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Outline of the talk

Can we use deep learning to enhance signal to noise ratio?
— Especially important for vulcano muography

Background for vulcano muography

Geant4 simulation of the Muography Observatory System

With the G4 simulation:

- Testing the “classic” x2 algorithm currently being used
- Teaching a deep neural network to suppress background

Applying the machine learning algorithm to MOS-08 measurements @ Sakurajima

Outlook — further validation and applications



Backgrounds in vulcano muography

* Background depends on i e
- Detector
- Thickness of vulcano

.

- Elevation angle

* R. Nishiyama et al. (2016) simulated Bg‘)kg‘* -

a realistic background for a vulcano 1G y .
E 0? f €
* R2: 300-600 m rock

R3: 600-900 m rock
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Backgrounds in vulcano muography

(a) (b)
* Background: protons, electrons
and muons (hadronic origin)
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 |F we could use a cut at ~1 GeV
there would be almost no 5
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MWPC-based Muography

Observation System (MOS)

Introduced by talk of Olah Laszl6

on Tuesday
« Sakurajima vulcano in Japan
e 12 modules online
« MWPC detectors + lead absorbers
* Due to absorbers very
suppressed total background:
- Eleetrons
- Protons
— Scattered muons




Geant4 simulation of the MOS-08

Dedicated simulation developed
Gas volume voxelized

Output of simulation is in same
format as the measurement pipeline

— Important for testing the tracking algorithm
Output analyzed with same
tracking algorithm (N-1 point x2)

Some “detector” effects are very hard to simulate - take the distribution
from measurements




Muon energy dependent features

betector 4 500 MeV 50 GeV

Lea

e Scattering (used by x2 algorithm)

e Secondary creation:

- Energy deposition (NOT used by x2 algorithm)
- Lots of clusters (NOT used by x2 algorithm as input)



Muon energy dependent features

* A dedicated simulation to understand effect of muon E on secondary
detection

— One 2 cm lead and 1 detector - b 0sGev
« Secondary creation: it B b 50Gev

- Number of fired wires
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* For high E many clusters

Number of muons
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Testing the tracking algorithm

 Simulation data

e Different x2 cuts shown
* x2<4 cut Is used In this talk

10—1 _:_

* Suppresses 0.5 GeV
muons with 95% chance :
« ~08% efficiency @ 5 GeV

* ~90% efficiency @ 1 TeV

Efficiency

—— Khi cut: 2
— khi cut: 3
— Khi cut: 4
— kKhicut: 5
— kKhi cut: 6
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Neural network

Used together to x2 algorithm — Direction

Binary classification:
- Was the muon above a certain energy (5 GeV used in

Energy
deposition

this presentation)
Residual layers for robustness

Decouple the information sources

Output: score (1 double) ~ probability of belonging
to one class (it's mapping)

Three subnetworks:
— X direction (8 x 64 wires, 0 or 1 — hit or not)
— Y direction (8 x 64 wires, 0 or 1 — hit or not)

- Energy deposition (8 double)
Final decision




Teaching the ML

 ~1 day on asingle GPU
e 20 million muons

* 12 GB of events data

* Accuracy: 0.900

* Most used metric for “goodness” of classification
AUC = 0.952

 AUC above 0.9 it is considered exceptional



Results of the ML

Cut at score 0.4 (info on next
slide)

Cut can be tuned on demand

Suppresses 1 GeV protons

- 4x more then x2<4 algorithm
~99.5% efficiency @ 1 TeV
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What does the ML predict to

measurements?

« Measurements taken ol

254

@ Sakurajima
e Score distribution
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for different regions

 Middle of the mountain
Middle of mountain

- 7km of rock —» Only low E

2050000

« Open sky ~ horizont R

xxxxxx

- High E 3.5 years of data analysed with X2
MOS-08@ Sakurajima

Open sky — High energy



Where to put the cut in score?
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SHAP values

Tool to understand the neural network
From game theory

Lloyd Shapley, Nobel prize

Remove a subset of inputs

calculate the output of the model
Additive values

Energy deposition after lead absorbers
are used mostly
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SHAP values for wires
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Conclusion

Designed a detailed Geant4 simulation of MOS system

- Included detector effects (changing gain, cluster size)
- Tested the classical tracking algorithm

Designed a dedicated Deep Neural Network to classify low vs. high E muons
— Taught the network with simulation data
The neural network:

— Suppresses low energy muons better than x2
- ldentifies high energy muons with complicated topology better than x2

Applied the ML to measurements taken at Sakurajima:
— The preliminary results agree with the expected tendencies



Outlook

* Test the machine learning with measurements:

- Dedicated measurements to collect muons with known energy
bands

e Could the lessons learned from ML be used in classical
tracking?

- E.g. Use cut on number of wires fired besides using X2

* Perform anomaly detection on Sakurajima data to look for
vulcanological events in the last 4 years



Simulations, detector effects

* Need to include these in the simulation to reproduce
measurements

* Important for Machine Learning!

* Read out electronics:
- 2 or 3 wires / pads connected for cheaper readout
* (Gain changes:

- Changing weather
- Non homogenous gain (due to wires)
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Number of fired wires per layer

Simulation before including

detector effects Measurements
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Changing gain

e Fitted Landau distribution to the energy deposition for
every ~ 2 hour

e Scaled measurements to simulation for ML
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Modified Gaisser dist.

 Muon flux for diff. E 1
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