
D. Pagano, G. Bonomi, A. Donzella, A. Zenoni, N. Zurlo

Update on EcoMug cosmic-ray
muon generator

UNIVERSITÀ DEGLI STUDI DI BRESCIA & INFN PAVIA

Davide Pagano

What is EcoMug?

Update on EcoMug cosmic-ray muon generator 20/06/2023

 Parametric cosmic muon generator

 based on experimental data (Bonechi et al.)

D. Pagano, G. Bonomi, A. Donzella et al. Nuclear Inst. and Methods in Physics Research, A 1014 (2021) 165732

Fig. 3. Experimental differential flux, as a function of the momentum and for eight zenith angle intervals [3]. Superimposed curves are the predictions from Eq. (2) for the muon
component only.

As for the flat sky generation, it is convenient to multiply Jx by sin ✓ to
define the J ®

x differential flux:

J ®
x í dN

dt � dp � d✓ � d� � dSx

=
L
1600 �

0
p
p0

+ 2.68
1*3.175

�
0

p
p0

10.279M

� (cos ✓)n(sin ✓)2 cos� � 1
m2 � s � sr � GeV_c

.

(8)

The origin position of CR muons is uniform randomly chosen on the
cylindrical generation surface, whereas the momentum, zenith angle ✓
and azimuth angle � are sampled from the differential flux J ®

x in Eq. (8).
By noting that Eq. (8) only correlates p and ✓, by means of the term n,
we can independently generate �, uniformly in cos�, and then only
sample the other two variables from J ®

x, without the cos� term. In this
way, the acceptance–rejection method is only applied to the momentum
and zenith angle, as in the flat sky case, saving computation time.

3.3. Half-spherical generation

Always with reference to the coordinate system in Fig. 2, let us
consider a half-sphere with the base laying on the x–y plane and
centered with the origin. Let dSt be a generic surface element on a
half-sphere, orthogonal to the direction (✓0, �0) and dSn its projection
on a plane perpendicular to the muon direction. In analogy to what is
has been done for the cylindrical case, we can choose �0 = 0 without
loss of generality, because of the symmetry in � of the half-sphere. By
denoting with ✓ and � the zenith and azimuthal angles of the muon
direction, and with Çt and Çn the unit vectors orthogonal to dSt and dSn,
dSn can be written as

dSn = dSt Çt � Çn = dSt
⌅
sin ✓0 sin ✓ cos� + cos ✓0 cos ✓

⇧
, (9)

where the law of cosines was used. From Eq. (9), the differential flux
across a generic surface element of a half-sphere becomes

Jt í dN
dt � dp � d⌦ � dSt

= dN
dt � dp � d⌦ � dSn

�
⌅
sin ✓0 sin ✓ cos� + cos ✓0 cos ✓

⇧

=
L
1600 �

0
p
p0

+ 2.68
1*3.175

�
0

p
p0

10.279M

� (cos ✓)n
⌅
sin ✓0 sin ✓ cos� + cos ✓0 cos ✓

⇧
� 1
m2 � s � sr � GeV_c

.

(10)

As we did before, we can multiply Jt by sin ✓ to define the J ®
t differential

flux:

J ®
t í dN

dt � dp � d✓ � d� � dSt

=
L
1600 �

0
p
p0

+ 2.68
1*3.175

�
0

p
p0

10.279M

� (cos ✓)n
⌅
sin ✓0(sin ✓)2 cos� + cos ✓0 cos ✓ sin ✓

⇧
� 1
m2 � s � sr � GeV_c

.

(11)

As expected, if ✓0 = 0 Eq. (11) becomes equal to the one for the flat
sky (Eq. (5)), whereas if ✓0 = ⇡_2 it becomes equal to the one for the
cylindrical case (Eq. (8)).

Eq. (11) correlates not only p, ✓ and �, but also ✓0, which, together
with �0, defines the origin position of the CR muon on the half-sphere.
For this reason, the sampling of all these variables from J ®

t involves
the use of the acceptance–rejection method in 4D space, resulting in a
worsening of the generation speed with respect to the other methods,
as discussed in the next sections.

4. Comparison between the different generation methods

The generation methods discussed above, and implemented in Eco-
Mug, are mathematically equivalent, provided that all of them grant
the proper coverage of the geometrical acceptance of the detection
system. However, depending on the case study, one method could be
more effective than the others, in respect to the generation time. In
this section, a comparison of the performance of the three generation
methods, for three different scenarios, is presented.

4.1. Vertical plane detectors

In muon tomography applications, scenarios where two (or more)
vertical detectors are placed around the structure to be investigated
are quite common. Muons are requested to be reconstructed by both
detectors in order to measure their incoming and outcoming directions.
In these cases, the generation of muons from a flat sky is extremely
inefficient, as detected muons have large zenith angles. Fig. 4 schema-
tizes this tomography-like scenario, referred to as configuration C1 in
the following, where two plane detectors of area 125 cm ù 250 cm
are placed in front of each other at a distance of 300 cm. Performance
of the cylindrical and half-spherical generations were compared and

5

 Differential flux

parametrized as

J ≡ J(t, p, θ, ϕ) =
dN

dt ⋅ dp ⋅ dΩ ⋅ dSn

J = 1600 ⋅ (p
p0

+ 2.68)
−3.175

⋅ (p
p0)

0.279

⋅ (cos θ)n ⋅
1

m2 ⋅ s ⋅ sr ⋅ GeV/c
n(p) = max 0.1, 2.856 − 0.655 ⋅ ln (p

p0), with

 Several tools already available (MCEq, CRY, CMSCGEN, muTeV, ...) why a new generator?

Davide Pagano

Why EcoMug?
flat generation surface

detector

detector

Update on EcoMug cosmic-ray muon generator 20/06/2023

Davide Pagano

detector

detector

Why EcoMug?
flat generation surface

Update on EcoMug cosmic-ray muon generator 20/06/2023

Davide Pagano

Why EcoMug?
cylindrical generation surface

Update on EcoMug cosmic-ray muon generator 20/06/2023

Davide Pagano

What is EcoMug?
 In previous study case a cylindrical surface would highly increase the generation efficiency

 It allows generating from different surfaces (plane, cylinder and half-sphere), while keeping
the correct angular and momentum distributions of muons

 For other cases a half-spherical surface could be optimal choice

 Additionally, the user can constraint the generation (momentum, zenith angle and azimuthal
angle) to further reduce the number of useless generated tracks

 EcoMug is a C++11 header only library which addresses this problem

Update on EcoMug cosmic-ray muon generator 20/06/2023

Davide Pagano

Equivalence between generation surfaces
 Generations from different surfaces are
equivalent, provided the full coverage
of the geometrical acceptance of the
detection system is granted

D. Pagano, G. Bonomi, A. Donzella et al. Nuclear Inst. and Methods in Physics Research, A 1014 (2021) 165732

Fig. 4. Scheme of configuration C1 with the cylindrical (left) and the half-spherical (right) generation surfaces.

Fig. 5. Comparison between the momentum (top left), the zenith angle ✓ (top right) and azimuthal angle � (bottom) for the detected muons in the configuration C1.

the results are shown in Fig. 5, where both generation surfaces were
designed to grant the full coverage of the detection system.

As expected, the distributions for momentum, zenith angle, and
azimuthal angle, for muons crossing both detectors, are equivalent. The
plane generation was not included in this test, as only an infinite large
surface would allow for muons with zenith angles up to ✓ = 90˝ to

be detected. Even though the results from the cylindrical and the half-
spherical generations are equivalent, the latter is approximately a factor
4 slower, because of the smaller generation efficiency, that is the ratio
of the number of detected muons to the generated ones.

In a more realistic scenario, some of the authors have successfully
used the generation from a cylindrical surface for muon tomography
studies of a blast furnace [38].

6

D. Pagano, G. Bonomi, A. Donzella et al. Nuclear Inst. and Methods in Physics Research, A 1014 (2021) 165732

Fig. 4. Scheme of configuration C1 with the cylindrical (left) and the half-spherical (right) generation surfaces.

Fig. 5. Comparison between the momentum (top left), the zenith angle ✓ (top right) and azimuthal angle � (bottom) for the detected muons in the configuration C1.

the results are shown in Fig. 5, where both generation surfaces were
designed to grant the full coverage of the detection system.

As expected, the distributions for momentum, zenith angle, and
azimuthal angle, for muons crossing both detectors, are equivalent. The
plane generation was not included in this test, as only an infinite large
surface would allow for muons with zenith angles up to ✓ = 90˝ to

be detected. Even though the results from the cylindrical and the half-
spherical generations are equivalent, the latter is approximately a factor
4 slower, because of the smaller generation efficiency, that is the ratio
of the number of detected muons to the generated ones.

In a more realistic scenario, some of the authors have successfully
used the generation from a cylindrical surface for muon tomography
studies of a blast furnace [38].

6

D. Pagano, G. Bonomi, A. Donzella et al. Nuclear Inst. and Methods in Physics Research, A 1014 (2021) 165732

Fig. 4. Scheme of configuration C1 with the cylindrical (left) and the half-spherical (right) generation surfaces.

Fig. 5. Comparison between the momentum (top left), the zenith angle ✓ (top right) and azimuthal angle � (bottom) for the detected muons in the configuration C1.

the results are shown in Fig. 5, where both generation surfaces were
designed to grant the full coverage of the detection system.

As expected, the distributions for momentum, zenith angle, and
azimuthal angle, for muons crossing both detectors, are equivalent. The
plane generation was not included in this test, as only an infinite large
surface would allow for muons with zenith angles up to ✓ = 90˝ to

be detected. Even though the results from the cylindrical and the half-
spherical generations are equivalent, the latter is approximately a factor
4 slower, because of the smaller generation efficiency, that is the ratio
of the number of detected muons to the generated ones.

In a more realistic scenario, some of the authors have successfully
used the generation from a cylindrical surface for muon tomography
studies of a blast furnace [38].

6

Update on EcoMug cosmic-ray muon generator 20/06/2023

What's new in v2?

Davide Pagano

p [GeV/c]

0
1

2
3

4
5

6
7

8
9

10 [rad]θ0 0.2 0.4 0.6 0.8 1 1.2 1.4

0

1

2

3

4

5

6

1600*TMath::Power(x+2.68, -3.175)*TMath::Power(x, 3.175-2.896)*TMath::Power(cos(y), 2.856-0.655*TMath::Log(x))*TMath::Power(TMath::Sin(y), 2)

Under-the-hood improvements
 Generation of a muon requires 5 parameters in EcoMug

 Depending on the surface, up to 4 not-independent variables

 Acceptance-rejection method is a simple solution but
extremely inefficient for J

Update on EcoMug cosmic-ray muon generator 20/06/2023

 By properly factorizing the differential flux for all surfaces, we could
use a hybrid approach based on both inverse transform and acceptance-rejection methods

 This was further improved in version 2

 Other under-the-hood improvements include new methods for MC integration and an
improved code for the metaheuristic optimization (internally used for the generation of muons)

Plane:
Cylinder:
Hemisphere:

(x0, y0, θ, ϕ, p)
(θ0, z0, θ, ϕ, p)

(θ0, ϕ0, θ, ϕ, p)

 Also new: copy constructor for the EcoMug class, new method for retrieving the generation
surface area (even when constrained), ...

D. Pagano and L. Sostero (2022) 10.1016/j.softx.2022.101083

Davide Pagano

Units
namespace EMUnits {
 // Default units:
 // meter (m)
 // second (s)
 // Giga electron Volt (GeV)
 // radian (rad)

 // Lengths and areas
 static const double m = 1.;
 static const double cm = 1.e-2*m;
 static const double mm = 1.e-3*m;
 static const double km = 1000.*m;
 static const double mm2 = mm*mm;
 static const double cm2 = cm*cm;
 static const double m2 = m*m;
 static const double km2 = km*km;

 // Angles
 static const double rad = 1.;
 static const double mrad = 1.e-3*rad;
 static const double deg = (M_PI/180.0)*rad;

 // Time
 static const double s = 1.;
 static const double ms = 1.e-3*s;
 static const double us = 1.e-6*s;
 static const double ns = 1.e-9*s;
 static const double min = 60.*s;
 static const double hour = 60.*min;
 static const double day = 24.*hour;
 static const double hertz = 1./s;

 // Energy/momentum
 static const double GeV = 1.;
 static const double MeV = 1.e-3*GeV;
 static const double keV = 1.e-3*MeV;
 static const double TeV = 1.e+6*MeV;
 static const double eV = 1.e-6*MeV;
};

 EcoMug now includes a coherent system of units
under the namespace EMUnits

 default units:

 lengths/areas: meter (m) - square meter (m2)

 time: second (s)

 energy/momentum: Giga electron Volt (GeV)

 angles: radian (rad)

Example

 EcoMug genPlane;
 genPlane.SetUseSky();
 genPlane.SetSkySize({{200.*EMUnits::cm, 200.*EMUnits::cm}});
 genPlane.SetSkyCenterPosition({0., 0., 1.*EMUnits::mm});

 double genArea = genPlane.GetGenSurfaceArea()/EMUnits::m2;
 double genRate = genPlane.GetAverageGenRate()/EMUnits::hertz*EMUnits::m2;

Update on EcoMug cosmic-ray muon generator 20/06/2023

Davide Pagano

Logger
 EcoMug now includes a proper logger to handle the printout to screen

 4 levels of reporting

Example

 EMLog::ReportingLevel = EMLog::TLogLevel::ERROR;

 enum TLogLevel {ERROR, WARNING, INFO, DEBUG};

[EcoMug v2.0] [WARNING in EMMultiGen]: Expected exactly 1 instance with PID = 0, but 2 were provided.

level class message

Output

 The reporting threshold can be set
globally as in the example on the right

 Default: WARNING

Update on EcoMug cosmic-ray muon generator 20/06/2023

version

Davide Pagano

Time estimation
 EcoMug now allows to estimate the rate and time to collect a given number of muons

 It also handles those cases where the user has constrained the generations of muons
(for example by cutting on p), as well as the generation geometry

 The user can specify the average expected rate () (method: SetHorizontalRate)
to take into account the effect of altitude, etc...

 Default value is

 While the rate and time estimation also works with custom definitions of the flux, it is up to
the user to define a properly normalized J

 SetHorizontalRate does not work in this case (see example in the next slide)

Hz/m2

129 Hz/m2

Update on EcoMug cosmic-ray muon generator 20/06/2023

Davide Pagano

 EcoMug genPlane;
 genPlane.SetUseSky();
 genPlane.SetSkySize({{200.*EMUnits::cm, 200.*EMUnits::cm}});
 genPlane.SetSkyCenterPosition({0., 0., 1.*EMUnits::mm});

 EcoMug genHSphere;
 genHSphere.SetUseHSphere();
 genHSphere.SetHSphereRadius(200*EMUnits::cm);
 genHSphere.SetHSphereCenterPosition({0., 0., 0.});

 TVector3 P1 = {-50.*EMUnits::cm, -50.*EMUnits::cm, 0.};
 TVector3 P2 = { 50.*EMUnits::cm, -50.*EMUnits::cm, 0.};
 TVector3 P3 = { 50.*EMUnits::cm, 50.*EMUnits::cm, 0.};
 PlaneDet detector(P1, P2, P3);

 while (n_good_events < number_of_events) {
 genPlane.Generate();

 ...

 if (!detector.IsCrossed(muon_origin, muon_p)) continue;
 n_good_events++;
 }

 while (n_good_events < number_of_events) {
 genHSphere.Generate();

 ...

 if (!detector.IsCrossed(muon_origin, muon_p)) continue;
 n_good_events++;
 }

 We want to compute the time necessary
to detect n events on a horizontal
surface as generated from a flat surface
and a half-spherical surface

 Example on how to use it (included in TestSuite.C)

Update on EcoMug cosmic-ray muon generator 20/06/2023

Time estimation

Davide Pagano

% root -l TestSuite.C'(1,10000)'
Processing TestSuite.C(1,10000)...

--- Generation from horizontal plane ---
number of generated muons = 40351
number of muons through the detector = 10000
number of gen muons/generation surface [m2] = 10087.8
Estimated time [s] = 77.77

--- Generation from half-sphere ---
number of generated muons = 145278
number of muons through the detector = 10000
number of gen muons/generation surface [m2] = 5780.43
Estimated time [s] = 76.88

horizontal to half-spherical rate = 1.73

 cout << "\n--- Generation from horizontal plane ---" << endl;
 cout << "number of generated muons = " << n_gen_events << endl;
 cout << "number of muons through the detector = " << n_good_events << endl;
 cout << "number of gen muons/generation surface [m2] = " << n_gen_events/(genPlane.GetGenSurfaceArea()/EMUnits::m2) << endl;
 cout << "Estimated time [s] = " << genPlane.GetEstimatedTime(n_gen_events) << endl;

 cout << "\n--- Generation from half-sphere ---" << endl;
 cout << "number of generated muons = " << n_gen_events << endl;
 cout << "number of muons through the detector = " << n_good_events << endl;
 cout << "number of gen muons/generation surface [m2] = " << n_gen_events/(genHSphere.GetGenSurfaceArea()/EMUnits::m2) << endl;
 cout << "Estimated time [s] = " << genHSphere.GetEstimatedTime(n_gen_events) << endl;

Update on EcoMug cosmic-ray muon generator 20/06/2023

Time estimation

Davide Pagano

 double J(double p, double theta) {
 double A = 1400*pow(p, -2.7);
 double B = 1. / (1. + 1.1*p*cos(theta)/115.);
 double C = 0.054 / (1. + 1.1*p*cos(theta)/850.);
 return A*(B+C);
 }

 ...

 EcoMug genPlane;
 genPlane.SetUseSky();
 genPlane.SetSkySize({{200.*EMUnits::cm, 200.*EMUnits::cm}});
 genPlane.SetMinimumMomentum(100.*EMUnits::GeV);
 genPlane.SetMaximumMomentum(1000.*EMUnits::GeV);

 EcoMug genCylinder(genPlane);
 genCylinder.SetUseCylinder();
 genCylinder.SetCylinderRadius(100.*EMUnits::cm);
 genCylinder.SetCylinderHeight(10.*EMUnits::m);

 EcoMug genHSphere(genPlane);
 genHSphere.SetUseHSphere();
 genHSphere.SetHSphereRadius(300*EMUnits::cm);

 EcoMug genCustomSky(genPlane);
 genCustomSky.SetDifferentialFlux(&J);

 EcoMug genCustomCylinder(genCylinder);
 genCustomCylinder.SetDifferentialFlux(&J);

 EcoMug genCustomHSphere(genHSphere);
 genCustomHSphere.SetDifferentialFlux(&J);

 double rateSky, rateCyl, rateHS, rateCustomSky, rateCustomCylinder, rateCustomHSphere;
 double errorSky, errorCyl, errorHS, errorCustomSky, errorCustomCylinder, errorCustomHSphere;
 genPlane.GetAverageGenRateAndError(rateSky, errorSky, 1e7);
 genCylinder.GetAverageGenRateAndError(rateCyl, errorCyl, 1e7);
 genHSphere.GetAverageGenRateAndError(rateHS, errorHS, 1e7);
 genCustomSky.GetAverageGenRateAndError(rateCustomSky, errorCustomSky, 1e7);
 genCustomCylinder.GetAverageGenRateAndError(rateCustomCylinder, errorCustomCylinder, 1e7);
 genCustomHSphere.GetAverageGenRateAndError(rateCustomHSphere, errorCustomHSphere, 1e7);

 % root -l TestSuite.C'(2,10000)'
 Processing TestSuite.C(2,10000)...

 rate sky = 0.380 +- 0.0003
 rate cylinder = 0.178 +- 0.0003
 rate half-sphere = 0.276 +- 0.0003
 rate custom J sky = 0.551 +- 0.0005
 rate custom J cylinder = 0.341 +- 0.0006
 rate custom J half-sphere = 0.461 +- 0.0007

 Example included in TestSuite.C

Update on EcoMug cosmic-ray muon generator 20/06/2023

Time estimation

Davide Pagano

Deal with background
 EcoMug now offers a new class EMMultiGen to also handle background

 Requires a EcoMug instance for the signal and one or more instances for the background

 The user has to specify the differential flux (even unnormalized), the PID (Monte Carlo
particle numbering scheme*) and the relative weight (w.r.t. signal) for all backgrounds

 The use of EMMultiGen is identical to EcoMug

*https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

Update on EcoMug cosmic-ray muon generator 20/06/2023

void Generate()

const std::array<double, 3>& GetGenerationPosition()

double GetGenerationMomentum()

void GetGenerationMomentum(std::array<double, 3>&)

double GetGenerationTheta()

double GetGenerationPhi()

 The following methods to generate and access
track parameters are available in both classes

 In addition to them, the user also access to the
PID of generated track (to distinguish between
the signal and different possible backgrounds)

int GetPID()

https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf

Davide Pagano

Deal with background

Update on EcoMug cosmic-ray muon generator 20/06/2023

% root -l TestSuite.C'(4,10000)'
Processing TestSuite.C(4,10000)...

 PID counts ratio
 -13 4483 (0.581)
 -11 738 (0.0957)
 11 1551 (0.201)
 13 3228 (0.419)

 EcoMug muonGen;
 muonGen.SetUseSky();
 muonGen.SetSkySize({{200.*EMUnits::cm, 200.*EMUnits::cm}});
 muonGen.SetSkyCenterPosition({0., 0., 1.*EMUnits::mm});

 EcoMug electronGen(muonGen);
 electronGen.SetDifferentialFlux(&J);

 EcoMug positronsGen(muonGen);
 electronGen.SetDifferentialFlux(&J);

 EMMultiGen genSuite(muonGen, {electronGen, positronsGen});
 genSuite.SetBckWeights({0.2, 0.1});
 genSuite.SetBckPID({11, -11});

 map<int, int> counts;
 for (auto i = 0; i < number_of_events; ++i) {
 genSuite.Generate();
 counts[genSuite.GetPID()]++;
 }

wrt to the signal (+)μ− μ+

Davide Pagano

Documentation

Update on EcoMug cosmic-ray muon generator 20/06/2023

dr4kan.github.io/EcoMug

http://dr4kan.github.io/EcoMug

Davide Pagano

Conclusions
 EcoMug is a C++11 header only library to generate cosmic-ray muons from different surfaces,
while keeping the correct angular and momentum distributions (based on experimental data)

 Several applications in muography could benefit from this

 Version 2.0 offers new improvements:

 Many under-the-hood improvements

 A coherent system of units

 A a proper logger to handle the printout to screen

 Rate and time estimation for all surfaces (also in presence of user-defined cuts)

 A new class to also handle background generation

 A better documentation

Update on EcoMug cosmic-ray muon generator 20/06/2023

If you have suggestions, issues, or you want to contribute go to https://github.com/dr4kan/EcoMug

https://github.com/dr4kan/EcoMug

