Physics potential for $\sigma \times BR(H \rightarrow ZZ^*)$ measurement at CLIC

ECFA Workshop, 5 - 7 October 2022

N.Vukasinovic¹, I.Bozovic-Jelisavcic¹, G.Milutinovic-Dumbelovic¹, G.Kacarevic¹, M.Radulovic², J.Stevanovic²

on behalf of the CLICdp Collaboration

¹VINCA Institue of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade

²Faculty of Science, University of Kragujevac

Overview

- Introduction to CLIC
- $H \rightarrow ZZ^*$ analyses at CLIC
- $H \rightarrow ZZ^*$ at 350 GeV
- Results
- Summary

Introduction to CLIC

- CLIC is a mature option for e⁺e⁻ collider at CERN (Higgs factory and beyond)
- Energy staged from 380¹ (350) GeV up to 3 TeV
- Baseline ± 80 % electron polarization

- Particle reconstruction and identification with Particle Flow Algorithm
- Jet energy resolution (3-5)%
- Efficient lepton identification and p_T measurement ($\Delta p_T/p_T^2$) ~ 2.10⁻⁵ GeV⁻¹

Detector performance optimized to Higgs physics program

 $^1380~\text{GeV}$ option enables top quark measurements above the $t\bar{t}$ threshold.

Natasa Vukasinovic

Introduction to $H \rightarrow ZZ^*$ analyses

[1] CLICdp-Note-2018-002

Overview of the method (all analyses)

- Lepton Isolation with Bremsstrahlung recovery First the 2 isolated electrons or muons are found
- Jet Reconstruction
 - Events are grouped in 4 (2) jets by k_T algorithm, with cone radius R = 1.1 (350 GeV) / 1 (1.4 TeV) / 0.7 (3 TeV)
- LCFI Vertexing (heavy flavors)

Helps in separation of background processes containing b and c jets

- Preselection (reduce large cross-section backgrounds) Exactly 2 isolated leptons per event
- MVA Selection

Maximizing statistical significance (S) of signal to background separation

 Relative statistical uncertainty of the (σ×BR) observable is derived from the statistical significance

$\rm H \rightarrow ZZ^{*}$ at 350 GeV

Signal	σ (fb)	N _{evt} @ 1 ab⁻¹
$e^+e^- \rightarrow HZ, Z \rightarrow q\overline{q}, H \rightarrow ZZ^*,$ $ZZ^* \rightarrow q\overline{q}l^+l^- (l = e, \mu)$	0.24	240
Background		N_{evt} @ 1 ab ⁻¹ · 10 ³
$e^+e^- \rightarrow ZH, Z \rightarrow q\overline{q}, H \rightarrow others$	7.0	7.0
$e^+e^- \rightarrow ZH, Z \rightarrow q\overline{q}, H \rightarrow WW \rightarrow q\overline{q}q\overline{q}$	10.5	10.5
$e^+e^- \rightarrow ZH, Z \rightarrow \mu^+\mu^-, H \rightarrow others$	2.3	2.3
$e^+e^- \rightarrow ZH, Z \rightarrow e^+e^-, H \rightarrow others$	2.3	2.3
$e^+e^- \rightarrow ZH, Z \rightarrow \mu^+\mu^-, H \rightarrow WW \rightarrow q\bar{q}q\bar{q}$	0.7	0.7
$e^+e^- \rightarrow ZH, Z \rightarrow e^+e^-, H \rightarrow WW \rightarrow q\bar{q}q\bar{q}$	0.7	0.7
$e^+e^- \rightarrow q\bar{q}q\bar{q}l^+l^-$	4.5	4.5
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	5847	5800
$e^+e^- \rightarrow q\bar{q}l^+l^-$	1704	1700

Preselection

- Several preselection criteria:
- Track energy (E_{track}> 5 GeV),
- Impact parameter (R₀ < 0.03 mm),
- Energy deposited in calorimeters $\left(\frac{E_{ECAL}}{E_{ECAL}+E_{HCAL}} < 0.35 \text{ or } > 0.9\right)$
- Lepton isolation curve ($E_{cone}^2 < 48 \text{ GeV} * E_{track} + 16 \text{GeV}^2$)

Preselection efficiencies

Background	ε _{presel} (%)		
$e^+e^- \rightarrow ZH, Z \rightarrow q\overline{q}, H \rightarrow others$	0.37	·····	CLICdp
$e^+e^- \rightarrow ZH, Z \rightarrow q\overline{q}, H \rightarrow WW \rightarrow q\overline{q}q\overline{q}$	0.42		10 ³
$e^+e^- \rightarrow ZH, Z \rightarrow \mu^+\mu^-, H \rightarrow others$	61	ب _ہ 10 ²	- 10 ²
$e^+e^- \rightarrow ZH, Z \rightarrow e^+e^-, H \rightarrow others$	62	10 JU	
$e^+e^- \rightarrow ZH, Z \rightarrow \mu^+\mu^-, H \rightarrow WW \rightarrow q \overline{q} q \overline{q}$	59.6	con	CON
$e^+e^- \rightarrow ZH, Z \rightarrow e^+e^-, H \rightarrow WW \rightarrow q\bar{q}q\bar{q}$	60.4		
$e^+e^- \rightarrow q\bar{q}q\bar{q}l^+l^-$	21	10 ⁻¹	10 ⁻¹
$e^+e^- \rightarrow q\bar{q}q\bar{q}$	0.32	50 100 m _H	50 100 150 2 m _H (GeV)
$e^+e^- \rightarrow q\bar{q}l^+l^-$	11.4		

- Signal preselection efficiency: 77%
- Background rejection rate $\approx 97\%$

MVA

- MVA is employed with 17 sensitive observables (N_{PFO} , jet flavors, kinematic and event shape observables)
- The most sensitive observables: lepton energy, jet transition variable y_{23} and m_Z (primary)
- BDT efficiency: 25%, Significance in application: 5, δ(σ×BR)=20%

Results

Process	σ (fb)	N _{evt}	δ (σ xBR) (%)
@ 350 GeV ¹ $e^+e^- \rightarrow HZ, Z \rightarrow q\overline{q}, H \rightarrow ZZ^*, ZZ^* \rightarrow q\overline{q}l^+l^-$	0.240	240 @ 1 ab ⁻¹	20±2
@ 1.4 TeV ² $e^+e^- \rightarrow H\nu\nu, H \rightarrow ZZ^*,$ $ZZ^* \rightarrow q\bar{q}l^+l^-$	0.995	1500 @ 1.5 ab ⁻¹	6±1 4.3 <i>±</i> 0.4 [*]
@ 3 TeV 1 $e^+e^- \rightarrow H\nu\nu, H \rightarrow ZZ^*,$ $ZZ^* \rightarrow q\bar{q}l^+l^-$	1.130	6000 @ 5 ab ⁻¹	3.0±0.1

- High-energy measurements are superior in statistical precision
- Statistical significance is affected by the presence of irreducible backgrounds, in particular when the signal cross-section is small(er)
- Left-handed electron beam polarization will additionally improve statistical precision of the high-energy measurements (1.4 TeV and 3 TeV) for a factor of 1.8 in crosssection of WW-fusion

Natasa Vukasinovic

¹ N. Vukasinovic et al., Phys. Rev. D 105 (2022) 092008

² G. Milutinovic Dumbelovic, CERN-THESIS-2017-349 and CLIC Collaboration, Eur.Phys.J. C77 (2017) no.7, 475

^{*} Updated CLIC luminosity staging (scaled)

Summary

- H → ZZ* decays in semileptonic final state are studied at all CLIC energies
- The most promising relative statistical precision of order of a few percent on σ×BR can be reached at higher center-of-mass energies (1.4 TeV and 3 TeV), due to a more abundant signal produced in WW-fusion.

In addition, left-handed electron beam polarization can further improve the statistical precision.

 The utmost precision (several permille) on g_{HZZ} can be obtained in a global fit of cumulative data from all energy stages

BACKUP

