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Scientific Achievement
Develop a fine-grained HEP application scheduler that 
matches available resources to application 
requirements.

Significance and Impact
Integrating scheduling from system-level down to 
individual execution threads will increase efficiency of 
hybrid CPU/GPU applications on Exascale HPCs.

Research Details
– Phase 1 (“Raythena”): Use Ray to parallelize “HEP 

event loop” applications as a distributed, load-
balanced task-farm:

• Good scaling up to 27500 cores on NERSC Cori 
– Phase 2: Use HPX and Ray to integrate multi-node 

parallelism with multi-threaded task scheduler.
– Phase 3: Support hybrid applications on heterogeneous 

systems,  matching tasks to resources.

Vertically Integrated Scheduler for 

Heterogeneous Distributed Applications

M. Muskinja, et al., EPJ Web of Conferences 245, 05042 (2020)
B. Stanislaus et al., ACAT 2022 presentation

Raythena

HPX and TBB scheduling  on 1 Perlmutter node

Top: Worker execution state as function of time for a traditional HEP application (left) and 
for Raythena (right). Each worker state is represented by a different color: Worker 
initialization (dark blue), execution (blue), finalization (green), and inactive (white). 
Bottom: Left: weak-scaling throughput of Raythena task-farm. Right: Single-node MT 
performance using HPX and Intel TBB. GPU throughput ~constant as CUDA serializes thread 
execution.

https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_05042/epjconf_chep2020_05042.html
https://www.epj-conferences.org/articles/epjconf/abs/2020/21/epjconf_chep2020_05042/epjconf_chep2020_05042.html
https://indico.cern.ch/event/1106990/contributions/4991224/


Scientific Achievement
cppyy release 2.3.0 supports just-in-time compilation of 
CUDA code through Cling (an interactive C++ interpreter 
based on Clang) from Python.

Significance and Impact
Python and C++ are some of the most used languages in 
scientific research and GPUs are becoming the most 
prevalent compute resource in HPC. Access to CUDA from 
Python through a JIT allows run-time creation of kernels 
customized to the input data at hand. 

Research Details
– C++ template specializations (e.g., from Eigen, Nvidia’s CUTLASS, or 

MatX) can outperform their generic counterparts, but they require data 
types, sizes, and hardware capabilities to be known at compile time.

– Types and/or sizes depend on the program input data; and Python is fully 
run-time.

– With cppyy, one can take advantage of C++ templates (and the 
performance gains from their specialization by Python) at run-time by 
deferring instantiation to Cling’s JIT, which is based on actual data types 
and sizes used.

– The new pipeline brings this functionality to GPU programming.

Enabling the GPU pipeline through Cling/cppyy
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Overview of cppyy pipeline: cppyy weaves together a C++ and a 
CUDA JIT (both from Cling), producing “fat binaries” with customized 
precompiled headers supplied to each for performance. The JITs can 
be programmed in tandem or independently, producing customized 
kernels from the templated libraries for CPU or GPU as desired.

PHAX



Scientific Achievement
Automatically tune High-Energy Physics Event Generators 
(first-principles simulation of collision events) to 
experimental data

Significance and Impact

Leveraging HPC, auto-tuning tool can build a library of 
tuned event generators for all HEP measurements.

Research Details
– SciDAC4 HEPonHPC project applies advanced optimization methods and 

HPC workflows to automatically select and weight most relevant data for 
a given physics analysis.

– Event Generators auto-tuned by the tool described measured data as 
well as (sometimes better than) those hand-tuned by experts.

– Rational approximation, better in modeling non-linear effects, replaces 
polynomial approximation to model the relationship between generator 
parameters and observables.

– Two advanced optimization methods are used to automatically weight 
measured data: Robust optimization and bi-level optimization.

– Both optimization techniques yield generator parameters that make 
generated data agree better with the measured data.

Automated Optimization of HEP Event Generators

Wenjing Wang, et al, arXiv:2103.05751

This plot shows the fraction of number of observables that are with 
χ2 smaller than different thresholds. Over 99.0% of observables from 
the generator auto-tuned with advanced optimization are with χ2 < 
50, while only 98.5% from the expert-tuned generator. The labels,  
“Meanscore,” “Medianscore,” and “Portfolio” refer to the method 
used in the innermost  optimization level. “Expert” refers to state-of-
the-art hand-tuning of the generator.

χ2, measuring the agreement between the generator 
and experimental measurements
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https://arxiv.org/abs/2103.05751


Scientific Achievement
Examined the impact of Monte Carlo (MC) systematic 
uncertainties on MC Event Generator tuning.

Significance and Impact

Our treatment of MC systematic errors leads to more 
accurate estimates of the generator parameters 
uncertainties

Research Details
– Builds on  “Automated Optimization of HEP Event Generators” project
– For the first time we evaluate the impact MC systematic uncertainties on 

the tuned parameters in a principled way, rather than through educated 
guesses.

– Preliminary studies on toy data show that the χ2/NDF distribution shows 
our setup produces a realistic estimation of the uncertainties.

– Next, we will apply this novel method to real data and tune generator 
parameters for the LHC experiments

Generator tuning with MC systematic uncertainties

Our method, tuning with covariance matrix (i.e. including MC 
uncertainty), yields the χ2/NDF distribution closer to 1 as predicted 
by Wilks’ theorem. Therefore, one can easily obtain 68% confidence 
interval. NDF is the number of degree of freedom.

χ2/NDF distribution for different MC generator tunings. 
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Scientific Achievement
Prototyped deep generative models to simulate hadronic 
interactions

Significance and Impact

Our generative models could replace ad-hoc hadronic 
simulation modules in Geant4. 

A step towards differentiable detector simulation.

Research Details
– Simulating hadronic interactions is the essential component in 

simulation hadronic calorimeters at the LHC
– Current hadronic simulation in Geant4 uses a group of parametric 

models, each simulating a specific range of hadron energies for specific 
hadron flavor types

– We developed Generative Adversarial Network (GAN) and Normalizing 
Flow (NF) models to simulate hadronic interactions

– We find NF performs better than GAN for low energy regions
– We simulated pions on a hydrogen target; will expand to a wider range 

of interactions
– After that we will integrate the model into Geant4 and compare its 

performance with G4 simulation

Differentiable simulation of hadronic interactions

Wasserstein distance is the figure of merit. The smaller the distance, 
the better the agreement is. Note that the testing was done with a 
pion energy not used in the training. Better results are obtained for 
pion energies above 1 GeV.

Differences between Normalizing Flow-generated 
events and Geant4 simulated events for different pion 

energies.

SCIDAC



Scientific Goals
Provide a large-compute-scale AI ecosystem for sharing 
datasets, training large models, fine-tuning those models, 
and hosting challenges and benchmarks.
Host challenges and benchmarks focussed on discovering 
and minimizing the effects of systematic uncertainties.

Significance and Impact

Provide a platform for large-scale AI experimentation and 
development of systematic-uncertainty-aware AI models.

Research Details

– Recently funded three year comp-hep project

– Constructing datasets and tasks for challenged and long-
lived benchmarks systematic uncertainty aware AI 
techniques in particle physics and cosmology

– Building HPC-enabled AI benchmark platform to host new 
models and be able to leverage NERSC resources to apply 
new AI algorithms on existing and new datasets

A Fair Universe: Unbiased Data Benchmark Ecosystem 

for Physics

Overview of the core proposed platform (based on Codabench). 

Codabench is designed to support diverse benchmarks. Each 

benchmark is implemented by a benchmark bundle that contains one 

or more tasks (wrapping around datasets). This project will exploit and 

extend Codabench’s new features; interface it to NERSC HPC 

capabilities and tackle the problem of systematics in physics from 

various angles

AI 4 HEP

https://www.energy.gov/science/articles/department-energy-announces-64-million-artificial-intelligence-research-high
https://arxiv.org/abs/2110.05802


Scientific Goals
Introduced an unfolding method that uses machine 
learning to capitalize on all available information.

Significance and Impact
Reduce errors and remove potential biases on collider data 
that must be corrected for detector effects (“unfolded”).
Enable future public and archival collider data analyses

Research Details
– Traditional unfolding methods correct detector effects O(1) 

observable at a time and use discretized distributions (histograms)

– OmniFold iteratively unfolds an entire dataset using all of the 
available information. Works for arbitrarily high-dimensional data, 
and naturally incorporates information from the full phase space.

– New observables can be measured long after the unfolding is 
carried out

– OmniFold requires significant GPU resources and new ways to 
publish and share code and datasets

→ Fair Universe Project

Unbinned Unfolding of Detector Effects

OmniFold reweights synthetic detector-level events (“Simulation") to
match experimental data (“Data"). The reweighted synthetic events,
now evaluated at particle-level (“Generation"), are further reweighted
to estimate the true particle-level information (“Truth").

ML Physics
NESAP

PhysRevLett.124.182001

https://doi.org/10.1103/PhysRevLett.124.182001


Scientific Goals
Develop a fully data-driven machine-learning-enhanced 
anomaly detection methodology.

Significance and Impact
Enhance the sensitivity to a wide variety of hypothetical 
particles without specifying all of their properties ahead of 
time.

Research Details
– Developed CWoLa, a weakly supervised NN classifier trained on 

unlabeled data samples

– Combined with a bump-hunt anomaly detection for dijet resonance 
searches with increased sensitivity.

– This workflow is computationally.  The prototype analysis (see right) 
required training 20k NNs.  Higher dimensional analysis will require 
comparable networks and will need GPU (see Perlmutter).

– DOE Early Career project, in collaboration with NERSC,  focused 
(among other things) on scaling this workflow

Anomaly Detection for New Physics

The neural network output in one dijet mass bin. As a two-dimensional
function, the output can be readily visualised as an image, where the
intensity corresponds to the efficiency of the network output in the dijet
mass bin. The left plot has no signal injected and the right plot shows
the output when a hypothetical particle at 3 TeV that decays into two
other particles at 200 GeV is added to the data.

PhysRevLett.125.131801

ML Physics

https://doi.org/10.1103/PhysRevLett.125.131801


Scientific Goals
ML4Pions studies a variety of machine learning methods 
designed for the reconstruction and calibration of hadronic 
final states 

Significance and Impact

Outperformed significantly ATLAS baseline pion 
classification and reconstruction methods.

Research Details
– Developed ML models for 𝜋 0 vs. 𝜋 ± classification and pion energy 

regression.

– Used information from both calorimeter clusters and, in the case of 
energy regression, particle tracks.

– Transformer, Deep Sets, and Graph Neural Network architectures 
are used to process calorimeter clusters and particle tracks as point 
clouds, or a collection of data points representing a three-
dimensional object in space.

– Complementary and synergistic to the Exa.TrkX approach to particle 
tracking

Point Cloud Deep Learning Methods for Pion 

Reconstruction in the ATLAS Experiment

Left: A dijet collision event rendered as a 3-dimensional point cloud of
calorimeter cells, as seen from two orientations.
Right: Comparison of topo-cluster classification performance of all
methods for |η| < 3. Performance is measured as π0 topo-cluster
rejection (defined as the inverse of π0 selection efficiency) versus π±
topo-cluster efficiency, where higher rejection indicates better
classification performance for the same selection efficiency. The
baseline method performance is shown by the green dashed line.

ATL-PHYS-PUB-2022-040

ML Physics

http://cds.cern.ch/record/2825379


• Long-term collaboration across three divisions 
(NERSC, SciData, Physics)
– Always seeking participation from other labs and universities

• Our R&D program builds on decades of M&O experience in 
BaBar, CDF/D0, ATLAS, Daya Bay, LZ, ROOT, etc.
– Trying to anchor our projects to real needs experiments

• Contributing to many of the HL-LHC hot-button topics
– Distributed heterogeneous computing at scale
– New pattern recognition algorithms for tracks and jets
– New analysis methods
– Core software infrastructure, including for ML workflows

In Summary
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Scientific Achievement
Developed a deep learning pipeline to measure particle 
trajectories in High-Energy Physics (HEP) detectors.

Significance and Impact

Unlike traditional algorithms, this pipeline scales 
linearly with data density which could increase the 
discovery potential of future HEP experiments.

Research Details
– As particle accelerators become more powerful, detectors become 

more complex with increasingly dense measurements: O(10M) 
particles/second, O(100M) measurements/second.

– Traditional algorithms generate all possible trajectories. Attaching 
measurements-as-they-go results in a combinatorial explosion.

– The DOE Exa.TrkX project pioneered the application of Geometric Deep 
Learning methods, specifically graph neural networks, to capture and 
regularize relationships between measurements.

– Clustering with the learned metric is crucial to control graph density.

– Our optimized pipeline runs end-to-end on the NVIDIA V100 GPU with 
a 20X speed-up wrto using a 48-core Xeon 8268s Cascade Lake CPU.

Geometric Deep Learning for HEP Particle Tracking

X. Ju, D. Murnane, P. Calafiura, et al — Eur. Phys. J. C 81, 876 (2021)
A. Lazar, X. Ju, D. Murnane, et al — arXiv:2202.06929

No. of measurements

Top left: HEP computational challenge. Top right: graph network output for 
.125% of the detector (misclassified edges in red). Bottom left: inference 
time on GPU vs CPU. Bottom right: inference time vs detector density 
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https://epjc.epj.org/articles/epjc/abs/2021/10/10052_2021_Article_9675/10052_2021_Article_9675.html
https://arxiv.org/abs/2202.06929
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A Flexible Pipeline of Composable Modules



Applicable to Multiple Pattern Recognition Problems

ATLAS ITK [5]

PANDA
Straw 

Tubes [4]

FermiLab 
LArTPC [8]

Jet Clustering
2008.06064

https://arxiv.org/pdf/2008.06064.pdf


Towards a Tracking Supermodel

Composability

Parallelism

Heterogeneity

Hierarchy

HEP 
Tracking

Re-engineered pipeline to improve

modularity and usability across experiments

Memory limits our GNN performance. Running on multiple GPU would open new

possibilities. We are investigating graph data parallelism, an active research area. Our graphs

change structure with every event, making the problem even more challenging.

Investigating heterogeneous GNNs that combine

information from multiple detectors [9]. Should

improve physics performance and model

generalization. Particle flow.

We can recover “difficult” tracks (e.g., tracks with a

missing spacepoint) using hierarchical GNNs [10]. Next,

will scale these models up to full HL-LHC simulations.

Again, potential for multi-scale pattern recognition.

https://github.com/chwan1016/awesome-gnn-systems#gnn-dataloaders
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ATLAS ITk Performance Plots

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/


LArTPC Performance Plots

https://indico.cern.ch/event/1103637/contributions/4821839/
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