

Muography Activities at CEA New Advances in Nuclear Surveillance

Héctor Gómez (CEA – Irfu) – hector.gomez@cea.fr

On behalf of Irfu's muography group

Outline

- 1.- CEA and Muography
 - A bit of history
 - General Aspects
- 2.- Nuclear Applications
 - Context
 - G2G3 Project
 - Other Projects : Container scanning
- 3.- Outlook
- 4.- Summary and Conclusions

1 CEA and Muography

CEA and Muography

Technological Transfer from IRFU's Cosmic Test Bench (From 2012)

- Characterization of detectors
 - Initially CLAS 12 Vertex Tracker Micromegas
- Based on Bulk Micromegas detectors
 - Irfu's expertise (Invented + 2 patents)
- Some advantages w.r.t. accelerators
 - Free
 - No booking needed
- Successful operation at Laboratory
 - Several types of detectors characterized

CEA and Muography

Technological Transfer from IRFU's Cosmic Test Bench (From 2012)

- Characterization of detectors
 - Initially CLAS 12 Vertex Tracker Micromegas
- Based on Bulk Micromegas detectors
 - Irfu's expertise (Invented + 2 patents)
- Some advantages w.r.t. accelerators
 - Free
 - No booking needed
- Successful operation at Laboratory
 - Several types of detectors characterized

Muon telescopes at CEA: Historic

1st Gen (2015)

2nd Gen (2016)

3rd Gen (2017)

4th Gen (2018) WatTo

ScanPyramids

Improvements:

- Compactness
- Autonomy
- Stability
- Active Surface

Applications:

- Civil Engineering
- Archaeology
- Fundamental Research
- Nuclear Domain

Muon telescopes at CEA: Nowadays

- 2D Multiplexed strips → Less DAQ
 - Patented
- Resistive Layer → Better reconstruction
- Spatial resolution $\sim 400 \mu m$
- Angular resolution ~ 4 mrad
- Time resolution ~ 10 ns

Materials

- Mostly light: Aluminium, plastic...
- Overall weight ~65 kg

Gas

- Non-flammable Ar-i C_4H_{10} -CF₄ (90:2:3)
- Recirculation system and filters
- Gas consumption ~0.3 L/h

Miniaturized DAQ components

- Front end cards
- HV modules
- All controlled by a Nano-PC
- Overall Consumption 35 W @ 12 V DC
- Possible to supply by batteries / solar panels

Slow control

- Temperature, pressure, humidity, oxygen
- Accelerometer/inclinometer → Movement
- μMs gain corrected by Amplitude feedback
 - → Stability along time

Other developments

- Gas Tightness
- Gas mixtures
- Smaller hodoscopes and Cylindrical TPC

Nuclear Applications

Nuclear Applications: French Context

A key-industry in France with an important associated R&D

CEA is a reference institution in this R&D

R&D @ CEA

- Construction and use of several ad-hoc facilities (large variety)
 - Necessity to dismantle after they use
 - Currently 36 CEA installations at clean-up and dismantling phase
 - Previous monitoring mandatory
- This R&D produces 25000 m³ of nuclear wastes per year
 - Different types (solid, liquid, radioactivity...)
 - Need to qualify and certify

Safety Questions to Address

Nuclear Energy (world-nuclear.org)

- 70 Nuclear Reactors + Flamanville
- 19 Power Plants
- New Reactors Construction (??)

- Operation and Dismantling
 - Control and Monitoring
 - Safety plans in case of accident
 - Waste management

Main Goal:

- Monitoring of the G2 and G3 nuclear reactors, located at CEA Marcoule (South France), by muon tomography to: Ready for dismantling
 - Cross-check the validity of the existing plans / designs (they date from the 60's)
 - Check the internal structure and ageing of the reactors → Reactor Body
 - Look for possible damages (e.g. fissures) inside the concrete (is it possible?)

G2 – G3 buildings @ CEA Marcoule

G2 reactor @ 2018

First analysis: Look for disagreements Reality – CAD Model

- Data / Monte Carlo comparison
 - Monte Carlo generated with the geometry from the 3D CAD model
 - Any anomaly will imply differences between the model and the real structure

GDML Reactor Geometry (interpretable by Geant4):

>22000 Geometry files

~3.4 GB

First analysis: Look for disagreements Reality – CAD Model

- Data / Monte Carlo comparison
 - Monte Carlo generated with the geometry from the 3D CAD model
 - Any anomaly will imply differences between the model and the real structure

- Detector placed at the centre of the reactor (level -0)
- Optimal position for a first overall image

First analysis: Look for disagreements Reality – CAD Model

https://irfu.cea.fr/en/Phocea/Vie_des_labos/ Ast/ast.php?t=fait marguant&id ast=4888

- Data / Monte Carlo comparison
 - Monte Carlo generated with the geometry from the 3D CAD model
 - Any anomaly will imply differences between the model and the real structure

Second analysis: Anomalies location in space

Triangulation of different measurements

5 measurements combination

Fine tuning:
Compatible results with identified elements
@ 1st analysis

Third analysis: 3D Muon tomography

SART Method

[D]
$$(n_v \times n_m)$$
 [o] $(n_v) = [o] (n_m)$

n_v: Voxels number 2688000 **25 cm side**

 n_m : 27 positions with 200 x 200 directions per 2D muoography (1080000 mesurements)

 \rightarrow [D] has ~ 2,9 10¹² elements

Procureur S et al 2023 Science Advances 9 5

Video available <u>here</u>

Container scanning

Main goal

- Container verification (not precise characterization)
 - First order density of waste (~water, heavy metals, ...)
 - Integrity of the blocking concrete

1.7 m side (5 m³) 12 tonnes overall weight

Container scanning

Main goal

- Container verification (not precise characterization)
 - First order density of waste (~water, heavy metals, ...)
 - Integrity of the blocking concrete

- Absorption set up (1 Top Tracker + 1m² bottom veto)
 - Simpler instrumentation
 - More adequate for verification

Container scanning

First proof of concept measurements expected by the end of 2023

3 Outlook

Outlook

- G2 → G3 (PhD work ongoing until November 2024)
 - 3D reconstruction focused on the graphite block
 - Measurement position and time optimization
 - Improvement of the 2D individual muographies
 - Muon track reconstruction / demultiplexing (CNN)
 - Muography denoising
 - Optimize 3D reconstruction process
 - Evaluate precision and accuracy (w.r.t. 3D model)
- Container verification
 - Proof of concept measurements
 - Fast anomalies identification (Image processing)

R&D

Tightness (Autonomy)

Packaging (Nuclear env.)

Safe and green gas mixtures

Deployment, autonomy ...

Analysis Techniques

Summary and Conclusions

Summary and Conclusions

- CEA/Irfu group developed a muon telescope based on Micromegas detectors
 - Robust technology, good performance (angular and spatial resolution)
- This telescope has been used in the last years in different muography applications
 - Archaeology
 - Engineering
 - Nuclear domain
- Among the different projects related to nuclear domain, several applications have been proven
 - Reactor model verification → FIRST 3D MUON TOMOGRAPHY OF A REACTOR
 - Nuclear waste containers inspection
- New ideas and projects ongoing

Thanks!

This talk has been possible thanks to the work of:

David Attié, Théophile Benoit, Héctor Gómez, Mariam Kebbiri, Baptiste Lefèvre, Irakli Mandjavidze, Philippe Mas, Daniel Pomarede and Sébastien Procureur. **CEA SACLAY**

91191 Gif-sur-Yvette Cedex

France

hector.gomez@cea.fr

Téléphone + 33 1 69 08 63 80