

Other Lab and Facilities R&D Projects - BNL

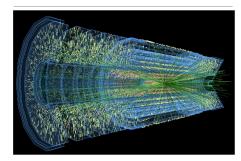
Eric Lancon, Doug Benjamin, Vincent Garonne, Chris Hollowell, Qiulan Huang, Jerome Lauret, Tejas Rao, Ofer Rind, Alex Zaytsev Nov 7, 2022

A Coordinated Ecosystem for HL-LHC Computing R&D (7-9 Nov 2022) https://indico.cern.ch/event/1203733/

@BrookhavenLab

Challenges for Efficient Facility Operation into HL-LHC Era

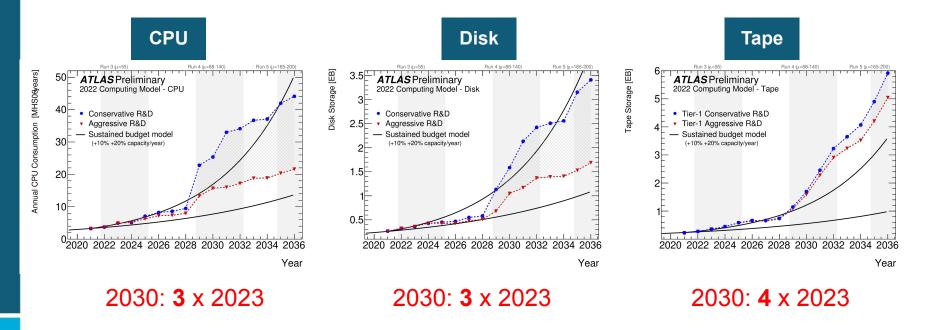
- Managing anticipated hardware volume for HL-LHC is going to be challenging for facilities, in particular (disk) storage
- HEP solutions fall behind current trends and may come with additional costs in a multi-program environment (ex: Python ecosystem not widely adopted, Grid technology, etc...)
- Requirements for Federated Identity and compliance with cyber regulations may be challenging



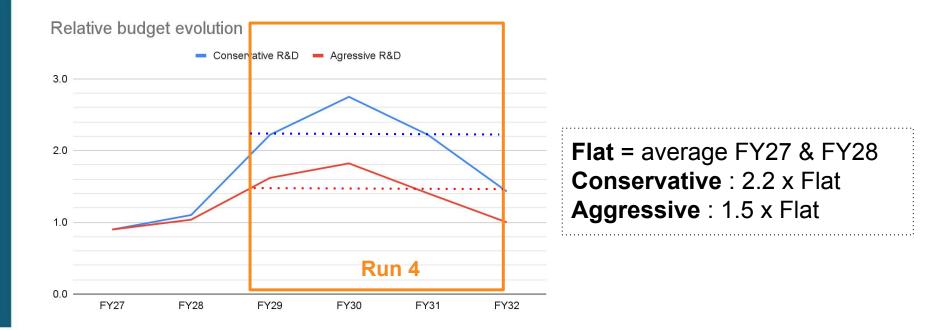
Hardware volume and budget

- Budget exercise for US ATLAS Tier-1 into the HL-LHC era
 - Internal costing model applied to ATLAS hardware forecast
 - Costing model provides qualitative budgetary assessments into Run4, derived from hardware requirements
 - Not-surprisingly, costs at Tier-1 facility driven by storage

ATLAS Software and Computing HL-LHC Roadmap

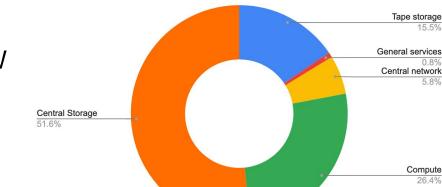

Reference:

Created: 1 October 2021 Last Modified: 22 February 2022 Prepared by: The ATLAS Collaboration


© 2022 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Hardware volume profile into HL-LHC era

Budget profile



Storage is the most costly resource

How to reduce budget requirement for (disk) storage?

- **Store less** (requirement is 3x RAW data volume)
 - Address évent size (content and improved compression)
 - Versioning, Ο
 - Replication policies. Ο
- Store differently

 Use of different storage technologies tailored for each usage,
 Currently one class of storage for all types of data and usages

Run 4 - Agressive R&D

Extreme Compression for Large Scale Data Store

Jérôme Lauret^{1*}, Juan Gonzalez², Gene Van Buren¹, Rafael Nuñez², Philippe Canal³ and Axel Naumann⁴

Compute

Store differently

- Current disk storage:
 - Filled with warm/cold data
 - All data types are treated the same, even if they have very different values (DAOD have much higher value than logs, Experimental Data has more value than Simulation, ...)
 - All data types are expected to be available immediately everywhere
 - Designed for IO while most applications are not IO limited or critical
 - Not even optimized for IO intensive applications like interactive analysis
- More optimal foundation for supporting HL-LHC activities would be:
 - Bulk storage : Object store (better scaling, operational benefits, globally accessible, ...)
 - IO intensive: dedicated POSIX storage high IOPS design
 - Archive/Cold storage: backup/frozen data
 - And a tiered storage solution to effectively leverage storage "classes"

Storage matching workflows

- Different workflows have different storage requirements
 - Production workflows typically spend more time on processing than IO operations
 - Capacity is a more important criteria than IOPS
 - Entire events are read into memory and processed. The IO access pattern is different from user analysis workflows
 - User analysis workflows tend to require more IOPS
 - The IO access pattern is different from reconstruction or simulation. Users use only part of the event record and more random access pattern.
 - IOPS instead of Bulk capacity is the most important optimization criteria.
- Columnar Analysis workflows should benefit from High IOPS flash storage (SSD/nvme)
- New storage architectures <-> new access methods

Takeaway

- One type of storage for all is not optimal and likely will not scale into the HL-LHC era (3 x today's disk space)
- Operational costs need to be considered as well... not done today.

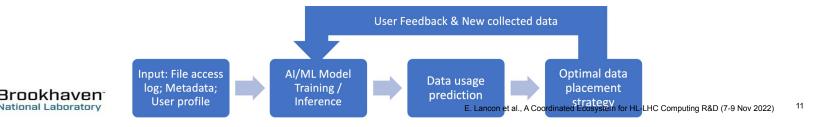
Object Storage at SDCC

- EIC, CFN & NSLS II using Object storage and accessing it via S3 using MinIO.
 - 5 PB of usable storage allocated.
 - Millions of objects. Size varying from few bytes to GBs.
- Advantages of Object storage
 - Massive scalability Can scale to 100's of billions of files.
 - Reduced cost compared to traditional RAID filesystems.
 - Can be accessed from everywhere i.e. Ease of sharing of data, high data security using Federated access to storage.
 - Loose coupling of clients.
- Disadvantages -
 - IO interface is the primary drawback.
 - IO throughput performance lower compared to traditional filesystems like GPFS/Lustre.
 - Data reorganization may be needed but modifying data is tedious,

NP: EIC Program Development NSLS II, CFN

STORAGE TYPES BLOCK FILE OBJECT STORAGE STORAGE STORAGE FC or iSCSI TCP/IP TCP/IP **Direct Attached** NTERFACE NFS. SMB HTTP, REST or SAN Low Latency Good Performance **Easy Scaling with No Limits** USE CASE File Sharing, Global File Locking Accessible across LAN & WAN **Best for Structured Data**

Storage Usage Effectiveness


LDRD 2022-2024: Qiulan Huang (PI, SDCC), V. Garonne (SDCC), Al Kagawa (CSI), Xin Dai (CSI)

Motivation

- In the current multi-tier storage "class" system at the Data Center:
 - Unused data is stored on expensive storage
 - Fast IO storage is not currently used

Goals

- Design an efficient monitoring platform
- Develop an optimal data management system for the data center to maximize usable space while minimizing access latency, within budget, hardware, and compliance constraints
 - Heavy use of storage, metadata and data popularity information
 - Detect early failures and pathological usage pattern
 - Develop a precise AI/ML prediction model to possibly forecast the future usage of the data
 - Orchestration of data for optimal movement and placement

The new ecosystem – and user tools

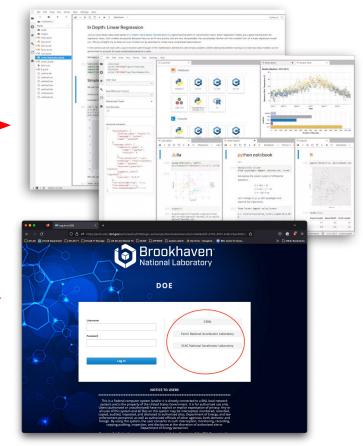
• Jupyter / Python

- Jupyter initially deployed at BNL for non-LHC projects
- Light source, Belle II, 'long tail' of science

Containers

- Non-LHC projects are the drivers
- For HEP/NP: Reana, ServiceX deployed at BNL

Federated Identity


- A requirement today
- BNL's Jupyter instance accessible with non-BNL credentials (exception to DOE 0142.3B)

Evolution of User Analysis Tools

- Pythonic Big Data tools being used increasingly at Data centers
 - JupyterLab allows users to access compute resources from within a web browser, instead of via traditional ssh command line interface (CLI)
- Federated ID Jupyter Hub at SDCC
 - Allows ATLAS users to use their CERN/FNAL/SLAC credentials as well as local credentials
- Our users can access storage and compute farm through this mechanism.
 - Leverage tools developed and maintained by a larger community outside of HEP

US ATLAS, NP, Belle II, NSLS II...

New ecosystem at SDCC

• REANA

- Work with CVMFS
- Users can interface and submit container jobs to SLURM on the SDCC IC cluster
- Successfully ported REANA to OKD required numerous changes to REANA service containers and helm/pod YAML

ServiceX

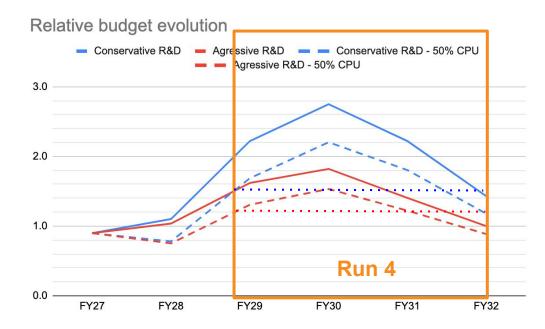
- Deployed an ATLAS XAOD transformer instance in our production OKD cluster,
- Modified helm/POD YAML and containers to function in OKD,
- Successfully used from within our Jupyter deployment by users, including an IRIS-HEP developer

• FuncX

NSLS II evaluation (together with Airflow)

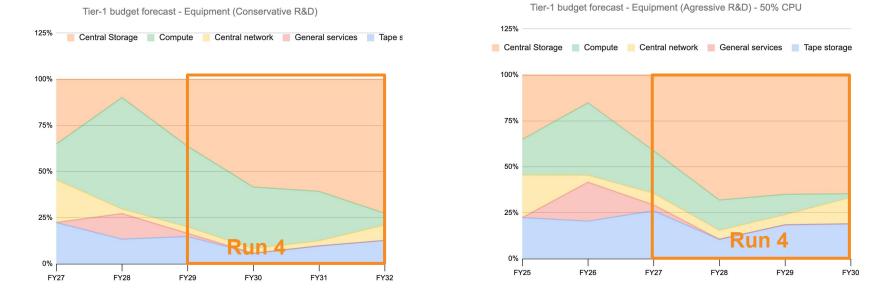
			N	Р			
REANA	× +						
← → ♂ ☆	(i) 🎤 🔒	nttps://kubmaster01.sdcc. bnl.gov :30443/details/43376	0f2-9972-4970-8949-c2b54	🛡 🏠	lify		
rean	a				Help	8	
⊘ rooti Finished 7	6-roofit-test 7 days ago	#1		finished in 1 step 2/2	0 min 33 sec		
Name \$		Modified \$	Size ¢				
result	s/data.root	2020-11-20T22:58:00	154462				
🖺 result	s/plot.png	2020-11-20T23:08:10	15450				
Code/	fitdata.C	2020-11-20T22:57:42	1648				
E code/	condata C	2020-11-20722-57-41	1051				

Copyright © 2020 CERM


Docs D Forum

Summary

- R&D is required to address storage challenges in the HL-LHC era
 - Effort needed for R&D at facilities,
 - R&D must include various actors (storage experts, middleware, analysis design, ...),
 - A co-design concept is required for success.
- LHC is at risk of falling behind on the new user oriented software ecosystems (containers, python, ...)
 - Dedicated LHC solutions may become less effective to maintain,
 - Migration to new ecosystem will be more costly as time goes on,
 - Prototyping, education should be strongly supported.


Offloading 50% of CPU

If software allows offloading 50% for CPU requirement to other facilities (like HPCs)

Conservative - 50% CPU : 1.5 x Flat Aggressive - 50% CPU : 1.2 x Flat

Budget decomposition - 2 extreme scenarios

In all scenarios disk storage is > 50% of the required equipment investment Tape storage can be above 20% depending on performance requirements