3D muon-tomography of an underground crack zone
inversion methodology and validation by drills

Muographers 2023
International Workshop on Muography

1,2,3Gábor Nyitrai, 1,2D. Varga, 1,4G. Surányi, 1,4L. Balázs

1Wigner RCP, Budapest, Hungary
2International Virtual Muography Institute, Global
3Budapest University of Technology and Economics, Hungary
4Muon Solutions Oy, Finland

nyitrai.gabor@wigner.hu
Outline

• Crack zone imaging introduction
• Formulation of a Bayesian reconstruction algorithm
• Inversion results on a real case („Kiráylak” measurements)
• Outlook
Why crack zone imaging is interesting

- Crack zones are low density regions (created by termohydraulic erosion or tectonic movement)
- Dangerous for the civil infrastructure of construction

Landslide (image: NASA)

Tunnelling through fault zone
Mathematical background of density reconstruction

• Base equation of the (linearized) inverse problem: \(\gamma = F\rho \)

• Issues: imperfect mapping to voxel grid, underdetermination, limited detector positioning, inhomogeneous statistics, systematic uncertainties, etc...

• Regularization: Bayes criterion, Maximum Likelihood, linearization, 2D simplification → parameter bias and artifacts, but the back-projection of the measurement uncertainty weights can be used for filtering. Weigth matrix: \(W \)

• Functional to be minimized follows from the weighted least squares:
 \[
 Q^{(0)} = Q^{(0)}_\gamma + Q^{(0)}_\rho = (\gamma - F\rho)^T W_\gamma (\gamma - F\rho) + (\rho - \rho^{(0)})^T W^{(0)}_\rho (\rho - \rho^{(0)})
 \]

 Maximum Likelihood Bayes parameters to be fitted

• Estimation of the density distribution:
 \[
 \rho^{(1)} = \left(R + W^{(0)}_\rho \right)^{-1} \left(F^T W_\gamma \gamma + W^{(0)}_\rho \rho^{(0)} \right)
 \]

 where \(R = F^T W_d F \) is the Fischer matrix.

Gábor Nyitrai
Test on synthetic data

- 5 underground measurement assumed
- 3 m diameter cavity in the middle
Imaging of crack zones in Budapest from the „Királylaki” tunnels

- Multiple anomalies found -> cavities?
- Beginning with „triangulation”
- Where to drill? (closest point of the anomalies)
Configuration of the measurements

- Bayesian inversion applied on the measurements
- Positions along a straight line -> 2+1D slicing (stability, convergence, comp. time)
Inverse solution

- Density distribution results showing significant anomalies crosswise
- No anomaly in south (-0.2) -> homogeneous density
- Validation drills indicated
Parameter distribution and sensitivity

• Estimated density uncertainty converges to the Bayesian constraint (in low-sensitivity region)
• The distribution of density values peak around the assumed solid rock density (extra humb due to the anomalies)
• The distribution of estimated errors (residual distribution) has an almost zero mean Gaussian shape distribution (minimal Bayesian bias)
• Results are not sensitive to the Bayes condition
Validation by core drills

- Exploratory drills (5—10 m length) into the anomalies
- The altered dolomite powder found (~1.8 g/cm³) besides the base rock (~2.6 g/cm³)
History and perspectives of the results

Hungarian geological book from 1929 reported landslides in the region
Schafarzik, Vendl: Geológiai kirándulások Budapest környékén

New housing estates next to the entrance of the Királylaki tunnels
-> Possibility of danger should be re-examined?

Secret documentation from the 60s for the construction of a gas reservoir
Further possible landslide imaging project: Santorini (Greece)
Towards 3D inversion and further applications

• Direct 3D inversion implementation on the way
• Test on an ideal case of a vertical shaft
• Inversion results (central slices)

Applications expected i.a. Buda Castle anomalies (see G. Surányi’s presentation)
Summary

• Crack zone imaging important for civil engineering (landslides, tunneling)
• Possible by muography („Királylak” measurement case, validated by drills)
• A 3D inversion method demonstrated (applying Maximum Likelihood and Bayesian approach)
• Paper submitted by L. Balázs et al.
Thank you for your attention!

Financial Support:
• Horizon Europe Mine.io, no. 101091885
• Uni.Tokyo ERI, JURP, Applied muography, no. 2020-H-05
• Hungarian NKFIH TKP, no. 2021-NKTA-10
• Hungarian ELKH – KT, no. SA-88/2021
• Hungarian OTKA, no. FK-135349
• H2020 MSCA RISE, INTENSE 2018, no. 822185
Backup slides
Point-response mapping