Imaging with

Cosmic Muon Induced Secondaries

Gergő Hamar Wigner RCP, Dep. HEP, REGARD Det.Phys.Group

Budapest, Hungary for the WignerRCP + Novi Sad Uni. Collaboration

G.Hamar, D.Hajnal, K.Bikit, D.Mrdja, D.Varga, et al.

Outline

Alternative Muography Scattering, Secondaries

Detectors and Requirements

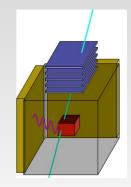
Muon Tracking: CCC, Secondaries: Spectra

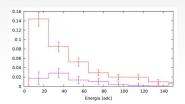
MUCA Experiment

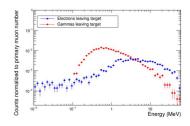
First imaging with secondaries

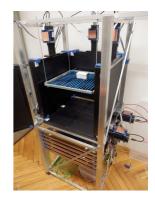
Early results

Imaging, Identification,


Simulations


Geant4, e/γ ratio, forward/sideward


Upgrade: COMIS


Large cover, Combined DAQ, e/γ separation p.

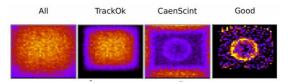
Summary

Alternative Muography

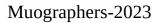
Muography (Classic/Attenuation M.):

Cosmic muon flux attenuated by material (density-length) Directional measurement : muogram \rightarrow densitymap of large objects GeoPhyiscs, Araeology, Industrial appl., Meteorology, ...

(volcano,cave,tunnel,pyramid,furnace..)

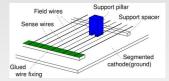


Multiple scattering on high-Z material Two tracklet matching : scatter map → high-Z materials Disclose hidden objects, Homeland security, AirCargo, ...



Muon induced sceondaries

Secodary particles generated in material Differential secondary spectra \rightarrow material identification Araeology, GeoPhysics,

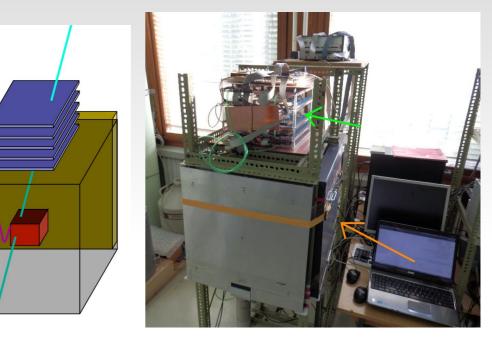

Detectors and Requirements for Imaging w Secondaries

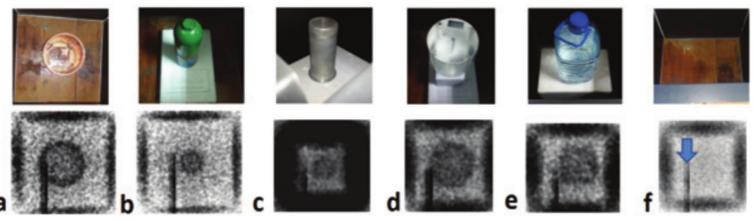
Muon Tracking Detectors

- Good spatial resolution (~mm at target level)
- Robustness (day/night var., transportation, ..)
- Scalability (medium/large surface)
- Cost efficient (large area det., multiple layers)
- Remote access/control/analysis

Detecting Secodaries

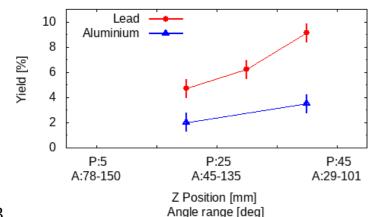
- Energy measurement : spectra
- High efficiency for secondaries (e,γ)
- Thin input window (low E-cut)
- Identification?
- Dividable (separate signal from muon signal)

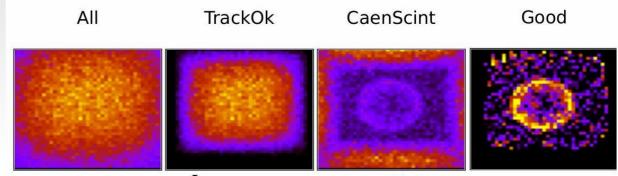


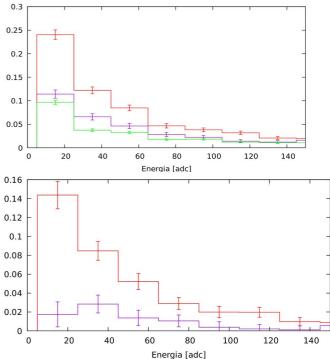


MUCA Experiment

- Novi Sad Uni + Wigner RCP
- Muon Tracking : CCC : good resolution 25x25cm² area x 4 layers
- Secondaries:
 - **HPGe** : good E resolution
 - Plastic Scint. : large coverage
- DAQ: separate ones :(Tracker: Wigner MT DAQ Scint: Caen MCA one channel → offline event combination

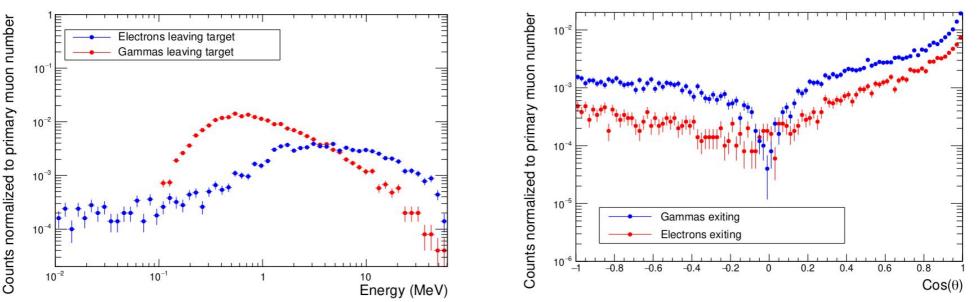

• MUCA (MuonCamera) located at Novi Sad University




G.Hamar - Comis

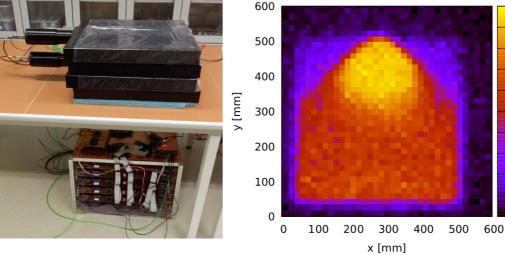
MUCA Results

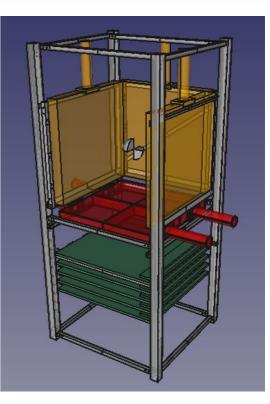
- Example of analisys chain:
 - Tracker: Hits \rightarrow Clusters \rightarrow Tracks (with timetag)
 - CaenMca: Threshold \rightarrow TimeTag selection
 - Maps on TargetPlane
 - Geometric filter for non-tartget secondaries
- Various targets Lead, Iron, Alum., Plastics, Body-phantoms,
- Background (nontriggered MCA, natural radiactivity)
- 2D/3D reconstruction
- Material idenification capability proven

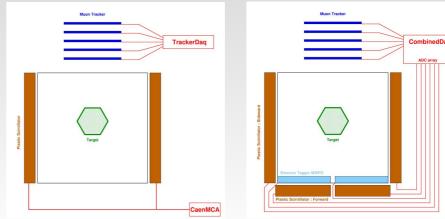

6

Muographers-2023

- Comis


Simulations


- **Geant4** simulations
- ParticleGun studies : var. energy and angle of incidence wrt experiment
- Angular dep. : forward region is more populated
 Sideward scattering (MUCA) → Forward + Sideward
- Separate Electron and Gamma spectra very different, depends on the material, simple e/γ ratios change over magnitudes (Lead: 00.3, Polyst.: 33.5)
- Real Cosmic Spectrum
- General geometry



Upgrade Plans

- <u>Co</u>smic <u>M</u>uon <u>I</u>nduced <u>S</u>econdaries
- Include forward region avoid muon → shall be segmented
- Tagging of electrons/gammas event-by-event
- Design a combined data acquisition system
- **Compact design** (portable if needed, eg. to Museums)
- Photon collection efficieny of large plastic scintillators

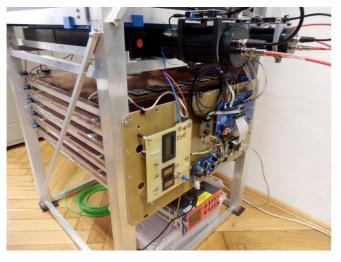
1 0.9

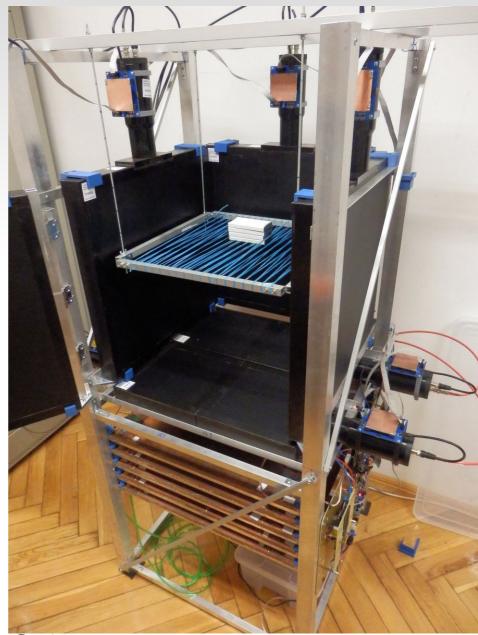
0.8 0.7

0.6

0.5 0.4

0.3 0.2

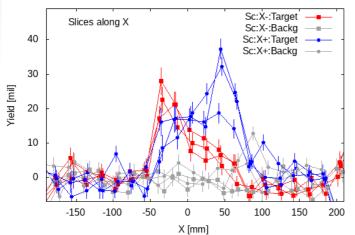

0.1

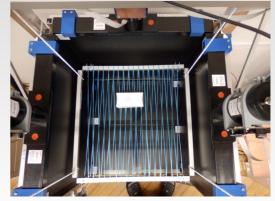

Ω

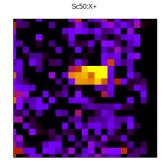
G.Hamar - Comis

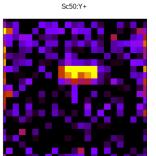
COMIS experiment

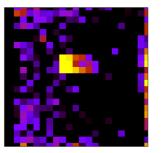
- <u>Cosmic Muon Induced Secondaries</u>
- Tracker: 5 x CCC : 50x50 cm2
- Scintillators: Sideward : 50x50x5 cm³ x 4 Forwad : 25x25x5 cm³ x 4
- FEE : Wigner-Muograph-FEE Scint.: ADC+Trigger
- Global trigger on : ForwardScints fast TriggerOut
- DAQ: Muograph-like: RPi+MtDaq+AdcArray (double timing: Scint,GasD)

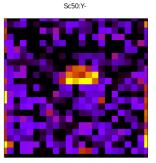



G.Hamar - Comis


COMIS experiment First Images


- Lead Target on hollow TargetHolder
- Image of the four surrounding scintillators all of them can ,,see" it internal absorbtion is clearly visible
 → attenuation as extra info for material id.

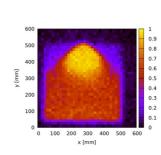

- Tuning of the gains and thresholds
- Systematic scan on materials
- Test on ,,intersting" targets
- Construction of Thin-Cathode MWPC for electron tagging (e/γ sep.) DAQ part is already prepared

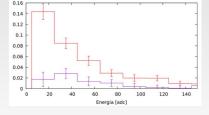


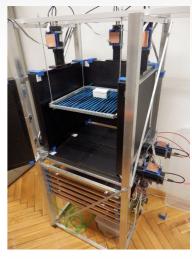
Sc50:X-

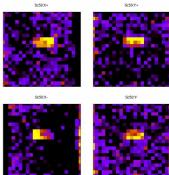
Muographers-2023

G.Hamar - Comis

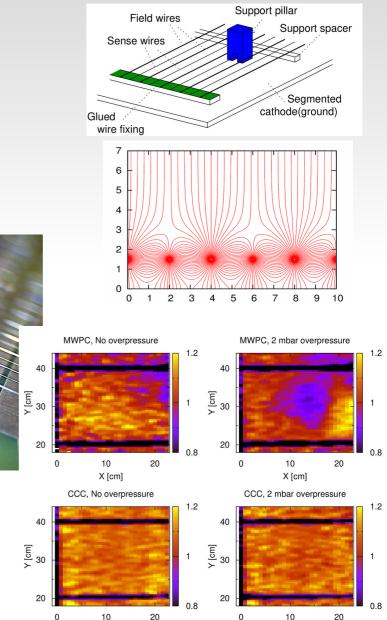

Summary


- Imaging with Cosmic Muon Induced Secondaries
- Archaeology, Material id.
- MUCA: first experiment,
- Systematics measurements started
- Material identification : experimentally proven
- Simulations: understanding physics upgrade: +forward, e/γ separation
- COMIS

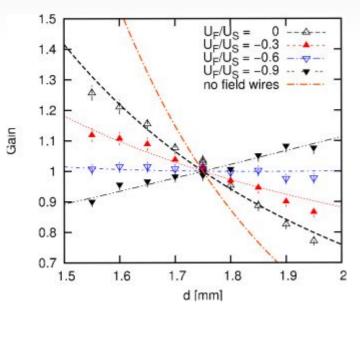

Compact design and DAQ Forward+Sidew. region


Outlook

 e/γ separation chamber material type – spectra compare w simulations interesting targets



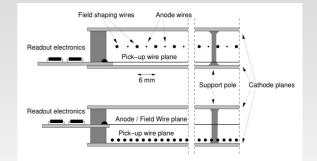
G.Hamar - Comis


Backup Slides

REGARD - Close Cathode Ch

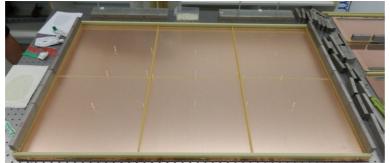
- Close Cathode Chamber (CCC)
- Sense+Field wires, FW on negative potential Insensitive to WirePlane distance,
- No robust frame is needed, Lightweight
- Simple construction due to relaxed condisions
- Good position resolution, Low occupancy

X [cm]


Muographers-2023

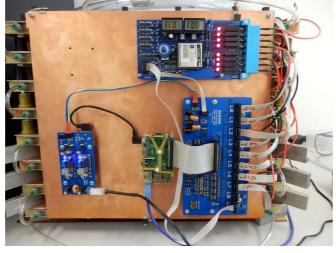
G.Hamar - Comis

X [cm]

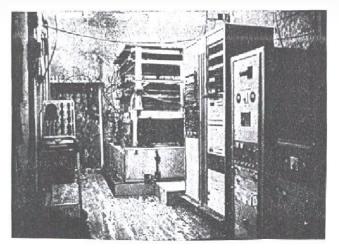

REGARD : Modified MWPC

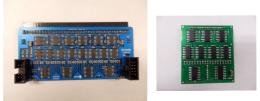
- Modified MultiWire Proportional Chamber
- Larger size detectors ~ 1m²
- Sense+Field+PadWires : Projective geometry
- Moderate resolution ~ 1cm, low n.ch \rightarrow Few FECs,
- Simple and cost-efficient construction

.


Muographers-2023

G.Hamar - Comis


Data Acquisition


- RapberryPi microcomputer (low cost) ARM CPU + Broadcom Periferals: USB, HDMI, GPIO, ...
- DataStorage + Access + Control OS eg. Raspbian linux
- GPIO pins (10MHz) adaptable for any custom protocol
- FEE: Digital: Preamp+Discrimination
 → ShiftReg : chainable, simple
 power < 5mW/ch</p>
- Trigger : N-fold coincidence for layers

Muograph Portfolio

- Application based design, considering size, consumption, durability, target and focus, portability, and user access.
- MTL-X : MWPC: 768mm, p:12mm : Mining, Large tunnels Large tracker ideal for deep underground measurements
- MTS50 : MWPC: 512mm, p:8mm : Standard tunnels, Mines Scale-down version of the MTL type, fits through 60cm doors
- MTS40 : CCC: 400mm, p:3mm : Tunnels, Caves High resolution and largish surface CCC design
- MTS25 : CCC: 256mm, p:4mm : Natural caves Good resolution one-man-carry design for tough-access caves
- **BHD-X** : CCC: 64x256mm², p:4mm : BoreHole application Four-layered tracker, fits into 10cm diameter holes
- MMOS : MWPC:1152x768mm², p:12mm : SakurajimaMO Box-encolsed, runs in system of 12 MMOS.
- MtEtna : MWPC:1152x768mm², p:12mm : Mussomeli,Etna Step-elevated geometry to enhance acceptance in target region

	Lead	Copper	Water	Polystyrene
$\gamma, E \ge 0.1 \text{MeV}$	20.7%	10.6%	0.14%	0.14%
$e^-, E \ge 1 \text{ MeV}$	6.68%	13.1%	6.08%	4.7%