Parameterizing cosmogenic neutron flux
to measure soil moisture

Christian Sarmiento-Cano', Y. Dominguez?, L.Nufiez', |. Sidelnick® & H. Asorey*
'"Universidad Industrial de Santander, Bucaramanga, Colombia

2 |CTP-East African Institute for Fundamental Research, Rwanda

3Departamento Fisica de neutrones, CNEA, Argentina

‘Departamento de Fisica médica, CNEA, Argentina

. Aniversaric
7« UIS 1948 - 2023
7 &

1




B 3 Ckg roun d . I_AG O A M I G A an d M u-l-e LAGO is a giant network of astroparticle WCD detectors,

currently operating in 11 countries. The LAGO network

measures the time-evolving flux of secondary particles
AMIGA is a buried muon counter designed to study the UHECR produced by the modulated flux of GCR

composition at the Pierre Auger Observatory by measuring the EAS
muon distribution density at ground
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Measuring neutrons to estimate soil moisture
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Ultra Rapid Neutron-Only Simulator, URANOS

i

£t source
neutron z = | spectrum
source generation
layer
1 meV 1GeV
air T
___________________________________ ] detector
detector | efficiency
_____ - — 1 meV 1GeV
other
surface | detector p°’0s,',
geometries e

interface

other contacts

soil source
layer geometries

nuclear

r scattering Custom layers
evaporation

centers _ of arbitrary
size and material

vol

Kéhli et al., URANUS, 2022
https://doi.org/10.5194/gmd-16-449-2023 *




Results from URANOS
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ARTIl-neutron

Simulations of cosmic rays 2 km above
the observation level using ARTI.

CR-Flux
(ARTI)

Parameterization of the neutron flux
taking into account the dependence
on height, atmosphere and
geomagnetic field
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A framework designed to simulate the signals produced by the secondary particles emerging from the
interaction of the flux of primary cosmic ray with the atmosphere. These signals are simulated for any particle
detector located at any place (latitude, longitude and altitude), including the real-time atmospheric,

The ARTI Framework
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Cosmic ray flux from Corsika -> ARTI

Github repository
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ocal atmospheric effects

vionthly-averaged or instantaneous local atmospheric

profiles from GDAS
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The world defined in Geant4 for this simulation is 2 Photon and proton shower.
km x 1 km x 2 km. In addition, it includes 5 layers of
atmosphere that change with height. 12




Results
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Neutron flux in three cities with different altitudes.
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Results
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Conclusions

We are currently developing a simulation framework to study various scenarios related
to the use of neutron detectors for soil moisture detection in smart agriculture. Our goal
is to explore the applications of neutron detectors in this context and gain a deeper
understanding of their capabilities.

e During our research, we have a strong correlation between neutron flux and altitude.
This dependency is crucial for calibrating the detectors accurately in field settings. By
taking altitude into account, we can enhance the precision of the detectors and ensure

reliable measurements of soil moisture.

Future work

e Compare the simulation results with real data to validate the accuracy of the framework.
e Develop tools within the simulation framework to analyze the data generated by the
simulations. Implement algorithms and statistical techniques like machine learning.
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Cosmic neutron spectrum
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