Fermilab Software and Computing R&D

Bo Jayatilaka (on behalf of the Computational Science and AI Directorate)
A Coordinated Ecosystem for HL-LHC Computing R&D
7 November 2022
Some disclaimers

• I am speaking on behalf of a large R&D program at Fermilab
 - Spans many areas of software and computing
 - Impossible to do it justice in a 20 minute talk
 - Work presented is done by others; any mistakes in presentation are mine

• Significant overlap with US CMS Ops R&D program in S&C
 - Fermilab is the host lab for US CMS
 - Tried to minimize overlap with Lindsey’s talk this morning

• Presentation format
 - Showing most projects answers for suggested questions by the workshop organizers
Previously, on FNAL S&C R&D… [2019]

Software R&D Strategy

- Evolve the Fermilab facility for future experiment needs using modern computing hardware
 - CMS
 - DUNE
 - Mu2e
 - Other Intensity Frontier experiments
 - Cosmic Frontier
- Support the use of external computing, including both HTC resources and HPC resources, especially Exascale
- Assist the experiments in taking advantage of advances in computing hardware and software

- Topics
 - Artificial Intelligence
 - Evolving Computing Architectures
 - Compute (aka HEPCloud)
 - Storage
 - Networking
 - Analysis Facility Concepts
 - Quantum Computing
 - in support of Lab program
 - not covered here
Fermilab Scientific Software and Computing

• Evolve Fermilab facility for future experiment needs
 - Primarily driven by DUNE and HL-LHC CMS
 - Leverage advances in hardware (particularly heterogeneity)

• Evolve software and tools used by experiments to produce science
 - Leadership in this area: create solutions rather than fix problems
 - Embrace AI in all applicable aspects

• Organizational change: Scientific Computing Division Computational Science and Artificial Intelligence Directorate (CSAID)
 - Three divisions within directorate with core competencies
 • Scientific Computing Systems and Services; Data Science, Simulation, and Learning; Real Time Processing Systems
 • AI office coordinating lab-wide AI activities within CSAID
Artificial Intelligence Strategy

- Develop **AI capabilities to accelerate HEP science** & contribute to overall DOE AI strategy and greater science/industry AI ecosystem
- Build **diverse, inclusive community; assemble multi-disciplinary collaborations** around cross-cutting HEP AI challenges

Strategic pillars

- **Operations and control systems**
- **Algorithms for HEP science**
- **Real-time AI systems at edge**
- **Computing hardware and infrastructure**

- **Physics-inspired data & models**
 Tailor AI to data representations that integrate physics knowledge for simulation and reconstruction
- **Robust & generalizable learning**
 Build robust models that can interpolate/extrapolate; quantify uncertainties and understand anomalies; towards explainable algorithms
- **“Fast” & efficient algorithms**
 ML in resource-constrained environments mapped to heterogeneous hardware
Accelerating ML data processing

- For HL-LHC, computing will be bottleneck - goal to enable more powerful algorithms beyond projections
- Coprocessors (GPUs, FPGAs, ASICs, …) naturally accelerate ML workloads by orders of magnitude
- No way to guarantee access to HW at all grid sites
- Leverage industry hardware and tools - provide coprocessors as-a-service

SONIC:

Services for Optimized Network Inference on Coprocessors

- Scalable, flexible, adaptive, and non-disruptive deployment of coprocessors for HL-LHC
- Explore with on-prem, clouds, HPC and also for analysis facilities for all types of emerging hardware
- Testing now on CMS production workflows for Run 3
- Developed for ProtoDUNE and LIGO as well

Scaling off-site usage to 24 GPUs!
Networking R&D

- FNAL, along with Vanderbilt and Nebraska joining SENSE/Rucio prototype effort with Caltech, UCSD, and ESNet
 - Goal: Use SENSE to open SDN channels for prioritized transfers, provide bandwidth accountability, and bandwidth sharing/prioritization
 - Final goal: manage the WAN connectivity of FNAL for simultaneous use by experiments
- Fits into HL-LHC S&C ecosystem as a crucial element of storage strategy
 - Key for a viable caching infrastructure
- Collaborating with NOTED from CERN and ESNet caches in the network
 - Will be part of next WLCG data challenge in 2024
- USCMS ops funds 1 FTE at FNAL and 1 FTE at Caltech and some effort at Nebraska
 - Offer for hire at FNAL accepted; will start in the Spring
- Missing connections: would be good to build closer ties with LCFs
Storage R&D

- Evolve Fermilab storage R&D infrastructure for needs of the Exabyte era
 - Not experiment specific but heavily based on needs of HL-LHC CMS and DUNE
 - Consider all aspects of existing infrastructure
- Essential component of HL-LHC computing infrastructure for CMS
 - FNAL will continue to be the largest Tier-1 site for CMS during HL-LHC
- Connections with US CMS Ops: Funds ~50% of effort
 - Includes postdoc R&D funding for Object Store exploration
- Missing connections
 - More coordination with WLCG
 - Working with LCFs to understand optimal storage for data delivery to HPCs
Computing Resource Evolution STrategy (CREST)

• Document/plan strategy to evolve FNAL facility for 2029/2030 needs
 - Networking and Storage R&D represent pillars of this effort
 - Facility needs primarily driven by HL-LHC CMS and DUNE
 - Includes strategy for machine rooms, hardware type and cost evolution, services including monitoring and databases, central resources and user-facing resources (analysis facilities, etc.) and much more

• Essential component of HL-LHC computing infrastructure for CMS
 - FNAL will continue to be the largest Tier-1 site for CMS during HL-LHC

• USCMS Ops program funds many areas of R&D for facility evolution
 - Includes Storage R&D, Networking R&D, and HEPCloud
HEP-CCE: Portable Parallelization Strategies (PPS)

• Investigate range of software portability solutions using HEP testbeds
 - HEP-CCE PPS involves Fermilab, ANL, BNL, and LBNL
 - FNAL contribution is ~1.5 FTE
 - Participation includes ATLAS, CMS, and DUNE
• Vital for use of heterogenous architectures/accelerators for HL-LHC compute
• Software projects as use cases in collaboration
 - CMS Heterogeneous Pixel Reconstruction (patatrack) at CERN
 - p2r/p2z which includes effort from mkFit
 - Wire-cell toolkit
 - ATLAS FastCaloSim and ACTS
• Includes collaboration with US CMS Ops supported CMS Core Software experts
HEP-CCE Fine-Grained I/O and Storage (IOS)

• Develop strategies for effective use of storage at HPC sites for HEP experiments
 - Involves effort from FNAL and ANL
 - FNAL contribution is ~1.5 FTE
• Will significantly impact ability to use HPC resources for HL-LHC computing
• Collaborating with
 - ROOT I/O team (one expert)
• Connections to US-LHC operations program
 - Includes effort from CMS framework developers and USCMS Software L2
Detector Simulation using GPUs: Celeritas and Acceleritas

• Developing a full-fidelity detector simulation on GPU
 - Current focus: offloading EM tracks from Geant4 to GPUs
 - Leveraging architectures available at LCFs
 - Current FNAL effort is 1.9FTE
 - Collaborating with ORNL and ANL; partial FNAL funding from SciDAC

• Essential for speeding up simulation workflows for HL-LHC

• Collaborating projects
 - Geant4, VecGeom, Adept simulation GPU R&D (CERN), ADIOS (Exascale computing project), SWIFT-HEP

• Collaborating with US-CMS ops framework and simulation experts

• Missing connections
 - Integration with experiment framework; lack of support currently
Framework R&D LDRD

• Developing framework software that supports user-defined processing levels
 - Experiment agnostic but motivated by DUNE requirements
 - Total effort is ~0.5FTE, funded by LDRD

• Potentially applicable to HL-LHC S&C
 - Rethinks how framework jobs are assembled and executed

• Collaborating with
 - DUNE, ensuring alignment with requirements
 - WireCell: BNL-funded project supporting neutrino physics simulation and reconstruction
 - Will be presented within context of HSF frameworks working group

• Connection to US LHC operations program
 - USCMS ops leaders are aware of effort and have provided feedback
GPU Algorithm R&D

- Develop high-performance GPU-based algorithms for multidimensional numerical integration
 - Supported by FNAL LDRD
 - In collaboration with computer scientists at Old Dominion
- Producing freely available algorithms: can be used by HL-LHC experiments
- Collaborating with
 - DES actively using algorithms in Year 3 galaxy cluster analysis
 - LSST DESC members have expressed interest
- Missing connections
 - More interested users
mkFit

- Parallel track reconstruction for HEP experiments
 - Already used in track building in CMS Run3 w/ 3.5x speedup
 - Being expanded for generic detectors

- Targeting usage as part of HL-LHC reconstruction
 - Being expanded for HL-LHC detector geometry

- Collaborating with UCSD, Cornell, Princeton
 - Support from IRIS-HEP
 - Support from SciDAC4 ran out
 - USCMS Ops is directly supporting effort

- Collaborating with other projects
 - HEP-CCE PPS; using mkFit as benchmark code. Can integrate back into mkFit for GPU execution
Exa.TrkX

• Graph NN (GNN) for tracking and reconstruction in HEP
 - Coordinated by LBNL with primary focus on HL-LHC ATLAS
 - FNAL focus on GNNs for LArTPC detectors (e.g. DUNE)
 - Collaborating with Cincinnati and Northwestern (CS/ASCR)

• Collaborating with other projects working on GNNs
 - e.g. HGCal reconstruction on HL-LHC CMS
 - Experts on other aspects of reconstruction (e.g., HPC workflows and reference dataset definition)
Analysis software tools: coffea

• Single point of entry and incubator for developing effective concepts in columnar analysis
 - Basic array manipulation->high-level physics analysis data transformations
 - Scale out across a wide variety of cluster types and execution engines (i.e. dask)
 - Large user community on CMS, O(100) with multiple published analyses
 - Platform from which to build HL-LHC analysis capable software frameworks

• Collaborating with:
 - Currently: awkward-array, uproot, boost-histogram, fastjet, coffea-casa, EAF
 - Planning: the incarnations of these projects post IRIS-HEP, pytorch, tensorflow, nvidia

• Missing connections
 - Deeper connection and develop road to adoption within ATLAS (started in some capacities, simplified systematics efforts)
 - ML researchers on nested, jagged, structured data

• Ecosystem wishes
 - More widely adopted standards for thin, simple analysis data tiers
 - Adoption of standards for existing compute clusters to run execution engines like dask / parsl
Conclusion

- A wide range of software and computing R&D activities are being undertaken at Fermilab
 - All focus on achieving solutions that enable HEP

- Computing facilities need to evolve before the end of the 2020s
 - Focus on Storage and Networking as core development areas
 - Take advantage of increasing heterogeneity in compute resources

- Software
 - Advance software tools to use range of architectures; reduce time-to-insight
 - Take advantage of AI/ML