{12} \mathrm{GeV}}\right)^{1.19}\left(\frac{\Lambda}{400 \mathrm{MeV}}\right)
$$

- Recent discussions on scaling law of global string:
[Gorghetto et al. (20|8), Kawasaki et al (20|8), Klaer, Moore (20|9), Hindmarsh et al. (2019), Buschmann et al. (202I)]

Dark photon

- Parametrized by mass \& kinetic mixing

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}-\frac{1}{4} H_{\mu \nu} H^{\mu \nu}-\frac{1}{2} m_{H}^{2} H_{\mu} H^{\mu}-\frac{\epsilon}{2} F_{\mu \nu} H^{\mu \nu}
$$

- Motivated by string theory \& dark matter [Goodsell, Jaeckel, Redondo, Ringwald (2009)]

Type IIB flux compactification [Cicoli, Goodsell, Jaeckel, Ringwald (20II)]

Constraints on kinetic mixing

Through kinetic mixing, dark photon interacts with ordinary matter.

Dark photon mass [eV]

Dark photon dark matter

- Coherent oscillation [Nelson, Scholtz (201 I), Arias et al. (2012)]

Serious theoretical/observational problems [KN (2019), KN (2020)]

- Gravitational production

Inflationary fluctuation $m_{H} \gtrsim 1 \mu \mathrm{eV}$
[Graham, Mardon, Rajendran (2015)]
Gravitational production during reheating
[Ema, Jinno, Mukaida, KN (2015), Ema, KN, Tang (20I9)]

- Topological defects [Long.Wang (2019)] Dark photon emission from cosmic strings.

Axion DM search experiments

- Axion haloscope
[Sikivie (I983)]
- DM axion resonantly conversion into cavity photon under magnetic field

$$
\mathcal{L}=-\frac{g_{a \gamma}}{4} a F_{\mu \nu} \widetilde{F}^{\mu \nu} \simeq-g_{a \gamma} a \vec{E} \cdot \vec{B}
$$

[Carosi, van Bibber (2008)]

[AxionLimits, C.O'Hare]

Axion DM search experiments

- CASPEr [Budker et al. (2013)]
- DM axion \longrightarrow oscillating E
\longrightarrow amplify nuclear spin precession (axion-nucleon coupling)

SQUID pickup loop

- ABRACADABRA [Kahn, Safdi, Thaler (2016)]
- $\mathbf{J}_{\text {eff }}=g_{a \gamma \gamma} \sqrt{2 \rho_{\mathrm{DM}}} \cos \left(m_{a} t\right) \mathbf{B}_{0}$.
\longrightarrow oscillating real magnetic field

(Sorry, I cannot cover many ideas for axion DM detection ...)

Today's topics:

Basics of axion/dark-photon

Axion/dark photon search

With condensed-matter axion
[Chigusa, Moroi, KN (202I)]

New ideas for dark matter direct detection

DM

XENONIT, LUX, PandaX, ...

Bloch electron

SENSEI, DAMIC, ...

Collective excitation (phonon, magnon,...)

SPICE, HeRALD, ..

Heavy
DM

Light DM

Dispersion of (quasi)particles in solids

Electron (Ge)

Phonon (GaAs)

Magnon (YIG)

Rich structure: useful for new particle search !
DM absorption: meV~keV,
DM scatter: $\mathrm{keV} \sim \mathrm{GeV}$

Heisenberg model for ferromagnet and magnon

- Magnetic material : electron spins are aligned
- Heisenberg Hamiltonian

$$
H_{\mathrm{eff}}=-g \mu_{B} \sum_{\ell} \vec{B}^{0} \cdot \vec{S}_{\ell}-\frac{J}{2} \sum_{\ell, \ell^{\prime}} \vec{S}_{\ell} \cdot \vec{S}_{\ell^{\prime}},
$$

J>0 : spins are aligned (Ferromagnet)

- Fluctuation around the ground state : collective spin wave = Magnon

Magnon Hamiltonian

- Quantized Hamiltonian in momentum space

Holstein-Primakoff transformation

$$
S_{\ell}^{+}=\sqrt{2 s-\widetilde{c}_{\ell}^{\dagger} \widetilde{c}_{\ell}} \widetilde{c}_{\ell} \quad S_{\ell}^{-}=\widetilde{c}_{\ell}^{\dagger} \sqrt{2 s-\widetilde{c}_{\ell}^{\dagger} \widetilde{c}_{\ell}} \quad S_{\ell}^{z}=s-\widetilde{c}_{\ell}^{\dagger} \widetilde{c}_{\ell} \quad\left(S_{\ell}^{ \pm} \equiv S_{\ell}^{x} \pm i S_{\ell}^{y}\right)
$$

$$
H=\sum_{k}\left[\omega_{L}+J s \sum_{\vec{a}}\left(1-\gamma_{\vec{k}}\right)\right] c_{\vec{k}}^{\dagger} c_{\vec{k}}=\sum_{k} \omega_{k} c_{\vec{k}}^{\dagger} c_{\vec{k}} \quad \quad \gamma_{\vec{k}}=\frac{1}{z} \sum_{\vec{\delta}} e^{i \vec{k} \cdot \vec{\delta}}
$$

- Magnon dispersion relation:

$$
\omega_{\vec{k}} \simeq \omega_{L}+J s L^{2} k^{2} \equiv \omega_{L}+\frac{k^{2}}{2 M} \quad: \omega_{L} \equiv g \mu_{B} B_{z}^{0} \simeq 1.2 \times 10^{-4} \mathrm{eV}\left(\frac{B_{z}^{0}}{1 \mathrm{~T}}\right) \quad: \text { Larmor frequency }
$$

Magnon dispersion (YIG) $\quad \mathrm{YIG}=\mathrm{Y}_{3} \mathrm{Fe}_{5} \mathrm{O}_{12}$

- $20 \mathrm{Fe}^{\wedge} 3+$ ions in magnetic unit cell
- "Ferri-magnet"

- dispersion relation (20 magnon branches)

[Cherepanov, Kolokolov, L’vov (1993)]

Axion-magnon interaction

[Barbieri et al $(1989,2016)$, Chigusa, Moroi, KN (2020)]

- Axion-electron interaction

$$
\mathcal{L}=\frac{\partial_{\mu} a}{2 f} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi \quad \longrightarrow \quad H_{\mathrm{int}}=\frac{1}{f} \sum_{\ell} \vec{\nabla} a\left(\vec{x}_{\ell}\right) \cdot \vec{S}_{\ell}
$$

- Axion-magnon interaction Hamiltonian

$$
H_{\mathrm{int}}=\frac{m_{a} a_{0} \sin \left(m_{a} t+\delta\right)}{f} \sqrt{\frac{s}{2}} \sum_{\ell}\left(v_{a}^{-} \widetilde{c}_{\ell}+v_{a}^{+} \widetilde{c}_{\ell}^{\dagger}\right)
$$

Axion DM:

$$
a(\vec{x}, t)=a_{0} \cos \left(m_{a} t-m_{a} \vec{v}_{a} \cdot \vec{x}+\delta\right)
$$

Resonant conversion

- 2-level system
$|0\rangle$: 0-magnon state
$|1\rangle$: I-magnon state ($k=0$ mode)
- Signal power at resonance: $m_{a}=\omega_{L}$

$$
\frac{d E_{\text {signal }}}{d t}=\frac{\omega_{L} P(t)}{2 t}=\frac{\omega_{L}|V|^{2} t}{8} . \quad V \equiv \sqrt{\frac{s N}{2}} \frac{m_{a} a_{0} v_{a}^{+}}{f}
$$

- Limitation:
- Axion coherence time $\tau_{a} \sim\left(m_{a} v_{a}^{2}\right)^{-1}$
- Magnon relaxation time $\tau_{\text {magnon }} \sim\left(1 / \tau_{\text {spin-spin }}+1 / \tau_{\text {spin-lattice }}\right)^{-1}$
- Magnon-photon mixing (magnon-polariton)

There is a mixing of cavity photon and magnon ("hybridization")

$$
H=\omega_{L} c_{0}^{\dagger} c_{0}+\omega_{\mathrm{cav}} b^{\dagger} b+g_{\mathrm{cm}}\left(b^{\dagger} c_{0}+c_{0}^{\dagger} b\right)
$$

$$
H=g \mu_{B} \vec{B} \cdot \vec{S}
$$

a)

[Tabuchi et al., I 508.05290]

QUAX experiment

[QUAX collaboration (2020)]

Use of Qubit

[lkeda, Ito, Miuchi, Soda, Kurashige, Shikano (2020)]

Ultimate goal for DM search with magnon

(Ikg year)
[Chigusa, Moroi, KN (2020)]

Today's topics:

Basics of axion/dark-photon

Axion/dark photon search

With condensed-matter axion
[Chigusa, Moroi, KN (202I)]

Axion in condensed-matter

- Topological insulator

$$
\mathcal{L}=\theta \frac{\alpha_{e}}{4 \pi} F_{\mu \nu} \widetilde{F}^{\mu \nu} \quad \begin{array}{ll}
\theta=0 & \text { :normal insulator } \\
\theta=\pi & \text { :topological insulator }
\end{array}
$$

- Can θ be dynamical? [Wilczek (1987)]
- Arbitrary value if there is no T, P invariance
- Magnetic ordering can violate T, P -invariance

Dynamical axion

(axion quasi-particle, condensed-matter axion,...)
[Kane, Mele (2005), Fu, Kane, Mele (2007)]

[Hasan, Mele (20I0)]

- "Axion" in topological (anti-)ferromagnet First proposal: Fe-doped Bi2Se3 [Li,Wang, Qi, Zhang (2009)]

DM-axion to CM-axion conversion

[Marsh et al (2018)] [Schutte-Engel et al. (202I)] [Chigusa, Moroi, KN (202I)]

- DM axion to CM axion conversion under magnetic field

- DM hidden photon to CM axion

[Schutte-Engel et al. (202I)]

$$
H_{0}=\sum_{\langle i, j\rangle \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+i \frac{4 \lambda}{a^{2}} \sum_{\langle\langle i, j\rangle\rangle} c_{i}^{\dagger} \vec{\sigma} \cdot\left(\vec{d}_{i j}^{1} \times \vec{d}_{i j}^{2}\right) c_{j}
$$

nearest neighbor
tight-binding term
$H_{U}=U \sum_{i} n_{i \uparrow} n_{i \downarrow} \quad$ Hubbard interaction term

> 3 Dirac points in Brillouin zone

- Hamiltonian in terms of electron creation/annihilation operator

$$
\begin{aligned}
& H_{0}=\sum_{\vec{k}} c_{\vec{k}}^{\dagger} \mathcal{H} c_{\vec{k}}, \quad \mathcal{H}=\sum_{\mu=1}^{5} R_{\mu}(\vec{k}) \alpha_{\mu} \\
& R_{1}(\vec{k})=\lambda\left[\sin \left(\vec{k} \cdot \vec{a}_{2}\right)-\sin \left(\vec{k} \cdot \vec{a}_{3}\right)-\sin \left(\vec{k} \cdot\left(\vec{a}_{2}-\vec{a}_{1}\right)\right)-\sin \left(\vec{k} \cdot\left(\vec{a}_{3}-\vec{a}_{1}\right)\right)\right] \\
& R_{2}(\vec{k})=\lambda\left[\sin \left(\vec{k} \cdot \vec{a}_{3}\right)-\sin \left(\vec{k} \cdot \vec{a}_{1}\right)-\sin \left(\vec{k} \cdot\left(\vec{a}_{3}-\vec{a}_{2}\right)\right)-\sin \left(\vec{k} \cdot\left(\vec{a}_{1}-\vec{a}_{2}\right)\right)\right] \\
& R_{3}(\vec{k})=\lambda\left[\sin \left(\vec{k} \cdot \vec{a}_{1}\right)-\sin \left(\vec{k} \cdot \vec{a}_{2}\right)-\sin \left(\vec{k} \cdot\left(\vec{a}_{1}-\vec{a}_{3}\right)\right)-\sin \left(\vec{k} \cdot\left(\vec{a}_{2}-\vec{a}_{3}\right)\right)\right] \\
& R_{4}(\vec{k})=t\left[1+\cos \left(\vec{k} \cdot \vec{a}_{1}\right)+\cos \left(\vec{k} \cdot \vec{a}_{2}\right)+\cos \left(\vec{k} \cdot \vec{a}_{3}\right)\right]+\delta t, \\
& R_{5}(\vec{k})=t\left[\sin \left(\vec{k} \cdot \vec{a}_{1}\right)+\sin \left(\vec{k} \cdot \vec{a}_{2}\right)+\sin \left(\vec{k} \cdot \vec{a}_{3}\right)\right],
\end{aligned}
$$

3 Dirac points: $\vec{k}_{X_{1}}=\frac{2 \pi}{a}(1,0,0), \vec{k}_{X_{2}}=\frac{2 \pi}{a}(0,1,0), \vec{k}_{X_{3}}=\frac{2 \pi}{a}(0,0,1)$

- Large Hubbard interaction \qquad Magnetic ordering
- Dirac-like electron interacts with spin through

$$
\begin{aligned}
& S=\int d^{4} x \sum_{r=1,2,3} \bar{\psi}_{r}\left[i \gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-\delta t-i \gamma_{5} U m_{r}\right] \psi_{r} \\
& \left\langle\vec{S}_{i, A}\right\rangle=-\left\langle\vec{S}_{i, B}\right\rangle \equiv \vec{m} \quad: \text { anti-ferromagnetic order for } \mathrm{U} / \mathrm{t} \gg \mathbf{I}
\end{aligned}
$$

- Chiral rotation of Dirac fermion gives axion-photon interaction:

$$
\begin{aligned}
& S=\int d^{4} x \theta \frac{\alpha_{e}}{4 \pi} F_{\mu \nu} \widetilde{F}^{\mu \nu} \\
& \theta \equiv \theta_{0}+\sum_{r} \theta_{r}=\theta_{0}+\sum_{r} \tan ^{-1}\left(\frac{U m_{r}}{\delta t}\right)
\end{aligned}
$$

Fluctuation of magnetic order parameter = dynamical axion
Axion ~ magnon in FKMH anti-ferromagnet model.

- Magnon in anti-ferromagnet:Two modes

$$
\begin{aligned}
& H=-\frac{J}{2} \sum_{\left\langle\ell, \ell^{\prime}\right\rangle} \vec{S}_{\ell} \cdot \vec{S}_{\ell^{\prime}}-g \mu_{B}\left(B_{A}+B_{0}\right) \sum_{\ell \in A} S_{\ell}^{z}+g \mu_{B}\left(B_{A}-B_{0}\right) \sum_{\ell^{\prime} \in B} S_{\ell^{\prime}}^{z}, \\
& S_{\ell}^{+}=\sqrt{2 s-a_{\ell}^{\dagger} a_{\ell}} a_{\ell}, \quad S_{\ell}^{-}=a_{\ell}^{\dagger} \sqrt{2 s-a_{\ell}^{\dagger} a_{\ell}}, \quad S_{\ell}^{z}=s-a_{\ell}^{\dagger} a_{\ell}, \\
& S_{\ell^{\prime}}^{+}=b_{\ell^{\prime}}^{\dagger} \sqrt{2 s-b_{\ell^{\prime}}^{\dagger}, \ell_{\ell^{\prime}}, \quad S_{\ell^{\prime}}^{-}=\sqrt{2 s-b_{\ell^{\prime}}^{\dagger} b_{\ell^{\prime}} b_{\ell^{\prime}}, \quad S_{\ell^{\prime}}^{z}=-s+b_{\ell^{\prime}}^{\dagger}, b_{\ell^{\prime}},}} \$=\text {, }
\end{aligned}
$$

- Express Hamiltonian taking account of fluctuation of magnetization

$$
H_{U} \ni \sum_{\vec{k}} c_{\vec{k}}^{\dagger} \widetilde{\mathcal{H}}_{U} c_{\vec{k}}, \quad \widetilde{\mathcal{H}}_{U}=\sum_{\mu=1}^{5} \widetilde{R}_{\mu} \alpha_{\mu}+\widetilde{R}_{12} \alpha_{12}+\widetilde{R}_{23} \alpha_{23}+\widetilde{R}_{31} \alpha_{31}
$$

- CM-axion (magnon)-EM field interaction Hamiltonian $\quad D=\sum_{r} \frac{U / \delta t}{1+U^{2} m_{\gamma}^{2} \delta t^{2}}\left(O_{r 1}-i O_{r 2}\right)$

$$
H_{\mathrm{int}}=-\frac{\alpha_{e}}{4 \pi} \sqrt{\frac{s}{2 N}}\left(u_{\overrightarrow{0}}-v_{\overrightarrow{0}}\right)\left[D^{*} \alpha_{\overrightarrow{0}}^{\dagger}-D{\beta_{\overrightarrow{0}}^{\dagger}}_{-}^{\dagger} \text { h.c. }\right] \int d^{3} x \vec{E} \cdot \vec{B},
$$

Axion DM

Scan of magnetic field:
$1 \mathrm{~T}<B_{0}<10 \mathrm{~T}$
Each time step:
$\Delta t=10^{2} \mathrm{~s}$
Total observation time:
1 yr
Target volume:
Noise rate:
$V=(10 \mathrm{~cm})^{3}$
$d N_{\text {noise }} / d t \sim 10^{-3} \mathrm{~s}^{-1}$

Hidden photon DM

[Chigusa, Moroi, KN (202I)]

Note Proposal using different material : [Schutte-Engel et al. (202I)]

Applications of condensed-matter ideas

Magnon

- Axion detection with optical magnons
[Mitridate, Trickle, Zhang, Zurek (2020)]
- Multi-magnon [Esposito, Pavaskar (2022)]
- Light DM scatter off magnon
[Trickle, Zhang, Zurek (2019)]

Applications of condensed-matter ideas

Phonon

- Dark photon absorption by phonon/ light DM scatter off phonon in polar material
[Griffin et al., (2019)] [Knapen, Kozaczuk, Lin (202I)]

- Axion detection with phonon-polariton
[Mitridate, Trickle, Zhang, Zurek (2020)] [Marsh, McDonald, Millar, Schutte-Engel (2022)]

Applications of condensed-matter ideas

Electron

DM absorption/scatter by electron in various materials
[Hochberg, Lin, Zurek (2016), Bloch et al (2016)]

Summary

- Quantum fields in condensed-matter may be useful for DM detection

- Particle and condensed-matter physics interdisciplinary field for New Physics Search.

