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Does the value of the Higgs mass parameter affect the expectation value of local operators in the
Standard Model? For essentially all local operators the answer to this question is “no”, and this is one of the
avatars of the hierarchy problem: Nothing is “triggered” when the Higgs mass parameter crosses zero. In
this article, we explore settings in which Higgs mass parameters can act as a “trigger” for some local
operators OT . In the Standard Model, this happens for OT ¼ TrðGG̃Þ. We also introduce a “type-0” two
Higgs doublet model, with a Z4 symmetry, for which OT ¼ H1H2 is triggered by the Higgs masses,
demanding the existence of new Higgs states necessarily comparable to or lighter than the weak scale, with
no wiggle room to decouple them whatsoever. Surprisingly, this model is not yet entirely excluded by
collider searches, and will be incisively probed by the high-luminosity run of the LHC, as well as future
Higgs factories. We also discuss a possibility for using this trigger to explain the origin of the weak scale,
invoking a landscape of extremely light, weakly interacting scalars ϕi, with a coupling to OT needed to
make it possible to find vacua with small enough cosmological constant. The weak scale trigger links the
tuning of the Higgs mass to that of the cosmological constant, while coherent oscillations of the ϕi can
constitute dark matter.

DOI: 10.1103/PhysRevD.104.095014

I. INTRODUCTION

The apparent failure of naturalness in accounting for the
minuscule size of both the cosmological constant and the
Higgs mass, is giving us a profound structural clue about
the laws of fundamental physics. One of many ways of
describing the hierarchy problem is in terms of how physics
depends on the mass parameter of the Higgs, m2

h. Finding
m2

h ≪ Λ2
H, where ΛH is a UV scale for the Standard Model

(SM) effective field theory, is mysterious because there
is nothing special about m2

h ¼ 0 for scalars; there is no
difference in the number of degrees of freedom for massless
versus massive spin zero particles, nor any obvious differ-
ence in the number of symmetries whenm2

h ¼ 0. Thus most
of the “dynamical” approaches to the hierarchy problem
embed the Higgs in a larger structure, where m2

h is tied to
other parameters that are associated with symmetry
enhancements when m2

h ¼ 0, be it in the context of
supersymmetry (where the chiral symmetry of fermion
superpartners protects scalar masses), or theories of the

Higgs as a pseudo-Goldstone boson in either their four-
dimensional or anti–de Sitter (AdS) avatars (where approxi-
mate shift symmetries play this role).
What does vary, as we change the Higgs mass parameter

m2
h? Obviously the spectrum of the Standard Model

changes, and this is detected by the nontrivial m2
h depend-

ence of the two-point function propagators of the gauge
bosons, fermions and the Higgs. For instance the gauge-
invariant electron two-point function, ē _αðxÞWðx; yÞeαðyÞ,
where Wðx; yÞ is an appropriate Wilson line, depends on
the distance between the two spacetime points (x − y) and
certainly does strongly depend on m2

h.
But we can also ask if there are any gauge invariant local

operators OðxÞ, whose vacuum expectation value is sensi-
tive tom2

h. We can probe hOi by couplingO, parametrically
weakly, to some scalar ϕ via the coupling ξϕO, and looking
at the effective action induced for ϕ. At tree-level, obvi-
ously Oh ¼ h†h depends on m2

h. But of course, once loop
corrections are taken into account, hOhi is not calculable in
the SM, which is one of the aspects of the hierarchy
problem. We can simply look at the tadpole diagram, from
ξϕh†h which induces ξϕΛ2

H where ΛH is the cutoff for the
Higgs sector. This is completely insensitive to m2

h, and
indeed hh†hi is essentially independent of the magnitude or
sign of m2

h. Continuing this line of thought leads to a more
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UV landscape

IR landscape

Type 0 2HDM

Light scalar dark matter from EWPT

m2
ϕM2

* ∼ v4



What varies as we change the Higgs mass parameter in the 
SM?

Question #1

All the spectrum of the Standard Model including W and Z 
bosons,


quarks and leptons and the Higgs boson itself.

Answer to Q#1

Is there any gauge invariant local operator which has a value 
sensitive to the Higgs mass parameter?

Question #2



Answer to Q#2

However,        is not calculable in the SM 

Probing by 1 loop tadpole is 
generated

: cutoff of the Higgs loop

is independent of
depends on unless the cutoff is at the weak scale



Hierarchy Problem

making to be calculable

Supersymmetry Composite Higgs

Closely related question
Is            calculable?

Two calculable examples



SM



Possible operators?

: dimensionless

Massless up quark provides the operator
one of the solutions to the strong CP problem but is not viable any longer



depends on the weak scale and is insensitive to UV

size is too small strong CP



2HDM



Weak scale as a trigger

Type 0 2HDM

We need a symmetry under which the operator is charged

Otherwise, the operator is UV sensitive (e.g., Yukawa term)

symmetry

is forbidden

alpha in U(1)_YH1 → þieiαH1; H2 → þie−iαH2;

ðH1H2Þ → −ðH1H2Þ;
ðqucÞ → −ieiαðqucÞ; ðqdcÞ → þie−iαðqdcÞ;
ðlecÞ → þie−iαðlecÞ: ð4Þ

The renormalizable H1;2 potential invariant under this
symmetry is

V¼VH1H2
þVY;

VH1H2
¼m2

1jH1j2þm2
2jH2j2þ

λ1
2
jH1j4þ

λ2
2
jH2j4

þλ3jH1j2jH2j2þλ4jH1H2j2þ
!
λ5
2
ðH1H2Þ2þH:c:

"
;

VY¼YuqH2ucþYdqH
†
2d

cþYelH
†
2e

c: ð5Þ

Note the absence of the Bμ-term, BμH1H2 and of the two
quartics λ6;7jH1;2j2ðH1H2Þ, all forbidden by the Z4

symmetry. Note also the λ5ðH1H2Þ2 term which is allowed.
Without this term, the potential would have an accidental
Peccei-Quinn (PQ) symmetry and would yield a weak
scale axion.
It is very important that Bμ ¼ λ6;7 ¼ 0, otherwise we

would have m2
1;2-independent contributions to the vev of

our trigger operator from Fig. 3, as for instance

μ2 ≡ hH1H2i ∼ ξϕBμ log
Λ2

jm2
Hj

; ð6Þ

where for simplicity we have taken the Higgs masses
to a common value m2

H. On the contrary, if Bμ ¼ λ6;7 ¼ 0,
then μ2ðm2

1; m
2
2Þ is a UV-insensitive, calculable

function of m2
1, m

2
2 for which the weak scale is a trigger.

This is a consequence of the Uð1Þ PQ symmetry of the
potential in Eq. (5). H1H2 has charge 1 under
this symmetry. The only explicit breaking of the PQ is
by the quartic λ5ðH1H2Þ2, for which λ5 has charge −2, and
so no analytic expression in the couplings can give
something of charge 1. This is shown schematically
in Fig. 3.
Let us now see what is the value of μ2 as a function ofm2

1

and m2
2. At tree level μ2 ¼ 0 unless both m2

1 and m2
2 are

negative. If they are both negative, we have

μ2 ¼ hH1ihH2i ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

λ1λ2

s

; ð7Þ

where we have ignored all cross quartic couplings. For
simplicity we will call μ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

p
for λ1;2 not too tiny.

We will keep this characterization even including cross
quartics. In this case m2

1;2 should be interpreted as ðmeff
1;2Þ2

FIG. 3. In a 2HDM with a Z4 symmetry [Eqs. (3) and (5)] the
H1H2 vev is a UV-insensitive, calculable function of the two
Higgs masses. This can be seen by adding to the Lagrangian the
parametrically weak interaction ϕH1H2. We can only close the
loop in this figure and generate a ϕ tadpole independent of
hH1H2i with an insertion of Bμ; λ6 or λ7 which break the Z4

symmetry and are thus absent from our 2HDM potential
in Eq. (5).

FIG. 4. In the type-0 2HDM (Eq. (5), hH1H2i is a UV-insensitive, calculable function of the masses of the two Higgses:m2
1,m

2
2. In the

left panel we show its classical value while in the right one we include quantum effects. m2
1, m

2
2 in the figure are effective masses that

include contributions from cross quartic couplings. ΛQCD is the QCD scale with all quark masses below ΛQCD.
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Peccei-Quinn symmetry is explicitly broken

generates tadpole and should be forbidden

H1 → þieiαH1; H2 → þie−iαH2;

ðH1H2Þ → −ðH1H2Þ;
ðqucÞ → −ieiαðqucÞ; ðqdcÞ → þie−iαðqdcÞ;
ðlecÞ → þie−iαðlecÞ: ð4Þ

The renormalizable H1;2 potential invariant under this
symmetry is

V¼VH1H2
þVY;

VH1H2
¼m2

1jH1j2þm2
2jH2j2þ

λ1
2
jH1j4þ

λ2
2
jH2j4

þλ3jH1j2jH2j2þλ4jH1H2j2þ
!
λ5
2
ðH1H2Þ2þH:c:

"
;

VY¼YuqH2ucþYdqH
†
2d

cþYelH
†
2e

c: ð5Þ

Note the absence of the Bμ-term, BμH1H2 and of the two
quartics λ6;7jH1;2j2ðH1H2Þ, all forbidden by the Z4

symmetry. Note also the λ5ðH1H2Þ2 term which is allowed.
Without this term, the potential would have an accidental
Peccei-Quinn (PQ) symmetry and would yield a weak
scale axion.
It is very important that Bμ ¼ λ6;7 ¼ 0, otherwise we

would have m2
1;2-independent contributions to the vev of

our trigger operator from Fig. 3, as for instance

μ2 ≡ hH1H2i ∼ ξϕBμ log
Λ2

jm2
Hj

; ð6Þ

where for simplicity we have taken the Higgs masses
to a common value m2

H. On the contrary, if Bμ ¼ λ6;7 ¼ 0,
then μ2ðm2

1; m
2
2Þ is a UV-insensitive, calculable

function of m2
1, m

2
2 for which the weak scale is a trigger.

This is a consequence of the Uð1Þ PQ symmetry of the
potential in Eq. (5). H1H2 has charge 1 under
this symmetry. The only explicit breaking of the PQ is
by the quartic λ5ðH1H2Þ2, for which λ5 has charge −2, and
so no analytic expression in the couplings can give
something of charge 1. This is shown schematically
in Fig. 3.
Let us now see what is the value of μ2 as a function ofm2

1

and m2
2. At tree level μ2 ¼ 0 unless both m2

1 and m2
2 are

negative. If they are both negative, we have

μ2 ¼ hH1ihH2i ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

λ1λ2

s

; ð7Þ

where we have ignored all cross quartic couplings. For
simplicity we will call μ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

p
for λ1;2 not too tiny.

We will keep this characterization even including cross
quartics. In this case m2

1;2 should be interpreted as ðmeff
1;2Þ2

FIG. 3. In a 2HDM with a Z4 symmetry [Eqs. (3) and (5)] the
H1H2 vev is a UV-insensitive, calculable function of the two
Higgs masses. This can be seen by adding to the Lagrangian the
parametrically weak interaction ϕH1H2. We can only close the
loop in this figure and generate a ϕ tadpole independent of
hH1H2i with an insertion of Bμ; λ6 or λ7 which break the Z4

symmetry and are thus absent from our 2HDM potential
in Eq. (5).

FIG. 4. In the type-0 2HDM (Eq. (5), hH1H2i is a UV-insensitive, calculable function of the masses of the two Higgses:m2
1,m

2
2. In the

left panel we show its classical value while in the right one we include quantum effects. m2
1, m

2
2 in the figure are effective masses that

include contributions from cross quartic couplings. ΛQCD is the QCD scale with all quark masses below ΛQCD.
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H1 → þieiαH1; H2 → þie−iαH2;

ðH1H2Þ → −ðH1H2Þ;
ðqucÞ → −ieiαðqucÞ; ðqdcÞ → þie−iαðqdcÞ;
ðlecÞ → þie−iαðlecÞ: ð4Þ

The renormalizable H1;2 potential invariant under this
symmetry is

V¼VH1H2
þVY;

VH1H2
¼m2

1jH1j2þm2
2jH2j2þ

λ1
2
jH1j4þ

λ2
2
jH2j4

þλ3jH1j2jH2j2þλ4jH1H2j2þ
!
λ5
2
ðH1H2Þ2þH:c:

"
;

VY¼YuqH2ucþYdqH
†
2d

cþYelH
†
2e

c: ð5Þ

Note the absence of the Bμ-term, BμH1H2 and of the two
quartics λ6;7jH1;2j2ðH1H2Þ, all forbidden by the Z4

symmetry. Note also the λ5ðH1H2Þ2 term which is allowed.
Without this term, the potential would have an accidental
Peccei-Quinn (PQ) symmetry and would yield a weak
scale axion.
It is very important that Bμ ¼ λ6;7 ¼ 0, otherwise we

would have m2
1;2-independent contributions to the vev of

our trigger operator from Fig. 3, as for instance

μ2 ≡ hH1H2i ∼ ξϕBμ log
Λ2

jm2
Hj

; ð6Þ

where for simplicity we have taken the Higgs masses
to a common value m2

H. On the contrary, if Bμ ¼ λ6;7 ¼ 0,
then μ2ðm2

1; m
2
2Þ is a UV-insensitive, calculable

function of m2
1, m

2
2 for which the weak scale is a trigger.

This is a consequence of the Uð1Þ PQ symmetry of the
potential in Eq. (5). H1H2 has charge 1 under
this symmetry. The only explicit breaking of the PQ is
by the quartic λ5ðH1H2Þ2, for which λ5 has charge −2, and
so no analytic expression in the couplings can give
something of charge 1. This is shown schematically
in Fig. 3.
Let us now see what is the value of μ2 as a function ofm2

1

and m2
2. At tree level μ2 ¼ 0 unless both m2

1 and m2
2 are

negative. If they are both negative, we have

μ2 ¼ hH1ihH2i ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

λ1λ2

s

; ð7Þ

where we have ignored all cross quartic couplings. For
simplicity we will call μ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

p
for λ1;2 not too tiny.

We will keep this characterization even including cross
quartics. In this case m2

1;2 should be interpreted as ðmeff
1;2Þ2

FIG. 3. In a 2HDM with a Z4 symmetry [Eqs. (3) and (5)] the
H1H2 vev is a UV-insensitive, calculable function of the two
Higgs masses. This can be seen by adding to the Lagrangian the
parametrically weak interaction ϕH1H2. We can only close the
loop in this figure and generate a ϕ tadpole independent of
hH1H2i with an insertion of Bμ; λ6 or λ7 which break the Z4

symmetry and are thus absent from our 2HDM potential
in Eq. (5).

FIG. 4. In the type-0 2HDM (Eq. (5), hH1H2i is a UV-insensitive, calculable function of the masses of the two Higgses:m2
1,m

2
2. In the

left panel we show its classical value while in the right one we include quantum effects. m2
1, m

2
2 in the figure are effective masses that

include contributions from cross quartic couplings. ΛQCD is the QCD scale with all quark masses below ΛQCD.
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or should be small enough not to spoil the mechanism



Weak scale as a trigger

as a function of 

can be small only if

allowed region

small cc is possible

(m1 and/or m2)



Values of      in the landscape (classical)
(quartic couplings are taken to be order one)

H1 → þieiαH1; H2 → þie−iαH2;

ðH1H2Þ → −ðH1H2Þ;
ðqucÞ → −ieiαðqucÞ; ðqdcÞ → þie−iαðqdcÞ;
ðlecÞ → þie−iαðlecÞ: ð4Þ

The renormalizable H1;2 potential invariant under this
symmetry is

V¼VH1H2
þVY;

VH1H2
¼m2

1jH1j2þm2
2jH2j2þ

λ1
2
jH1j4þ

λ2
2
jH2j4

þλ3jH1j2jH2j2þλ4jH1H2j2þ
!
λ5
2
ðH1H2Þ2þH:c:

"
;

VY¼YuqH2ucþYdqH
†
2d

cþYelH
†
2e

c: ð5Þ

Note the absence of the Bμ-term, BμH1H2 and of the two
quartics λ6;7jH1;2j2ðH1H2Þ, all forbidden by the Z4

symmetry. Note also the λ5ðH1H2Þ2 term which is allowed.
Without this term, the potential would have an accidental
Peccei-Quinn (PQ) symmetry and would yield a weak
scale axion.
It is very important that Bμ ¼ λ6;7 ¼ 0, otherwise we

would have m2
1;2-independent contributions to the vev of

our trigger operator from Fig. 3, as for instance

μ2 ≡ hH1H2i ∼ ξϕBμ log
Λ2

jm2
Hj

; ð6Þ

where for simplicity we have taken the Higgs masses
to a common value m2

H. On the contrary, if Bμ ¼ λ6;7 ¼ 0,
then μ2ðm2

1; m
2
2Þ is a UV-insensitive, calculable

function of m2
1, m

2
2 for which the weak scale is a trigger.

This is a consequence of the Uð1Þ PQ symmetry of the
potential in Eq. (5). H1H2 has charge 1 under
this symmetry. The only explicit breaking of the PQ is
by the quartic λ5ðH1H2Þ2, for which λ5 has charge −2, and
so no analytic expression in the couplings can give
something of charge 1. This is shown schematically
in Fig. 3.
Let us now see what is the value of μ2 as a function ofm2

1

and m2
2. At tree level μ2 ¼ 0 unless both m2

1 and m2
2 are

negative. If they are both negative, we have

μ2 ¼ hH1ihH2i ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

λ1λ2

s

; ð7Þ

where we have ignored all cross quartic couplings. For
simplicity we will call μ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

p
for λ1;2 not too tiny.

We will keep this characterization even including cross
quartics. In this case m2

1;2 should be interpreted as ðmeff
1;2Þ2

FIG. 3. In a 2HDM with a Z4 symmetry [Eqs. (3) and (5)] the
H1H2 vev is a UV-insensitive, calculable function of the two
Higgs masses. This can be seen by adding to the Lagrangian the
parametrically weak interaction ϕH1H2. We can only close the
loop in this figure and generate a ϕ tadpole independent of
hH1H2i with an insertion of Bμ; λ6 or λ7 which break the Z4

symmetry and are thus absent from our 2HDM potential
in Eq. (5).

FIG. 4. In the type-0 2HDM (Eq. (5), hH1H2i is a UV-insensitive, calculable function of the masses of the two Higgses:m2
1,m

2
2. In the

left panel we show its classical value while in the right one we include quantum effects. m2
1, m

2
2 in the figure are effective masses that

include contributions from cross quartic couplings. ΛQCD is the QCD scale with all quark masses below ΛQCD.
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Values of      in the landscape (quantum)
(quartic couplings are taken to be order one)

H1 → þieiαH1; H2 → þie−iαH2;

ðH1H2Þ → −ðH1H2Þ;
ðqucÞ → −ieiαðqucÞ; ðqdcÞ → þie−iαðqdcÞ;
ðlecÞ → þie−iαðlecÞ: ð4Þ

The renormalizable H1;2 potential invariant under this
symmetry is

V¼VH1H2
þVY;

VH1H2
¼m2

1jH1j2þm2
2jH2j2þ

λ1
2
jH1j4þ

λ2
2
jH2j4

þλ3jH1j2jH2j2þλ4jH1H2j2þ
!
λ5
2
ðH1H2Þ2þH:c:

"
;

VY¼YuqH2ucþYdqH
†
2d

cþYelH
†
2e

c: ð5Þ

Note the absence of the Bμ-term, BμH1H2 and of the two
quartics λ6;7jH1;2j2ðH1H2Þ, all forbidden by the Z4

symmetry. Note also the λ5ðH1H2Þ2 term which is allowed.
Without this term, the potential would have an accidental
Peccei-Quinn (PQ) symmetry and would yield a weak
scale axion.
It is very important that Bμ ¼ λ6;7 ¼ 0, otherwise we

would have m2
1;2-independent contributions to the vev of

our trigger operator from Fig. 3, as for instance

μ2 ≡ hH1H2i ∼ ξϕBμ log
Λ2

jm2
Hj

; ð6Þ

where for simplicity we have taken the Higgs masses
to a common value m2

H. On the contrary, if Bμ ¼ λ6;7 ¼ 0,
then μ2ðm2

1; m
2
2Þ is a UV-insensitive, calculable

function of m2
1, m

2
2 for which the weak scale is a trigger.

This is a consequence of the Uð1Þ PQ symmetry of the
potential in Eq. (5). H1H2 has charge 1 under
this symmetry. The only explicit breaking of the PQ is
by the quartic λ5ðH1H2Þ2, for which λ5 has charge −2, and
so no analytic expression in the couplings can give
something of charge 1. This is shown schematically
in Fig. 3.
Let us now see what is the value of μ2 as a function ofm2

1

and m2
2. At tree level μ2 ¼ 0 unless both m2

1 and m2
2 are

negative. If they are both negative, we have

μ2 ¼ hH1ihH2i ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

λ1λ2

s

; ð7Þ

where we have ignored all cross quartic couplings. For
simplicity we will call μ2 ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1jjm2
2j

p
for λ1;2 not too tiny.

We will keep this characterization even including cross
quartics. In this case m2

1;2 should be interpreted as ðmeff
1;2Þ2

FIG. 3. In a 2HDM with a Z4 symmetry [Eqs. (3) and (5)] the
H1H2 vev is a UV-insensitive, calculable function of the two
Higgs masses. This can be seen by adding to the Lagrangian the
parametrically weak interaction ϕH1H2. We can only close the
loop in this figure and generate a ϕ tadpole independent of
hH1H2i with an insertion of Bμ; λ6 or λ7 which break the Z4

symmetry and are thus absent from our 2HDM potential
in Eq. (5).

FIG. 4. In the type-0 2HDM (Eq. (5), hH1H2i is a UV-insensitive, calculable function of the masses of the two Higgses:m2
1,m

2
2. In the

left panel we show its classical value while in the right one we include quantum effects. m2
1, m

2
2 in the figure are effective masses that

include contributions from cross quartic couplings. ΛQCD is the QCD scale with all quark masses below ΛQCD.
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classical

quantum effects (QCD)
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classical
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classical
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Weak scale as a trigger

as a function of 

cosmological 

constant

weak

scale

small

cosmological 


constant



cosmological 

constant

weak

scale

small

cosmological 


constant

small        is achieved by tuning in the landscape



Pictures of the (friendly) landscapes

Two big problems in theoretical physics


A. Cosmological constant problem

B. Gauge hierarchy problem

(friendly : only dimensionful parameters scan)
Arkani-Hamed Dimopoulos Kachru hep-th/0501082

We need at least vacua to explain two small parameters



not possible in the HE landscape

UV



Low energy landscape

A set of light scalar fields with degenerate vacua

can break the degeneracy

Extra scanning of the cc is triggered by the weak scale 

 the other vacuum disappears

hyperfine splitting of the scanning

and it doesn’t help to reduce the cc



smaller vacuum energies possible. If hOTi is too big, the
symmetry is broken so badly that only one vacuum remains
for each ϕi, and there is again no way to find small vacuum
energy. The only way to find small vacuum energy is to tune
Higgs vacuum expectation values so that μΔT

S < hOTi <
μΔT
B . Thus using the weak scale as a trigger allows us to tie

solutions to the cosmological constant and hierarchy
problems.
Our low-energy effective theory, contains in addition to

the SM or the type-0 2HDM, an “IR landscape” consisting
of nϕ scalars ϕi. In first approximation the scalars are
uncoupled, and each have a Z2 discrete symmetry,
described by the potential:

VNϕ ¼
Xnϕ

i¼1

ϵ2i
4
ðϕ2

i −M2
#;iÞ2: ð20Þ

In absence of new symmetries or dynamics below M#, we
take the ϕi vevs M#;i to be the fundamental scale of the
theory OðM#Þ. ϵi is an order parameter that quantifies the
breaking of the shift symmetry on ϕi, such that mϕi

∼
ϵiM#;i ≪ M# is technically natural. We assume that the
cosmological constant and the Higgs mass(es) squared are
scanned uniformly in a “UV landscape”, which has NUV
vacua, with NUV too small to find a vacuum with small
enough CC. The smallest CC in the UV landscape is
≃M4

#=NUV. In vacua where Higgs mass(es) squared are∼v2
the minimal CC is larger and we call this value of the
CC Λ#.
We now imagine that each of the ϕi also couples to our

weak scale trigger operator OT,

VNϕT ¼
Xnϕ

i¼1

κiϵiM
3−ΔT
#;iffiffiffiffiffinϕ

p ϕiOT þ H:c: ð21Þ

Here κi parametrizes an additional weak coupling, breaking
the ðZ2Þnϕ symmetry down to a single diagonal Z2. Note
that gravity loops also couple the different sectors, but the
coupling to gravity does not break the ðZ2Þnϕ discrete
symmetry that we have when κ → 0, (and, at any rate,
induces parametrically minuscule cross-quartics of order
ϵ2i ϵ

2
jϕ

2
iϕ

2
j ). The structure of our IR landscape is depicted in

Fig. 6 while their role in scanning the CC is sketched in
Fig. 7. The interaction in Eq. (21) makes the number of
minima in the landscape sensitive to the value of hOTi. If4

hOTi≳ ϵ
κ

ffiffiffiffiffi
nϕ

p
MΔT

# ≡ μΔT
B ; ð22Þ

some minima are lost, as shown in Fig. 6, which makes it
impossible for the CC to have the observed value.

If hOTi is too small,

hOTi ≲
ffiffiffiffiffinϕ

p

ϵκ
Λ#
M4

#
MΔT

# ≡ μΔT
S ; ð23Þ

the degeneracy between the minima of Eq. (20) is not lifted
enough to scan the CC down to ðmeVÞ4. This defines the
two scales μS and μB. To see how these two opposite
pressures on the vev of hOTi select the weak scale we need
to specify the field content of OT . In the two following
sections we discuss OT ¼ GG̃ and OT ¼ H1H2.

A. SM trigger of the landscape

The simplest triggerOT is already present in the SM. It is
given by the familiar GG̃ operator introduced in Sec. II that
we now couple to the nϕ scalars in the low energy
landscape,

VNϕG ¼ 1

32π2
Xnϕ

i¼1

"
ϕi

fi
þ θ

#
GG̃;

GG̃≡ ϵμνρσ
X

a

Ga
μνGa

ρσ: ð24Þ

Here we only briefly discuss how to use this trigger in the
context of our landscapes. We give more details in the next
section for the H1H2 trigger.

FIG. 6. The landscape contains a UV sector and an IR sector (in
this figure). The high energy sector is generated by fields of mass
close to the cutoff mΦ ∼M# and does not have enough vacua to
scan the CC down to Λobs ≃meV4, but can scan the Higgs mass
(es) m2

H down to the weak scale. The low energy sector is
generated by fields of mass mϕ ∼ v2=M# and has a number of
nondegenerate minima dependent on the Higgs vev. When hhi ≃
v we can scan the CC down to its observed value.

4For simplicity we have dropped the subscript i, assuming that
all ϵi, κi, and M#;i are close to a common value.
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In the notation of the previous section we have

OT ¼ GG̃;
1

fi
¼ 32π2κiϵiffiffiffiffiffinϕ

p M";i
: ð25Þ

We imagine that one of the usual mechanisms solves the
strongCP problem, leaving at low energy a residual θ angle

smaller than 10−10. We also impose hϕii=fi ≲ 10−10=nϕ to
avoid reintroducing the problem. To study the effect of
VNϕG in Eq. (24) we can move ϕi into the quark mass
matrix with an anomalous chiral rotation and use chiral
perturbation theory to get

VNϕG ≃

8
<

:

f2πðhhiÞm2
πðhhiÞ

"P
i
ϕi
fi
þ θ

#
2 þ & & & ; hhi ≲ ΛQCDðhhiÞ

yu
;

Λ4
QCDðhhiÞ

"P
i
ϕi
fi
þ θ

#
2 þ & & & ; hhi≳ ΛQCDðhhiÞ

yu
:

ð26Þ

In the previous equation we have introduced ΛQCDðv"Þ,
which is the chiral condensate with quark masses propor-
tional to the vev v". Similarly f2πðv"Þ and m2

πðv"Þ are the
values of these parameters with EW symmetry breaking at
the scale v". Note that the dependence on v" saturates when
ΛQCDðv"Þ ≥ v" and QCD itself becomes the main source of
EW symmetry breaking.
The potential in Eq. (26) makes the number of minima in

the landscape sensitive to the value of the Higgs vev hhi.
When hhi is too large some minima are lost, when it is too
small the minima of Eq. (20) remain almost degenerate. To
see why minima are lost when hhi is large consider the limit
Λ4
QCD M"=f ≫ ϵ2M4

", where Eq. (26) dominates over the
potential in (20). Then at the minimum Eq. (26) is

effectively fixing
P

iðϕi=fiÞ ¼ −θ. We can implement
this condition as a Lagrange multiplier

L ¼ λ

$X

i

ϕi

fi
þ θ

%
− VNϕ: ð27Þ

From the point of view of this Lagrangian fixingP
iðϕi=fiÞ ¼ −θ corresponds to λ=fi ≫ ∂VNϕ=∂ϕi, so

when we try to solve the cubic equation

fi
∂VNϕ

∂ϕi
¼ fiϵ2iϕiðϕ2

i −M2
";iÞ ¼ λ; ð28Þ

we are guaranteed to find at most one solution. This would
be true also if VNϕ was a periodic potential. This discussion

FIG. 7. Values of the Cosmological Constant in our two-sectors landscape. When hOTi ¼ 0 the UV landscape does not have enough
minima to scan the CC from M4

" down to Λobs ≃meV4. The minimal value of the CC in the landscape is M4
"=NUV ≫ meV4. When

hOTi ≠ 0 the degeneracy in the vacua of the low energy landscape in Fig. 6 is broken and if μΔT
S ≲ hOTi≲ μΔT

B we can harness the full
potential of its 2nϕ vacua and scan the CC down to meV4. If hOTi ≫ μΔT

B the low energy landscape loses all its minima but one and the
minimal CC in the landscape is again M4

"=NUV ≫ meV4.
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to prevent IR scan from V_loop

splitting by the trigger

CC from UV scan

splitting should be larger than the CC from UV scan



Weak scale as a trigger

as a function of 

cosmological 

constant

weak

scale

small

cosmological 


constant



Quadratic vs Logarithmic distribution

m2
h ⇠ M2

UV m2
h ⇠ v2

Quadratically more likely for large mass in general

µ2 = v1v2

v1 ⇠ v2 ⇠ v v1 ⌧ v2and are equally probable

M2
UV

v2
≫ 1fine tuning: 

fine tuning: | log
ΛH

ΛQCD
| ∼ 1



A possibility of entirely different universe

Fermion mass smaller at least by

The cc should be smaller by for atoms to form

weak scale

cc

condition for IR scan



To scan the CC to its observed value, we need the splittings
in the IR landscape to be larger than ΔΛUV. Then we must
have

κ2μ2μ2B ≫
M4

!
NUV

μ2ΛH

Λ3
QCD

; ð45Þ

which gives a lower bound on μ2B,

μ2B ≫
1

NUVκ2
M4

!ΛH

Λ3
QCD

: ð46Þ

If this happens we can also find small CC vacua in this part
of the landscape. But note that we can never find a vacuum
that looks like our world here. While the W/Z bosons are
massive, near the cutoff ΛH, the fermions are massless in
the effective field theory beneath ΛH. If we integrate out
H2, the 4 fermi operators ðqqcÞðeecÞ=m2

2 are generated and
leptons also get minuscule masses ∼Λ3

QCD=m
2
2 ∼ μ2=ΛH

after chiral symmetry breaking. But if we suppose the
parameters of the model are such as to have μ2 ≲ μ2B ≲ v2,
the lepton masses are suppressed by at least by a factor of
v=ΛH compared to our world. In this situation for atoms to
form, the temperature of the Universe must drop by a factor
of v=ΛH further relative to our Universe, meaning that the
CC must be further smaller by a factor of ð v

ΛH
Þ4 before

atoms can form. It could easily be that NIR ¼ 2nϕ is not
large enough to realize this possibility. Thus while finding
vacua with tiny CC suppressed by 1=NIR ¼ 2−nϕ is possible
with m2

1 ∼ −Λ2
H, forcing m2

2 > 0 to be tuned small, these
worlds look nothing like ours. It is only possible to get a
world that looks like ours with m2

1 < 0 and m2
2 < 0. As we

have seen in our discussion of the phenomenology of this
model, since the weak scale is set by the largest of the
Higgs VEVs, this forces the existence of new light charged
and neutral Higgs states which we cannot decouple or
tune away.

V. ULTRALIGHT DARK MATTER FROM WEAK
SCALE TRIGGERS

In this section we describe a very interesting feature of
our low energy landscape: it provides new dark matter
(DM) candidates whose relic abundance is rather insensi-
tive to the high energy history of our Universe and it is only
determined by the DM mass and its coupling to the SM.
Take H1H2 as a trigger. At the time of the electroweak

phase transition (EWPT), hH1H2i turns on, displacing the
new scalars by an amount Δϕ ¼ OðM!Þ. The correspond-
ing energy density ρϕ ∼m2

ϕM
2
! ∼ κ2v4 depends only on the

ϕ’s coupling to the SM κ. So to a first approximation the
relic density today depends only on κ and the scalar mass
mϕ. This is reminiscent of weakly interacting massive
particles (WIMPs), whose abundance is uniquely deter-
mined by their coupling to the SM and their mass. In the
case of WIMPs initial conditions are washed out by
electroweak interactions with the SM bath, in our case
by the EWPT displacement triggered byH1H2. WIMPs are
insensitive to initial conditions if the Universe is reheated
not too far below the dark matter mass, while in our case we
need the initial SM temperature to be above that of the
EWPT. The above statements can be made more explicit by
computing the relic density of the scalars from their
classical equation of motion

ϕ̈þ 3H _ϕþ
∂VNϕ

∂ϕ þ κϵM!ffiffiffiffiffinϕ
p hH1H2iT ¼ 0: ð47Þ

At temperatures T ≫ v we have hH1H2iT ¼ 0, so
initially we can neglect the last term in the equation.
After the EWPT, the interaction with the Higgs only gives a
constant shift to the scalar potential. Therefore the only
effect of the coupling to the Higgs is to give a kick Δϕ ¼
OðM!Þ to the new scalars at T ≃ v.
The second and third terms in the equation determine

when the new scalars start to oscillate, transitioning from
dark energy to dark matter. Since the quartic and trilinear
coupling of ϕ are largely subdominant at the scale of the
mass we have ∂VNϕ=∂ϕ ≃m2

ϕϕ. So the evolution of ϕ is
determined by the value of mϕ in units of Hubble. We
imagine that the ϕ potential in Eq. (20) has its zero-
temperature form throughout the history of the Universe,
i.e., the sector generating this potential has dynamics above
its reheating temperature to avoid domain-wall problems.
Then mϕ is temperature independent in our analysis. There
are two relevant regimes for mϕ. It can be larger or smaller
than Hubble at the electroweak phase transition, HðvÞ.
There are also two natural possibilities for the initial (i.e.,
T ≫ v) displacement of the scalars from their minimum,
either Δϕ ∼M! or Δϕ < M!. We start by considering the
casemϕ < HðvÞ. The scalars are frozen in place by Hubble
friction until after the EWPT. When the phase transition
happens, the scalar potential is shifted by the Higgs vev,

FIG. 8. The smallest CC in the landscape as a function of
μ2 ≡ hH1H2i. In the light blue area the CC is smaller than its
observed value, while for μ2 > μ2B or μS < μ2S it is much larger,
M4

!=NUV ≫ meV4.
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I. Type 0 2HDM

The weak scale as a trigger



B. Experimental constraints

In this section we discuss current constraints and future
probes of the new Higgs doublet, which are summarized in
Figs. 1 and 5. The parameter λ345 is central to our discussion.
It determines the maximum viable mH from Eq. (13) and it
sets H couplings to SM fermions and bosons in Eq. (16).
Lower bounds on m2

H! ∼ −ðλ4 þ λ5Þv2 and mA ¼ −λ5v2
determine a natural lower bound on λ345 ¼ λ3 þ λ4 þ λ5. In
each panel of Figs. 1 and 5 we take λ345 proportional tom2

H! .
This explains the nontrivial dependence of H phenomenol-
ogy on mH! in Fig. 1. In Fig. 5 we consider three different
scenarios: λ345 ¼ ð0.01; 0.1; 1Þð2m2

H!=v2Þ, corresponding
to three levels of tuning: 1%; 10%, and no tuning. Tuning
λ345 small decreasesH couplings to fermions. This typically

increases the allowed parameter space as shown in Fig. 5, but
does not allow todecoupleH and can lead toH → γγ become
the dominant decay channel.
There are areas of our parameter space that are theoretically

inaccessible. These are shown ingray inFigs. 1 and5.At large
mH and λ345 there is no real solution for λ1;2 that gives the
observed SM Higgs mass. This happens when the argument
of the square root in Eq. (13) becomes negative. The second
set of theoretical constraints arises from running of the
quartics. At large mH and small v1, λ1 becomes large and
one can get low energy Landau poles from dλ1=dt≃
ð3=4π2Þλ21. A similar situation occurs from the running of
λ4;5 when mA and/or mH! become large, as shown in Fig. 1.
The remaining constraints in Figs. 1 and 5 are discussed in the
next two subsections, starting with direct searches.

FIG. 5. Experimental constraints on the CP-even HiggsH formH! ¼ mA and different values of λ345. From top to bottom we increase
mH! . From left to right we move from 1% tuning (λ345 ¼ 0.01jλ4 þ λ5j) to natural values of the quartics (λ345 ¼ jλ4 þ λ5j). In red we
show the bound from eþe− → Z → AH at LEP [3] and in yellow fromHZ associated production [3] followed by decays to fermions. In
light blue we display the current sensitivity ofH → γγ at LEP and the LHC [20–22] and a projection for the HL-LHC obtained rescaling
[22]. In light green we show bounds from searches for B → Kð&ÞH → Kð&Þμμ at LHCb [23,24]. Indirect constraints from Higgs coupling
measurements (purple and blue) are discussed in Sec. III B 2. The pink shaded area shows the strongest bound point-by-point between
searches for flavor changing processes, mainly b → sγ [7,8], and LHC searches for t → Hþb [9–12]. Theoretical constraints (in gray)
from low energy Landau poles and the SM Higgs mass are summarized at the beginning of Sec. III B.
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Domain wall from Z2 symmetry of H1

spontaneous breaking of Z2 from phi misalignment

Domain wall energy density starts to dominate at 

biased potential annihilates domain walls

No domain wall problem for



Scalar dark matter from the 
electroweak phase transition

Misalignment of the light scalar provides a dark 
matter

The last term provides a kick to the light scalar at EWPT

The relic density is determined from EWPT



Light Scalar Dark Matter

Astrophysical constraints on 
fuzzy dark matter

generating a displacement of OðM"Þ. Therefore, regardless
of the initial misalignment, the new scalars start to oscillate
and redshift as cold dark matter with Δϕ ∼OðM"Þ when
mϕ ≃H. In this case initial conditions change the relic
density at most at Oð1Þ.
In the second case, mϕ > HðvÞ, the scalars start to

oscillate before the EWPT. Their initial energy density
starts to redshift at T > v and when T ≃ v it is already
smaller than m2

ϕM
2
". Therefore the kick imparted by the

EWPT is responsible for the dominant contribution to the
energy density.
Solving Eq. (47) we obtain that the right relic density is

given by

κ ∼
m3=4

ϕ M1=4
Pl

v
; HðvÞ > mϕ

κ ∼
ffiffiffiffiffiffiffiffi
v

MPl

r
; HðvÞ ≤ mϕ: ð48Þ

To highlight the parametrics we have used the rough
approximation Teq ∼ v2=MPl for the temperature of matter
radiation equality. We do not use this approximation in
figures and when quoting numerical results. Given that κ
determines the coupling of the new scalars to the SM, we
have a target for ultralight dark matter and fifth force
searches, shown in Fig. 9. In this section for simplicity we
neglect the Oð1Þ difference between v2 and v1v2. We also
take λ345 ≪ λ2 so that at leading order in v1=v we can
neglect Oð1Þ factors introduced in Fig. 9 by the mixing of
the two Higgses. The viable ranges for the dark matter mass
and dark matter coupling are

10−22 eV≲mϕ ≲ keV 10−19 ≲ κ ≲ 10−5: ð49Þ

The upper bound on the dark matter mass is determined by
not lowering the cutoff M" below 10 TeV. Note that even
at the upper end of this range mϕ ≃ keV the lifetime of the
scalars is about 1020 times the age of the Universe. The
lower bound is determined by astrophysical measurements
of small scale structure. The precise lower bound on the
DM mass is still the subject of active research, see for
instance [135–141].
We have obtained our previous results neglecting ϕ3 and

ϕ4 terms in the potential. These anharmonic terms are too
small to have a measurable impact on structure formation.
One conservative way to see this is to show that the effective
Jeans length that they induce [158,159] is smaller than the
typical size of a galaxy (∼Mpc) at all times between today
and matter radiation equality. This is satisfied in all our
DM parameter space. Imposing the same requirement
on the Jeans length induced by the ϕ mass: LJðmϕÞ ∼
ðM2

Pl=ρϕmϕÞ1=2 leads to mϕ ≳ 6 × 10−21 eV. This is con-
sistent with observational bounds on the lightest viable DM
mass and comparable to our theoretical lower bound in
Eq. (49). As mentioned above, establishing a precise lower
bound on the DM mass is still the subject of active research
and goes beyond the scope of this work.
In Fig. 9 we also show laboratory and astrophysical

constraints on ϕ DM. They include tests of the equivalence
principle [142–145], tests of the Newtonian and Casimir
potentials (5th force) [146–154], stellar cooling [155], and
black hole super-radiance [156,157]. Fifth force and equiv-
alence principle constraints were translated on bounds on the
trilinear coupling of a scalar coupled to the Higgs boson in
[160,161]. The bound from super-radiance is cut off by the
quartic ϵ2 that at fixed mϕ and κ scales as ϵ2 ∼m4

ϕ=ðv4κ2Þ.
Future laboratory probes of our scalars include torsion

balance experiments [160], atom interferometry [162],
optical/optical clock comparisons and nuclear/optical clock
comparisons [159], and resonant mass detectors (DUAL
and SiDUAL [163]). We do not show them in the figure
because they areOð15Þ orders of magnitude away from the
ϕ dark matter line.
In addition to the laboratory and astrophysical constraints

shown in the figure, Planck’s measurement of the power
spectrum of isocurvature perturbations [164] sets a mild
constraint on Hubble during inflation Hk ≲ 10−5N2 M"×
ðΩc=ΩϕÞ≲ 1018 GeVðΩc=ΩϕÞ. The subscript k means that
Hubble is evaluated when the perturbation leaves the horizon
k ¼ aH and is subsequently frozen. In quoting the bound
we have used the most constraining scale measured by
Planck k0 ¼ 0.002 Mpc−1 and assumed isocurvature per-
turbations that are completely uncorrelated with curvature
perturbations.
As we noted at the end of Sec. II we need to break the

H1 → −H1 symmetry to avoid a domain wall problem.

FIG. 9. Laboratory and astrophysical constraints on scalars
coupled to the Higgs boson via the trilinear interaction
κmϕ

Pnϕ
i¼1 ϕijHj2= ffiffiffiffiffinϕ

p [we neglect unimportant Oð1Þ factors
introduced by the mixing of the two Higgses]. The bounds
include tests of the equivalence principle [142–145], tests of the
Newtonian and Casimir potentials (5th force) [146–154], stellar
cooling [155], and black hole super-radiance [156,157]. The pink
solid line shows the target given by the scalars being dark matter.
We shaded in gray the region where κ > 1 (i.e., ΛH ≲ TeV).
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Summary
The smallness of the cc and the observed weak scale 
might have a tight connection in the landscape

In the friendly landscape in which only the dimensionful 
parameters scan, the big landscape the cc scan might be sparse

Electroweak symmetry breaking might break the degeneracy of 
light scalar vacua and can further scan the cc down to small one

For the mechanism to work, (type 0) 2HDM is predicted and 

we would expect to discover additional Higgs bosons at the LHC

Lots of light scalars can provide an excellent candidate of 
dark matter from their coherent oscillations 

(misalignment is made at the electroweak phase transition)



Thank you!



Trigger: Good or Bad

Tadpole for Triggeron is problematic 

when Triggeron is not charged under the symmetry

is absent or suppressed if Triggeron is charged under the 
symmetry which is unbroken or approximately preserved

(Discrete PQ symmetry for 2HDM with tiny Bmu is the case)

Therefore it is natural to ask if we can use 

B and/or L violating operators as a trigger

B and/or L is an accidental symmetry in the Standard Model 
which is explicitly broken by higher dim. operators



Trigger: Good or Bad

Mixed bilinears for Triggerons are generated at one loop

and scan the cc independently of the weak scale

If the trigger has a coupling with a positive mass dimension,

the induced bilinears can be logarithmically divergent

The dimension of the triggering operator should be 2

Again 2HDM H1H2 was the example

There is no operator which is a gauge singlet and can carry 
nontrivial charge under the discrete symmetry in the SM



Baryon number violation

Baryon (lepton) number is an accidentally preserved

B and L are accidental symmetries of the Standard Model

@µJ
µ
B =

1

32⇡2
(g22W

aW̃ a + g21BB̃)

and the same for Lepton number

B-L is anomalous free

B+L is anomalous



B+L violation and SU(2) instantons2.1 SU(2) x U(1) sphaleron S

But how does S fit in configuration space?
A simple sketch is as follows (more details later):

0-1 1

ESPHALERON

POT

N

E

CS

Figure 1: Potential energy over a slice of configuration space.

Side remark: small oscillations near NCS = 0 (or any other integer)
correspond to the SM elementary particlesW , Z, γ, etc.

Physics Colloquium – SNU, October 14, 2015 (v3) – p. 12

For the change of the Chern-Simons number,

�(B � L) = 0

�(B + L) = 2Ng�NCS

NCS =
g2

32⇡2

Z
d4xW a

µ⌫W̃
aµ⌫



Baryon and lepton number violating operators

QQQL

B+L violating operators (dim 6)

ucucdcec

QLuc†dc† QQuc†ec†

SU(2) instantons emit the zero modes of SU(2) doublets

QQQL is the operator which only contains the doublets



⇠�WW̃

with B and/or L violating operators



SU(2)

Instanton

QQ Q
1st generation

2nd generation

3rd generation
L1

L2

L3

SU(2) instanton has 9Q and 3L zero modes



SU(2)

Instanton

SU(2) instanton has 9Q and 3L zero modes

QQQL can close the loop for the zero modes



SU(2)

Instanton

SU(2) instanton has 9Q and 3L zero modes

QQQL

QQQL

QQQL

The generated potential does not have

the weak scale dependence



✏abc✏
IJQa

IiQ
b
Jj✏

KLQc
KkLLl

The structure of color SU(3), weak SU(2)

and generation index

Lorentz spinor index is omitted

SU(3) color : a,b,c = 1,2,3

SU(2) weak : I,J & K,L = 1,2

generation index : i,j,k,l=1,2,3

Fermions should be antisymmetric under the exchange

i and j should be different for the operator to exist



SU(2)

Instanton

SU(2) instanton has 9Q and 3L zero modes

�1Q1Q2Q1L1H1H2

�2Q2Q3Q2L2

�3Q3Q1Q3L3

�3

�2

�1v1v2

Q2 and H1H2 are odd under Z2 symmetry

higher dim. (8 and 6) operators:

suppressed by M*^4 and M*^2



SU(2)

Instanton

Small instanton contribution to Triggeron

�1Q1Q2Q1L1H1H2

�2Q2Q3Q2L2

�3Q3Q1Q3L3

�3

�2

�1v1v2

V ⇠
Z ⇢large

⇢small

d⇢
0

⇢05
e
�Seff (

1

⇢
0 )F cos(⇠�+ �)

can be dominated by small instantons 

if SU(2) couplingis strong in the UV



Small instanton contribution to Triggeron

V ⇠
Z ⇢large

⇢small

d⇢
0

⇢05
e
�Seff (

1

⇢
0 )F cos(⇠�+ �)

can be dominated by small instantons 

if SU(2) coupling is strong in the UV

V ⇠ �1�2�3F
0
e
� 2⇡

↵2(M⇤)M
2
⇤H1H2

F’ contains the loop suppresion factor

�
⇠

M⇤
�

V = ✏M⇤�H1H2 is generated



Galactic Principle

�⇢

⇢
starts to grow linearly (a) after matter radiation equality

The cc should be smaller than the energy density

at the moment of order one density perturbation

⇤  ⇢eq(
�⇢

⇢
)3

⇤  (1 eV)4(10�4)3 = (10�3 eV)4



Galactic Principle

�⇢

⇢
starts to grow linearly (a) after matter radiation equality

The cc should be smaller than the energy density

at the moment of order one density perturbation

⇤  ⇢eq(
�⇢

⇢
)3

�vn = H
↵2

m2
DM

T 3 =
T 2

MPl

Teq =
↵2MPl

m2
DM

⇢eq = (
m2

DM

↵2MPl
)4

⇤1/4  �3/4

↵2

m2
DM

MPl



Galactic Principle

⇤1/4  �3/4

↵2

m2
DM

MPl

DM mass is at around the weak scale,

the observed cc can be explained

However, heavier DM mass allows large cc

Special argument for m_DM ~ v0 is needed

Galaxy rather than DM halo needs an atom

Is EW symmetry broken by H or QCD?



Galactic Principle

⇤1/4  �3/4

↵2

m2
DM

MPl

Is EW symmetry broken by H or QCD?

If mh^2 > 0, EW symmetry is broken by QCD

Sphaleron process is active and converts 

all the baryons to the leptons: 


no (or suppressed) B asymmetry

Electron mass is extremely light:

suppressed by (QCD/mh)^3 10�9

⇤1/4  Trec = ↵2me = 10�10 eV



Atomic Principle

mn �mp = (3
v

v0
� 1.7) MeV

mn = 7
v

v0
MeV

mp = 4
v

v0
MeV

me = 0.5
v

v0
MeV electromagnetic correction

⇤QCD / v⇣ 0.25  ⇣  0.3

�2  log
v

v0
 4



Atomic Principle

mn �mp = (3
v
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Inert atom

(no chemical/nuclear reaction)
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Atomic Principle
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Large v (~5v_0) : Nuclei involving n are unstable (only H)

Small v (~0.2v_0) : p decays to n (no atom)



Backup



Basics of Type 0 
2HDM

CP odd Higgs A : PQ Goldstone boson

CP even neutral Higgs h and H :

SM-like 

H lighter than h

charged Higgs



Basics of Type 0 
2HDM

Fermion couplings of H 

have double suppression

Fermio-phobic H



Basics of Type 0 
2HDM

Gauge phobic H



Basics of Type 0 
2HDM

independent of 



Basics of Type 0 
2HDM

CP even Higgs H is predicted to be lighter 
than h

Charged Higgs and CP odd Higgs are lighter than 
200 GeV

UV cutoff from Landau pole



The scale of Landau pole depending on the 
couplings



Scalar dark matter from the 
electroweak phase transition

Misalignment of the light scalar provides a dark 
matter

Misalignment of the light scalar provides a dark matter
1. There is a misalignment of the light scalar after inflation

2. When                            , the scalar starts the oscillation

3. Electroweak phase transition also gives a misalignment



Scalar dark matter from the 
electroweak phase transition

Misalignment of the light scalar provides a dark 
matter

The last term provides a kick to the light scalar at EWPT

The relic density is determined from EWPT



A kick to the light scalar at EWPT

When we are close to the upper bound on mu,







Sketch for the relic abundance
of light scalar dark matter

At the EWPT, the amount of the misaligned energy denstiy :

current dark matter density :

EWPT to matter radiation equality :

scalar oscillation :

radiation :



Sketch for the relic abundance
of light scalar dark matter


