The MUON CARGO project: maritime transport container and vehicle inspection by means of muon scattering tomography

Aitor Orio Alonso^{1 3} Pablo Martínez Ruiz del Árbol³ Carlos Díez González¹ Pablo Gómez García¹

¹Muon Tomography Systems S.L - Bilbao, Spain

²Instituto de Física de Cantabria (IFCA) - Universidad de Cantabria - Santander, Spain

Project financed by the Ports 4.0 fund of Puertos del Estado (spanish port government agency) [1]

Muographers, Naples Iune 19, 2023

Introduction

The challenge: automated inspection of containers and vehicles where goods and materials are carried

4-40 M TEU/year

2h/container

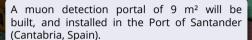
<5% inspections

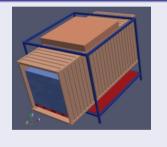
150-300€/inspection

Current solutions

Canine units: efficient but affected by fatigue and mood swings of the animals.

X-rays: harmful for operators. Require large exclusion areas, long inspection time (>15 minutes per container), and are easily shielded.


Neutron detectors: Only for radioactive materials, high false positive rate.


Introduction

MUON CARGO detection portal

MUON CARGO scanner

The MUON CARGO project

9m² prototype in 2024

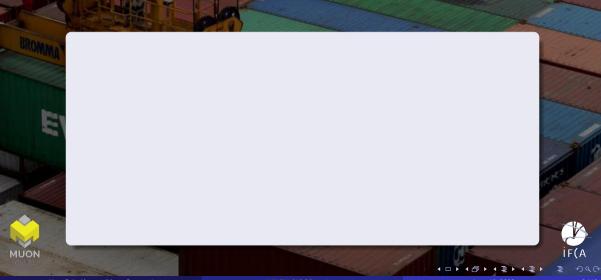
The MUON CARGO project [3], is co-financed by **Puertos del Estado [1]** (public business entity under the Spanish Ministry of Transport, Mobility and Urban Agenda).

- Budget: 650.000€
- In collaboration with IFCA (Instituto de Física de Cantabria Universidad de Cantabria)
- Three main activties: Software and algorithms (42.000€), manufacturing (420.000€), and field tests (188.000€)
- Final result: 9m² muography scanner prototype installed in the port of Santander

Modular MWPC (Multi-Wire proportional chambers)

- 4 chambers (2D grids) per m²
- 4 mm separated wires
- $\sigma_{hits} = 1.15 \, mm$
- 224 wires
- 89.6 x 89.6 cm² active detection surface

Manufacturing of 3x3 m² modular detector, based on previous designs


Details about manufacturing

The technology has been matured over 5 years of work and research in the industry

The technology has been matured over 5 years of work and research in the industry

Tested in the field: civil engineering

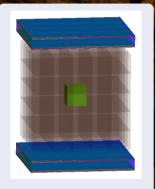
Measurements in a railway tunnel.

Absorption mode, checking tunnel overburden and voids. Recent measurements, one week campaign. Data analysis ongoing.

Software

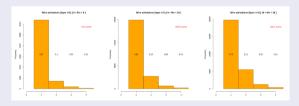
Software and imaging techniques

The project involves development of AI and scattering muography algorithms, on the basis of previous work [2]


POCA and other muography algorithms will be used to feed **autoencoders for anomaly detection**. The application of **variants of classic MLEM algorithm** are also considered. Ongoing work.

In addition to muography algorithm outputs, **complementary data** about the mass of the cargo, declared goods, and other available information will be exploited.

Simplified scenarios

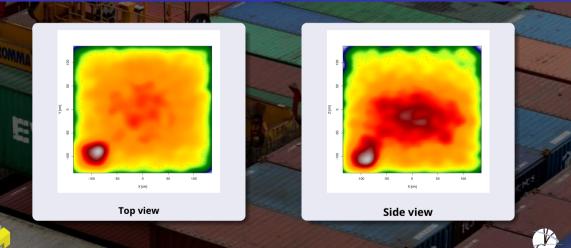


Simplified scenario

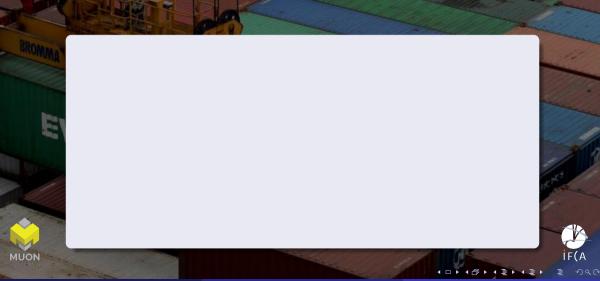
- Active detection surface = 268.8 x 268.8 cm²
- Volume of the cargo = 250 x 250 x 250 cm³
- Volume of the voxels = 50 x 50 x 50 cm³
- Target allways in the central voxel (green)
- All the voxels filled with base material
- Target voxel with different material (green)
- Base materials: Scrap (X0 = 8.833 cm), and Organic (X0 = 364.3 cm)
- Target materials: Guns (X0 = 3.533 cm), Cannabis (X0 = 145.7 cm)

Simulation

- 1 Cosmic muon flux has been generated with CRY.
- 2 Geant4 has been used to simulate the interaction of muons with matter.
- 3 Simulations consider the design of our MWPC: resolution, and materials.
- 4 Multiple wire activation depending on the incident angle of muons.



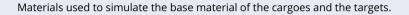
Real world HW data: wire activations depending on muon incidence angle (θ_{in})


10 minute POCA muography: guns in the central voxel (50x50x50cm³) surrounded by organic material

10 minute POCA muography: guns in the bottom left corner (50x50x50cm³) surrounded by organic material

Detailed scenarios

Conclusions


- Muon Cargo is a project funded by the Spanish Government to install a muography portal for container inspection in the port of Santander (Cantabria, Spain).
- 2 The portal will have 9 m² of detectors using MWPC chambers that have been widely tested in the industry sector.
- § From a software point of view several approaches are being developed: from classic algorithms to new developments for anomaly detection.
- The project will be finished by the end of 2024, currently detectors are under construction. More results will come soon.

lune 19, 2023

Thank you I look forward to receiving any questions or comments E-mail: aitor.orio@muon.systems

Material	X0 (cm)	d (g/cm³)	Composition
Scrap	8.833	1.570	20% Steel + 80% Air
Organic	364.3	0.100	10% Organic + 90% Air
Guns	3.533	3.925	50% Steel + 50% Air
Cannabis	145.7	0.250	25% Organic + 75% Air

Table: Material definition.

References

Puertos del Estado https://www.puertos.es/es-es

P. Martinez, A. Orio, C. Díez, and P. Garcia (2022)

Applications of Muography to the Industrial Sector Journal of Advanced Instrumentation in Science, vol. 2022, Apr. 2022. https://doi.org/10.31526/jais.2022.267

MUON CARGO project

https://muon.systems/en/muoncargo

