Use of Generative Adversarial Neural Networks in Muography

R. López, C. Fernández, C. Díez, P. Gómez, A. Orio, P. Martínez

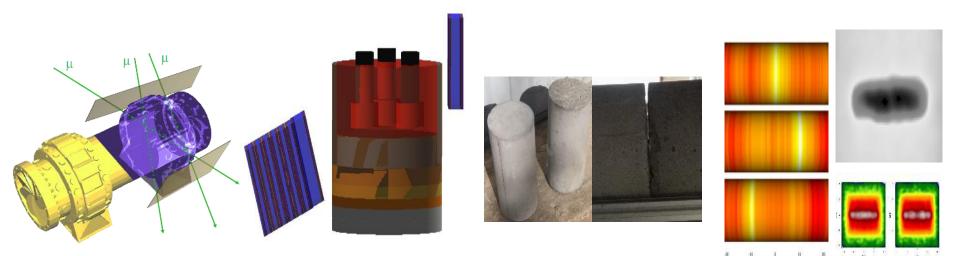
Muographers 2023: International workshop on muography

19th-22nd June 2023

Context: muography for industrial applications *if if (A*

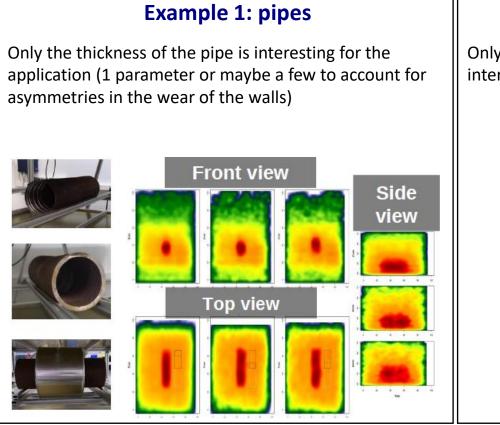
> Idea: use muon tomography as a Non-Destructive Testing (NDT) technique in the industry

- »Preventive maintenance of equipment (estimation of the degradation)
- »Quality control of the production process (measurement of liquid interfaces, tolerances, etc)
- »Risk assessment and evaluation (continuous monitoring of structural integrity)
- > Muography has some unique properties that can be very useful for these applications
 - -Large power of penetration (no problem to deal with several meters of steel)
 - »No need to physically "touch" the object \rightarrow can be applied to equipment in production



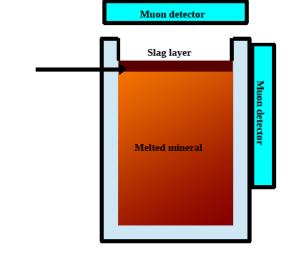
Some specifics of industrial applications

- ➢ Industrial applications usually involve to work with very well known geometries
 - > In corrosión, wear, defect, etc detection the nominal geometry is known from designs
- ➤ A full image reconstruction of the object is not critical for the application
- ▶ It is more important to estimate accurately a few interesting parameters from the data



Example 2: ladle furnace

Only the position of the slag-mixture interface is really interesting for the application (1 parameter)



P. Martínez/IFCA

Suitability for traditional ML methods

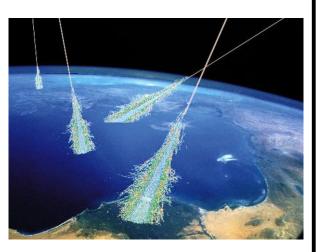
- Since the number of parameters is relatively small this can be attacked by traditional ML
 - Simple fully connected DNNs operating in regression mode to the parameters of interest
- Basic muon distributions (angular deviation, spatial deviation, etc, etc) can be used as input
 They can be quantified for example through quantiles or any other technique
- > Ideally one could use real data to train the algorithms since often this is no problem
 - -Think about the pipe problem: companies have hundreds of new, fresh, perfect pipes
- To achieve good stats these algorithms require also MC simulations to complete the training
 - >This is problematic since tools such as GEANT4 can be very time consuming
 - For example, in a simple setup with pipes can take 6 minutes to simulate one hour of data
- Several efforts have been performed to speed up simulations
 - ≻See for example

https://indico.cern.ch/event/1022938/contributions/4487326/

Simulation for scattering muography

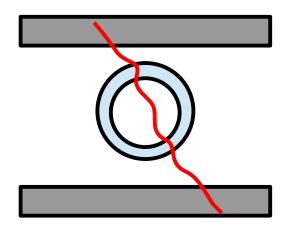
Simulation for scattering muography has three different components

Muon flux generation



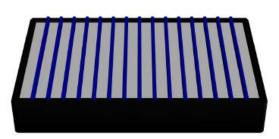
- Most generators parametrize the muon flux as a function of altitude/latitude etc
- This part is usually relatively fast
- CRY is a good example

Muon propagation through matter



- Implementation of energy loss and multiple scattering at least
- Can be very time consuming specially for complex geometres
- GEANT4 very prcise on this

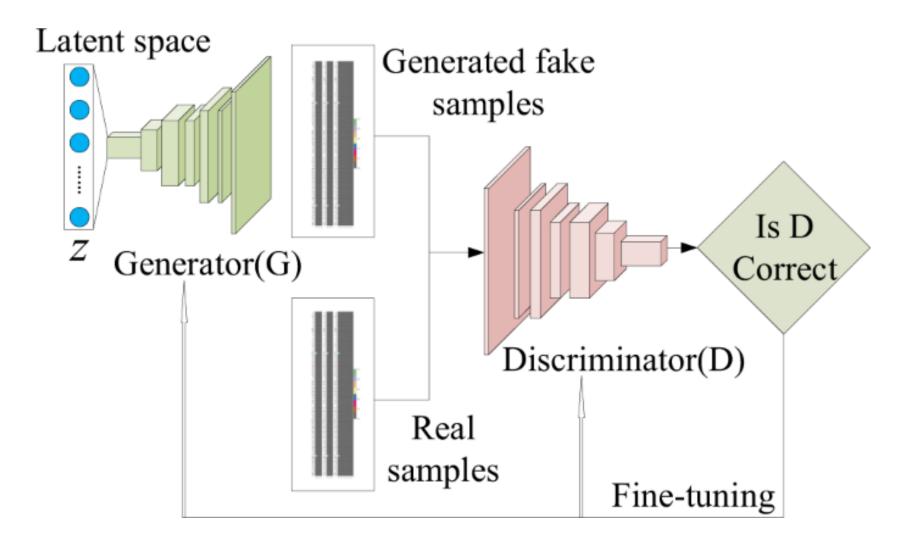
Detector simulation



- A model of the detector response
 has to be considered for precise
 MC simulation
- This part can be critical and it is typically difficult to implement
- No general récipes, every detector needs its own model

Generative Adversarial Neural Networks

» We propose to use Generative Adversarial Neural Networks to produce MC simulation



Our Muography setup (I)

- > Multiwire Proportional Chambers with tungsten-gold wires of 50 microns diameter every 4mm
 - Each chamber is a 89x89 cm² double layer with orthogonal wires to measure x and y
- Custom made electronics, ~ 95% efficiency, few microseconds deadtime, configurable trigger

Our Muography setup (II)

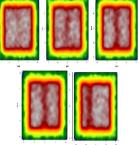
Pipe

corrosion

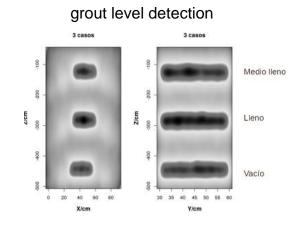
Measure of the wear: 1mm resolution 1 min exposure

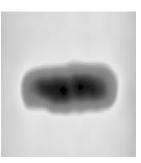
Cracks in concrete

Measure of the crack size: 2mm resolution 10 min exposure time



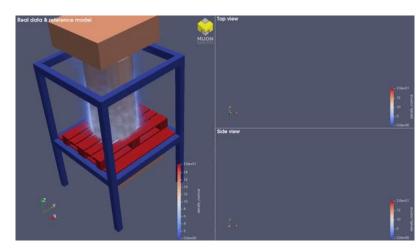
Prestressed concrete





Furnace hearth

Measure of the wall refractory: 1cm resolution 15 min exposure



Real data 3D reconstruction of a silicon smelting furnace

P. Martínez/IFCA

Use of Generative Adversarial Neural Networks in Muography

Validation of the technology Let's have some fun (sorry!)

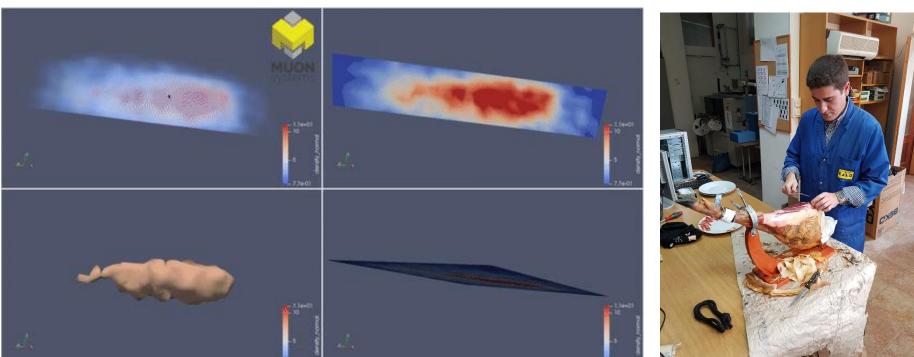
Iberic Ham "Pata Negra"



Validation of the technology Let's have some fun (sorry!)

Nice 3D reconstruction of the ham even if containing light elements

Systematic studies on this kind of sample could not be continued...
...as the sample misteriously dissappeared
Y. Martínez/IFCA Use of Generative Adversarial Neural Networks in Muography



Our Muography setup for the GAN studies

- Our GAN simulation is running for a muography setup as the one used for the pipe problem
 - This setup corresponds to the one from Muon Systems (see previous slides)
- Simulator target: predict lower segment having the upper segment as input
 - This means that we rely on CRY for the simulation of the upper segment
 - -All tests performed on MC samples where detectors are assumed to be perfect

$$x_1, y_1, v_{x1} = atan(\theta_{x1}), v_{1y} = atan(\theta_{y1})$$

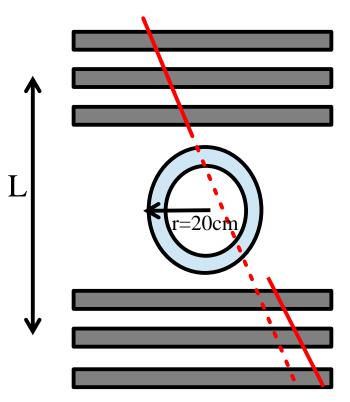
Lower detector

$$x_2$$
, y_2 , $v_{x2} = atan(\theta_{x2})$, $v_{2y} = atan(\theta_{y2})$

Target variables

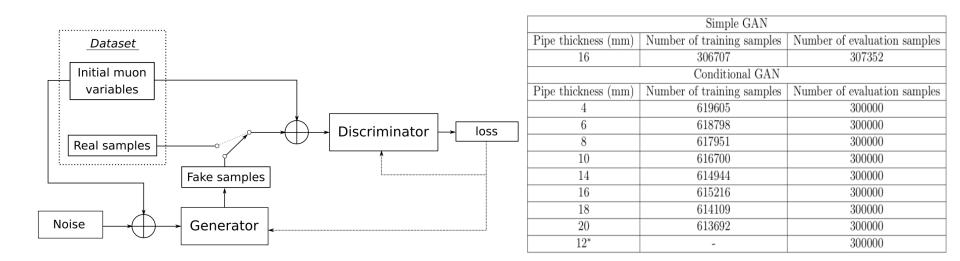
 $\Delta x = x_2 - L v_{x1} - x_1 \qquad \Delta y = y_2 - L v_{y1} - y_1$

$$\Delta v_x = v_{x2} - v_{x1} \qquad \Delta v_y = v_{y2} - v_{y1}$$



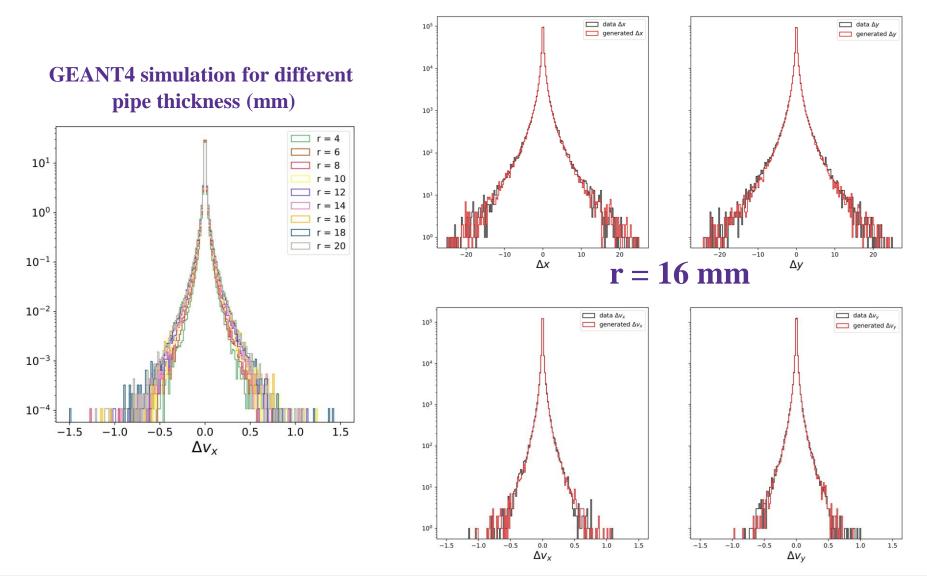
First attempt: simple GAN

- Our first attempt uses a simple GAN
 - >Keras + TensorFlow
 - >The variables of the segment in the first detector are given as input to the generator
 - -Loss function: Mean Squared Error
 - -Architecture: 512, 256, 256, 128, 64, 16 LeakyReLU
 - -Latent space dimension: 64
 - -Optimizer: Adam, 0.001 (halves every 50 epochs)
 - >Trained for 200 epochs (Total training time ~ 2-3 hours, GeForce RTX 3090)



Results using a conventional GAN (I)

> The GAN is able to produce the correct 1D distributions with a ~ 1 mm resolution

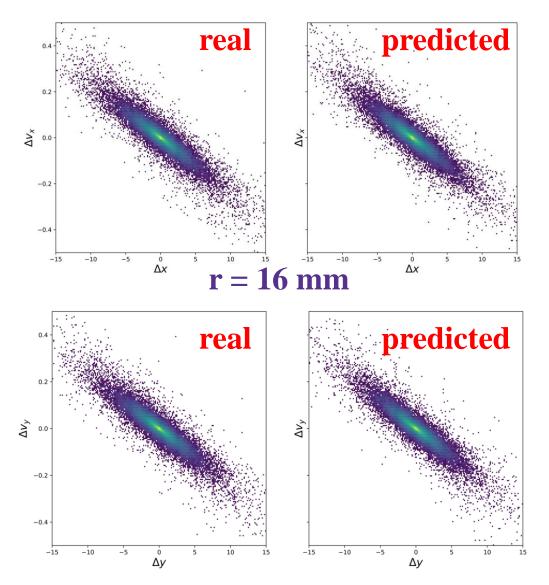


Use of Generative Adversarial Neural Networks in Muography

13

Results using a conventional GAN (II)

Correlations among variables seems to be very well described as well by the GAN



P. Martínez/IFCA

Use of Generative Adversarial Neural Networks in Muography

14

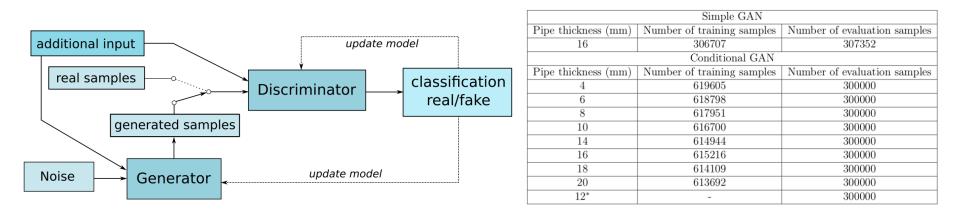
Second attempt: Wasserstein conditional GAN

- Our second attempt uses a Wasserstein conditional GAN

- -Keras + TensorFlow
- >The variables of the segment in the first detector are given as input to the generator

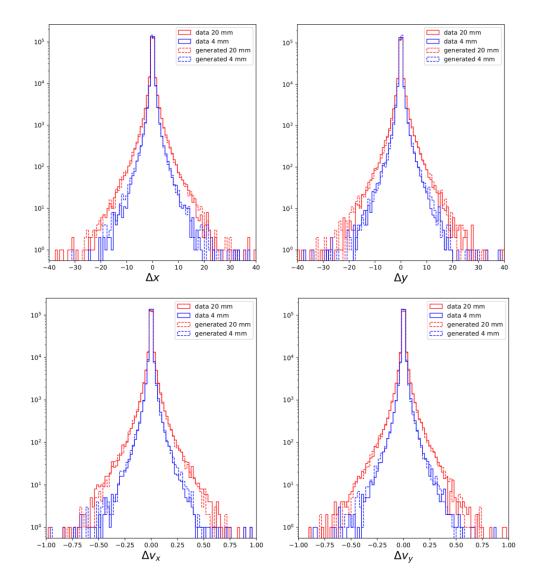
> The thickness of the pipe to be generated is also provided as input

- \sim Critic + Loss function \rightarrow more stability
- -Architecture: 32, 64, 128 LeakyReLU
- -Latent space dimension: 64
- >Optimizer: Adam, 0.001 (halves every 50 epochs)
- Trained for 1000 epochs (Total training time ~ 2-3 hours, GeForce RTX 3090)



Results using a conditional WGAN (I)

> The WGAN also provides very good results in describing the 1D distributions (and correlations)

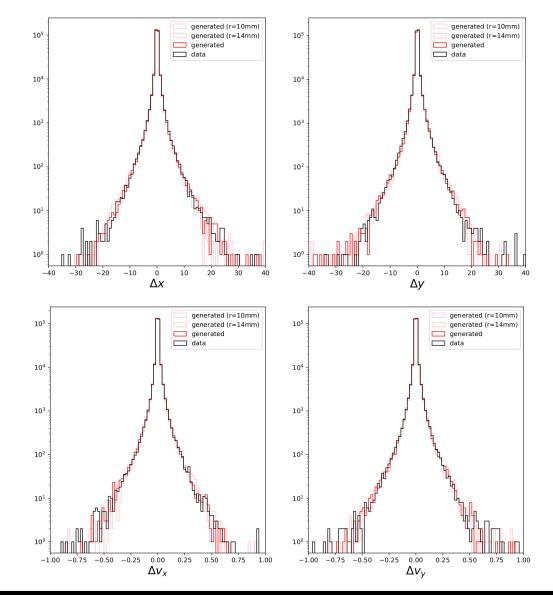


Use of Generative Adversarial Neural Networks in Muography

Results using a conditional WGAN (II)

> The WGAN seems to be able to interpolate well if trained with a large range of example

Training based on samples with a thickness of 4, 6, 8, 10, 12, 16, 18 and 20 mm. Looking results of the WGAN when asking for a sample of 14 mm.



17

Conclusions

- We have explored the possibility to use GANs to generate fast MC simulation in muography

- Two different kinds of GANs tested: simple + Wasserstein, conditional GAN

Both are giving very good results in terms of similarity to the targeted distributions

>The Wasserstein GAN seems to be in general more stable and easier to converge

>The Wasserstein, conditional GAN is able to interpolate to non-trained thicknesses

> Our setup has tested only the muon propagation part of the simulation

 \sim If trained with real data from a real detector \rightarrow capacity to learn the detector response

» We are focusing on this right now as it would be a ML driven detector simulation

> The observed **speed-up** with respect to GEANT4 is of about **50 times** for this pipe setup