

QCD contributions to the muon anomalous magnetic moment

Gernot Eichmann

University of Graz

Alps 2023
March 28, 2023

Muon g-2

$$
a_{\mu}\left[10^{-10}\right]
$$

Exp:	11659206.1	(4.1)
QED:	11658471.9	(0.0)
EW:	15.4	(0.1)
Hadronic:		
• VP (LO+HO)	684.5	(4.0)
•LBL		9.2
SM:	11659	181.0
	(4.3)	
Diff:	25.1	(5.9)

Muon g-2 Theory Initiative White Paper: Aoyama et al., Phys. Rept. 887 (2020)

FNAL Run-1: Abi et al., PRL 126, 141801 (2021)

Muon g-2

$$
\begin{aligned}
=i e \bar{u}\left(p^{\prime}\right)\left[F_{1}\left(Q^{2}\right) \gamma^{\mu}-F_{2}\left(Q^{2}\right) \frac{\sigma^{\mu \nu} Q^{\nu}}{2 m}\right] u(p) \\
F_{2}(0)=a_{\mu}=\underbrace{\frac{\alpha_{\mathrm{QED}}}{2 \pi}}+\mathcal{O}\left(\alpha_{\mathrm{QED}}^{2}\right) \\
\text { und } \begin{array}{l}
\text { 0.001161... } \\
\text { Schwinger } 1948
\end{array}
\end{aligned}
$$

- QED contributions overwhelming, known up to 5 loops, precision good enough

$$
a_{\mu}\left[10^{-10}\right]
$$

Exp:	11659206.1	(4.1)
QED:	11658471.9	(0.0)
EW:	15.4	(0.1)
Hadronic:		
•VP (LO+HO)	684.5	(4.0)
•LBL	9.2	(1.8)
SM:	11659	181.0
Diff:	25.1	(4.3)

exemplary 4-loop diagrams (892 in total)
Aoyama, Hayakawa, Kinoshita, Nio, PRL 109 (2012)

- Remainder small: 10^{-12} for electron, 10^{-8} for muon
- EW contributions known to 2 loops

Muon g-2 Theory Initiative White Paper:
Aoyama et al., Phys. Rept. 887 (2020)
FNAL Run-1: Abi et al., PRL 126, 141801 (2021)

Muon g-2

$$
\begin{aligned}
=i e \bar{u}\left(p^{\prime}\right)\left[F_{1}\left(Q^{2}\right) \gamma^{\mu}-F_{2}\left(Q^{2}\right) \frac{\sigma^{\mu \nu} Q^{\nu}}{2 m}\right] u(p) \\
F_{2}(0)=a_{\mu}=\underbrace{\frac{\alpha_{\mathrm{QED}}}{2 \pi}}+\mathcal{O}\left(\alpha_{\mathrm{QED}}^{2}\right) \\
\text { und } \begin{array}{l}
\text {.001161... } \\
\text { schwinger } 1948
\end{array}
\end{aligned}
$$

- QCD contributions dominate theory uncertainty:

Need to pin down as precisely as possible:

- Dispersion theory: data driven
- Lattice QCD: ab-initio
- Functional methods: in principle ab-initio, but no systematic error control yet for g-2
- AdS/QCD, Hadronic models, ...

Hadronic vacuum polarization

- $\mathcal{O}\left(\alpha^{2}\right)$, largest QCD contribution, dominates uncertainty
- Vector current correlator:

$$
\sim \Pi^{\mu \nu}(Q)=\int d^{4} x e^{i Q \cdot x}\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle, \begin{array}{r}
\\
\\
=\Pi\left(Q^{2}\right)\left(Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}\right)
\end{array}
$$

- Leading contribution to a_{μ}^{HVP}
dominated by small momenta $Q^{2} \sim m_{\mu}^{2}$

$$
a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\alpha^{2} \int d Q^{2}(\ldots) \Pi_{\mathrm{ren}}\left(Q^{2}\right)
$$

HVP - R ratio

- Direct relation to experiment: \mathbf{R} ratio $e^{+} e^{-} \rightarrow$ hadrons

Data from CMD-2/3 \& SND, KLOE, BaBar, BES III, CLEO-c

$$
s=-Q^{2}
$$

- Use optical theorem + dispersion relations to rewrite integral in terms of R ratio

$$
\operatorname{lm}_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=\frac{\alpha^{2}}{3 \pi^{2}} \int d s \frac{K(s)}{s} R(s)
$$

HVP - R ratio

- Biggest contribution from low energies ($0.6 \ldots 0.9 \mathrm{GeV}$) around ρ / ω poles

- Dominant channel is $\pi^{+} \pi^{-}$, followed by $3 \pi, 4 \pi, K^{+} K^{-}, \ldots$

- $\pi \pi$ data not fully consistent

HVP - Lattice QCD

$$
\Pi^{\mu \nu}(x)=\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle=\int \mathcal{D}[\psi, \bar{\psi}, A] e^{-S} j^{\mu}(x) j^{\nu}(0)
$$

- Large efforts underway, results from several collaborations
- Difficult problem, spans scales from m_{π} to several GeV , finite-volume effects, disconnected contributions, isospin breaking \& QED effects
- Biggest uncertainties in $\Pi\left(Q^{2}\right)$ at very low Q^{2}
- Tensions with dispersive results, but errors still comparatively large
- BMW: physical pion masses, isospin breaking \& QED effects
Borsanyi et al., Nature 593, 51 (2021)

HVP from:

Colangelo et al., 2203.15810

HVP - Lattice QCD

- Cross-checks: "windows" in Euclidean time and \sqrt{s}

Blum et al., PRL 121 (2018), Lehner \& Meyer, PRD 101 (2020)

Colangelo et al., PLB 833 (2022) 137313

Short distance: 10\%
Intermediate window: 33\%, precise lattice results

Lattice calculations agree on light-quark connected contribution Fermilab, HPQCD, MILC: 2301.08274

Long distance: 57\%, finite-volume effects

HVP - R ratio?

- New CMD-3 results for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$are even more puzzling...

CMD-3 Collaboration: Ignatov et al., 2302.08834

HVP - Functional methods

$$
\sim \sim \sim \underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](0)}_{j^{\nu}(0)}\rangle
$$

- Depends on quark propagator \& quark-photon vertex, satisfy Dyson-Schwinger and Bethe-Salpeter equations GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)
\qquad
\qquad $-1+$

QCD ingredients rely on truncations, systematic improvements necessary (and underway)
constituent-quark mass": nonperturbative effect

- Quark mass is not constant: dynamical mass generation

$$
\frac{p}{-} \quad S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}
$$

- Quark-photon vertex has 12 tensors:

$$
i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \Delta_{A}+\Delta_{B}\right)
$$

Ball-Chiu vertex, determined by WTI, depends only on quark propagator Ball, Chiu, PRD 22 (1980)

Transverse part, contains dynamics (VM poles, cuts, ...), 8 dressing functions

HVP - Functional methods

$$
\begin{aligned}
\sim & =\langle\underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](0)}_{j^{\nu}(0)}\rangle \\
& =\gamma_{\alpha \beta}^{\mu} \gamma_{\rho \sigma}^{\nu}\left\langle\bar{\psi}_{\alpha}(x) \psi_{\beta}(x) \bar{\psi}_{\rho}(0) \psi_{\sigma}(0)\right\rangle \\
& =\sim G
\end{aligned}
$$

- Depends on quark propagator \& quark-photon vertex, satisfy Dyson-Schwinger and Bethe-Salpeter equations
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016)
\qquad
\qquad ${ }^{-1}+$

QCD ingredients rely on truncations, systematic improvements necessary (and underway)

Adler function: $\quad D\left(Q^{2}\right)=-Q^{2} \frac{d \Pi\left(Q^{2}\right)}{d Q^{2}}$

$a_{\mu}^{\mathrm{HVP}}=710(34) \times 10^{-10}$
Goecke, Fischer, Williams, PLB 704 (2011)

- Quark mass is not constant: dynamical mass generation

$$
\frac{p}{-} \quad S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}
$$

- Quark-photon vertex has 12 tensors:

HVP - Functional methods

$$
\begin{aligned}
\sim \sim & =\langle\underbrace{\left[\bar{\psi} \gamma^{\mu} \psi\right](x)}_{j^{\mu}(x)} \underbrace{\left[\bar{\psi} \gamma^{\nu} \psi\right](0)}_{j^{\nu}(0)}\rangle \\
& =\gamma_{\alpha \beta}^{\mu} \gamma_{\rho \sigma}^{\nu}\left\langle\bar{\psi}_{\alpha}(x) \psi_{\beta}(x) \bar{\psi}_{\rho}(0) \psi_{\sigma}(0)\right\rangle \\
& =\sim \sim G
\end{aligned}
$$

\qquad
\qquad ${ }^{-1}+$

QCD ingredients rely on truncations, systematic improvements necessary (and underway)

contributes 80% to $\mathrm{g}-2$,

 resonance dynamics important- Quark-photon vertex has 12 tensors:

$$
i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \cdot \Delta_{A}+\Delta_{B}\right)
$$

Ball-Chiu vertex, determined by WTI, depends only on quark propagator

Transverse part, contains dynamics (VM poles, cuts, ...), 8 dressing functions

Hadronic light-by-light

- $\mathcal{O}\left(\alpha^{3}\right)$, known to $\sim 20 \%$, target: 10%
- more difficult, no direct data

Pre-WP: model results ("Glasgow consensus")
Jegerlehner, Nyffeler, Phys. Rept. 477, 1 (2009)

- Large uncertainties (and differences among calculations) in individual contributions
- Pion exchange dominant
- What about quark loop: double-counting?

HLbL

- Systematic treatment in dispersive approach, but significantly more complicated than HVP
Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015), PRL 118 (2017), JHEP 04 (2017),
Pauk \& Vanderhaeghen, PRD 90 (2014), ...

$=$

pseudoscalar poles

HLbL

- Systematic treatment in dispersive approach, but significantly more complicated than HVP
Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015), PRL 118 (2017), JHEP 04 (2017),
Pauk \& Vanderhaeghen, PRD 90 (2014), ...

Depend on $\pi^{0} \rightarrow \gamma \gamma, \eta \rightarrow \gamma \gamma$
transition form factors

- Dispersion theory

Hoferichter, Hoid, Kubis, Leupold, Schneider, JHEP 10 (2018)

- Padé and Canterbury approximants

Masjuan, Sánchez-Puertas, PRD 95 (2017)

- Functional methods (DSEs \& BSEs)

Raya et al., PRD 93 (2016), GE, Fischer, Weil, Williams, PLB 774 (2017), PRD 96 (2017), PLB 799 (2019)

- ...

HLbL

- Systematic treatment in dispersive approach, but significantly more complicated than HVP
Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015), PRL 118 (2017), JHEP 04 (2017),
Pauk \& Vanderhaeghen, PRD 90 (2014), ...

- DSEs and BSEs:

$\pi^{0} \rightarrow \gamma \gamma$ transition form factor
GE, Fischer, Weil, Williams, PLB 799 (2019)

HLbL

- Systematic treatment in dispersive approach, but significantly more complicated than HVP
Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015), PRL 118 (2017), JHEP 04 (2017),
Pauk \& Vanderhaeghen, PRD 90 (2014), ...

- DSEs and BSEs:

Depend on π, K electromagnetic FFs

GE, Fischer, Weil, Williams, PLB 799 (2019), GE, Fischer, Williams, PRD 101 (2020)

HLbL - Kaon box

- Solve quark DSE \& meson BSE in rainbow-ladder

- Calculate quark-photon vertex in rainbow-ladder \& kaon electromagnetic form factor

- Compute HLbL contribution, Meson box \leftrightarrow FsQED
Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015) Kinoshita, Nizic, Okamoto, PRD 31 (1985)

- Kaon box is very small ($\sim 3 \%$ of pion box) GE, Fischer, Williams, PRD 101 (2020)

$$
\begin{aligned}
& a_{\mu}^{\pi^{ \pm}-\text {box }}=-15.7(2)(3) \times 10^{-11} \\
& a_{\mu}^{K^{ \pm}-\text {box }}=-0.48(2)(4) \times 10^{-11} \rightarrow-0.46(2) \times 10^{-11} \\
& \text { WP } 20
\end{aligned}
$$

- Similar results from model calculations

Bijnens, Pallante, Prades, Nucl. Phys. B 474 (1996), Hayakawa, Kinoshita, Sanda, PRL 75 (1995), PRD 54 (1996)

- Dispersive result

Stamen, Hariharan, Hoferichter, Kubis, Stoffer, EPJC 82 (2022)

Structure of LbL amplitude

- Similar decomposition as for HVP

GE, Fischer, PRD 85 (2012),
Goecke, Fischer Williams, PRD 87 (2013)

+ permutations +2 further topologies
- 136 tensors, each dressing function depends on 6 variables GE, Fischer, Heupel, PRD 92 (2015)

$$
\Gamma^{\mu \nu \rho \sigma}(p, q, k)=\sum_{i=1}^{136} f_{i}\left(\mathcal{S}_{0}, \nabla, \boxtimes\right) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k)
$$

relevant kinematic domain for g -2

- Gauge invariance $\Rightarrow 41$ tensors, must find "minimal basis" ($41+95$), transverse projection of incomplete calculation can produce kinematic singularities Bardeen, Tung, Phys. Rev. 173 (1968), Tarrach, Nuovo Cim. A28 (1975), Drechsel et al., PRC 55 (1997), GE, Ramalho, PRD 98 (2018)
- Construct transverse basis from systematic power counting $\Rightarrow 41$ singlets GE, Fischer, Heupel, PRD 92 (2015)

n	Seed element	\#	Multiplets	$\mathrm{n}=4$	$\mathrm{n}=6$	$n=8$	$\mathrm{n}=10$	$n=12$
4	$t_{12}^{\mu \nu} \mu_{41}^{p g}$	3	\mathcal{S}, \mathcal{D}_{1}	1	1	1		
	$\varepsilon_{12}^{\mu \nu} \varepsilon_{31}^{\mu \rho}$	3	$\mathcal{S}, \mathcal{D}_{1}$	1	1	1		
6		12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{2}^{+}, \mathcal{T}_{2}^{-}, \mathcal{A}$		1	3	5	3
	$t_{12}^{\alpha a} t_{x 1}^{\alpha \alpha} f_{44}^{\lambda \alpha}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$		1	2	3	
		7	$\mathcal{S}, \mathcal{T}_{1}^{+}, \mathcal{T}_{1}$		1	1	3	2
	$\varepsilon_{12}^{\mu \alpha \varepsilon_{31}^{\rho \lambda} t_{24}^{\lambda \sigma}}$	7	$\mathcal{D}_{2}, T_{2}^{+}, T_{1}^{-}, \mathcal{T}_{2}^{-}$			2	5	
8	$t_{12}^{\alpha v} t_{31}^{\rho \alpha} t_{12}^{a s} t_{24}^{3 \sigma}$	3	$\mathcal{S}, D_{1}, T_{1}^{+}$			1	2	
	Total	41		2	5	11	18	5

7 equivalent seeds in dispersive approach
Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015)

HLbL - Lattice

- Difficult problem, QCD + QED, disconnected diagrams

RBC/UKQCD: Blum, Christ, Hayakawa, Izubuchi, Jin, Jung, Lehner, PRL 124 (2020)
Mainz: Chao, Hudspith, Gérardin, Green, Meyer, Ottnad, EPJ C 81 (2021)

- Compatible with dispersive results
- Direct calculation of LbL amplitude in forward limit: pion pole dominance
Gérardin, Green, Gryniuk, Hippel, Meyer,
Pascalutsa, Wittig, PRD 98 (2018)
- HLbL likely may not explain discrepancy

Colangelo et al., 2203.15810

Summary

- Current g-2 status SM vs. experiment: 4.2σ

WP20: Aoyama et al., Phys. Rept. 887 (2020) FNAL Run-1: Abi et al., PRL 126, 141801 (2021)

- Experimental uncertainty to be improved:

FermiLab ($0.46 \rightarrow 0.14 \mathrm{ppm}$), JPARC (0.45 ppm)

- SM uncertainty dominated by QCD

Hadronic vacuum polarization

- Current theory predictions mostly data driven, many lattice calculations underway
- HLbL seems increasingly unlikely to resolve discrepancy
- HVP: tension between lattice \& R-ratio persists. New CMD-3 results \rightarrow ?
$a_{\mu}\left[10^{-10}\right]$

Exp:	11659206.1	(4.1)
QED:	11658471.9	(0.0)
EW:	15.4	(0.1)
Hadronic:		
•VP (LO+HO)	684.5	(4.0)
•LBL	9.2	(1.8)
SM:	11659	181.0
Diff:	25.1	(4.3)

Thank you!

Backup slides

HLbL - Functional methods

LbL amplitude: model results

Jegerlehner, Nyffeler, Phys. Rept. 477, 1 (2009)

$=$

2

8... 11

-1
$+$

-2

Full expression:
GE, Fischer, PRD 85 (2012), Goecke, Fischer, Williams, PRD 87 (2013)

Structure of LbL amplitude

3 independent momenta:

$$
\begin{aligned}
p & =p_{2}+p_{3} \\
q & =p_{3}+p_{1} \\
k & =p_{1}+p_{2}
\end{aligned}
$$

6 Lorentz invariants:

$$
p^{2}, \quad q^{2}, \quad k^{2}, \quad p \cdot q, \quad p \cdot k, \quad q \cdot k
$$

Bose symmetry:

$$
\begin{array}{r}
\Gamma^{\mu \nu \rho \sigma}(p, q, k)=\sum_{i=1}^{136} f_{i}(\ldots) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k) \\
\stackrel{!}{=} \text { symmetric } \\
\text { S4 multiplets }
\end{array}
$$

- Arrange in multiplets of permutation group S4:

GE, Fischer, Heupel, PRD 92 (2015)
Singlet Triplets Doublets Antitriplets Antisinglet

- 6 Lorentz invariants form singlet \mathcal{S}_{0}, doublet \mathcal{D}, triplet \mathcal{T}^{+}

Structure of LbL amplitude

- Singlet: symmetric variable, carries overall scale:

$$
\mathcal{S}_{0}=\frac{p^{2}+q^{2}+k^{2}}{4}=\frac{p_{1}^{2}+p_{2}^{2}+p_{3}^{2}+p_{4}^{2}}{4}
$$

- Doublet: $\mathcal{D}=\left[\begin{array}{l}a \\ s\end{array}\right]$

Mandelstam triangle, 2-photon poles (pion, scalar, axialvector, ...)

$$
q^{2}=p^{2}
$$

GE, Fischer, Heupel, PRD 92 (2015)

- Triplet: $\mathcal{T}=\left[\begin{array}{l}u \\ v \\ w\end{array}\right]$
tetrahedron bounded by $p_{i}^{2}=0$, vector-meson poles

Structure of LbL amplitude

Fixed doublet variables \Rightarrow complicated geometric object inside tetrahedron:

Structure of LbL amplitude

- 136 tensors, each dressing function depends on 6 variables GE, Fischer, Heupel, PRD 92 (2015)

$$
\Gamma^{\mu \nu \rho \sigma}(p, q, k)=\sum_{i=1}^{136} f_{i}\left(\mathcal{S}_{0}, \nabla, \triangle\right) \tau_{i}^{\mu \nu \rho \sigma}(p, q, k)
$$

- Bose-symmetric \Rightarrow with symmetric tensors, dressings only depend on symmetric combinations
- Gauge invariance \Rightarrow transverse to $p_{1}{ }^{\mu}, p_{2}{ }^{\nu}, p_{3}{ }^{\rho}, p_{4}{ }^{\sigma}, 41$ tensors

Cannot do naive transverse projection: incomplete calculation may break gauge invariance, leads to kinematic singularities

Analogy: HVP

- Transverse projection:

$$
\Rightarrow\left[\Pi\left(Q^{2}\right)+\frac{\widetilde{\Pi}\left(Q^{2}\right)}{Q^{2}}\right]\left(Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}\right)
$$

- Analyticity $\Rightarrow a, b$ cannot have poles at $Q^{2}=0$ (no intermediate massless particle)
- Transversality \Rightarrow Ward identity:

$$
Q^{\mu} \Pi^{\mu \nu}(Q)=0 \quad \Rightarrow \quad a=-b Q^{2}
$$

$$
\Rightarrow \Pi^{\mu \nu}(Q)=\Pi\left(Q^{2}\right)\left(Q^{2} \delta^{\mu \nu}-Q^{\mu} Q^{\nu}\right)+\widetilde{\Pi}\left(Q^{2}\right) \delta^{\mu \nu}
$$

transverse part \quad "gauge part" $=0$ by
"minimal basis" - no kinematic dependencies at $Q^{2}=0$

- No problem for HVP (gauge invariance preserved in truncation), but can be broken for HLbL due to incomplete calculation

How to do this for 136 tensors with multiple (potentially dangerous) kinematic limits?

Minimal bases

- Many known examples:

Bardeen, Tung, Phys. Rev. 173 (1968)
Tarrach, Nuovo Cim. A28 (1975)
Ball, Chiu, PRD 22 (1980)
Drechsel et al., PRC 55 (1997)

Gauge + Transverse

- Systematic construction of minimal bases GE, Ramalho, PRD 98 (2018)
- If no dynamical longitudinal poles, minimal basis should exist (?)

Systematic derivation extremely hard!

Minimal bases

- Alternative: construct transverse basis for LbL by systematic power counting $\Rightarrow 41$ singlets:
GE, Fischer, Heupel, PRD 92 (2015)

n	Seed element	\#	Multiplets	$n=4$	$n=6$	$n=8$	$n=10$	$n=12$
4	$t_{12}^{\mu \nu} t_{34}^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$	1	1	1		
	$\varepsilon_{12}^{\mu \nu} \varepsilon_{34}^{\rho \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}$	1	1	1		
6	$\varepsilon_{1}^{\mu \lambda \alpha} t_{22}^{\alpha \nu} \varepsilon_{3}^{\rho \lambda \beta} t_{44}^{\beta \sigma}$	12	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{T}_{2}^{+}, \mathcal{T}_{2}^{-}, \mathcal{A}$		1	3	5	3
	$t_{12}^{\mu \nu} t_{33}^{\rho \lambda} t_{44}^{\lambda I}$	6	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}^{+}$		1	2	3	
	$t_{12}^{\mu \nu} t_{31}^{\rho \lambda} t_{24}^{\lambda \sigma}$	7	$\mathcal{S}, \mathcal{T}_{1}^{+}, \mathcal{T}_{1}^{-}$		1	1	3	2
	$\varepsilon_{12}^{\mu \nu} \varepsilon_{31}^{\rho \lambda} t_{24}^{\lambda \sigma}$	7	$\mathcal{D}_{2}, \mathcal{T}_{2}^{+}, \mathcal{T}_{1}^{-}, \mathcal{T}_{2}^{-}$			2	5	
8	$t_{12}^{\mu \nu} t_{31}^{\rho \alpha} t_{12}^{\alpha \beta} t_{24}^{\beta \sigma}$	3	$\mathcal{S}, \mathcal{D}_{1}, \mathcal{T}_{1}{ }^{+}$			1	2	
	Total	41		2	5	11	18	5

- 7 equivalent seeds in dispersive approach:

Colangelo, Hoferichter, Procura, Stoffer, JHEP 09 (2015)

$$
\begin{array}{ll}
\varepsilon_{12}^{\mu \nu} \varepsilon_{34}^{\rho \sigma}, & \\
t_{12}^{\mu \nu} t_{34}^{\rho \sigma}, & t_{12}^{\mu \nu} t_{312}^{\rho} t_{412}^{\sigma}, \\
t_{12}^{\mu \nu} t_{31}^{\rho \lambda} t_{14}^{\lambda \sigma} & t_{134}^{\mu} t_{2}^{\nu \alpha \beta} t_{3}^{\rho \alpha \lambda} t_{4}^{\sigma \beta \lambda}, \\
t_{12}^{\mu \nu} t_{31}^{\rho \lambda} t_{24}^{\lambda \sigma} & \left(t_{14}^{\mu \alpha} t_{32}^{\beta \nu}-t_{13}^{\mu \beta} t_{42}^{\alpha \nu}\right) t_{3}^{\rho \alpha \lambda} t_{4}^{\sigma \beta \lambda}
\end{array}
$$

- With minimal bases, momentum dependencies become maximally simple (only physical poles \& cuts): singlet dressings scale with \mathcal{S}_{0}

Functional methods

- Hadronic bound-state equations (BSEs, Faddeev eqs, ...)

"QFT analogue of Schrödinger eq."
\rightarrow hadron masses \& "wave functions"
\rightarrow spectroscopy calculations
- Ingredients: QCD's n-point functions, Satisfy Dyson-Schwinger equations (DSEs): QCD's quantum eqs. of motion
\qquad
-1 \qquad $-^{-1}$

mon0rom ${ }^{-1}$ $=$ mormm $^{-1}$

\rightarrow running quark mass
- Structure calculations: form factors, PDFs, GPDs, two-photon processes, ...

Baryons

- Covariant 3-quark Faddeev equation for baryons

GE, Alkofer, Nicmorus, Krassnigg, PRL 104 (2010)

- Octet and decuplet spectra,
 elastic and transition form factors, ...
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,
Prog. Part. Nucl. Phys. 91 (2016), 1606.09602
- Heavy baryons

Qin, Roberts, Schmidt, PRD 97 (2018), FBS 60 (2019)

- Keep full structure of baryon's Faddeev amplitude:

$$
\Psi_{\alpha \beta \gamma \delta}(p, q, P)=\sum_{i} f_{i}\left(p^{2}, q^{2}, p \cdot q, p \cdot P, q \cdot P\right) \tau_{i}(p, q, P)_{\alpha \beta \gamma \delta}
$$

Lorentz-invariant dressing functions

Dirac-Lorentz tensors: 64 (128) for spin 1/2 (3/2)

Towards ab-initio

Beyond rainbow-ladder calculations improve meson spectrum, but π, K, ρ etc. stable
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, PPNP 91 (2016)

Residue at pole $=g_{\rho \pi \pi}$ Mader, GE, Blank, Krassnigg, PRD 84 (2011)

Pion form factor:
Absence of width has no visible effect on spacelike behavior

GE, Fischer, Weil, Williams, PLB 797 (2019)

Towards ab-initio

- Compute higher n-point functions from DSEs, FRG, lattice QCD
Binosi, Ibanez, Papavassiliou, JHEP 09 (2014), GE, Williams, Alkofer, Vujinovic, PRD 89 (2014), Williams, EPJA 51 (2015), Huber, PRD 101 (2020), Cyrol, Mitter, Pawlowski, Strodthoff, PRD 97 (2018), Oliveira, Silva, Skullerud, Sternbeck, PRD 99 (2019),

- Kernels from chiral symmetry constraints

Chang, Roberts, PRL 103 (2009), Chang, Liu, Roberts, PRL 106 (2001), Qin, Roberts, 2009.13637

Gluon propagator:

 DSE vs. latticeWilliams, Fischer, Heupel, PRD 93 (2016)

See also: Aguilar, De Soto, Ferreira, Papavassiliou, Rodriguez-Quintero, Zafeiropoulos, EPJ C 80 (2020)

Beyond rainbow-ladder calculations improve light-meson spectrum
Williams, Fischer, Heupel, PRD 93 (2016)

Towards ab-initio

- Glueballs in pure Yang-Mills theory (no quarks)

Meyers, Swanson, PRD 87 (2013)
Sanchis-Alepuz, Fischer, Kellermann, Smekal, PRD 92 (2015)
Souza, Ferreira, Aguilar, Papavassiliou, Roberts, Xu, EPJA 56 (2020)
Kernel derived from n-point functions, no model input
Huber, Fischer, Sanchis-Alepuz, EPJ C 80 (2020)

Lattice:
Morningstar, Peardon, PRD 60 (1999)
Chen, Alexandru, Dong, Draper, Horvath, PRD 73 (2006)
Athenodorou, Teper, JHEP 11 (2020)

Four-quark states

- Light scalar mesons $\left(\sigma, \kappa, a_{0}, f_{0}\right)$ as four-quark states:

GE, Fischer, Heupel, PLB 753 (2016)

- BSE dynamically generates meson poles in BS amplitude:
$f_{i}\left(\mathcal{S}_{0}, \nabla\right) \rightarrow 1500 \mathrm{MeV}$
$f_{i}\left(\mathcal{S}_{0}, \nabla \triangle\right) \rightarrow 1500 \mathrm{MeV}$
$f_{i}\left(\mathcal{S}_{0}, \nabla \triangle\right) \rightarrow 1200 \mathrm{MeV}$
$f_{i}\left(\mathcal{S}_{0}, \nabla \triangle\right) \rightarrow 350 \mathrm{MeV}!$

- "Light scalar mesons" look like meson molecules, diquark-antidiquark components almost negligible
- Lightness is inherited from pseudoscalar Goldstone bosons!

Four-quark states

- Heavy-light four-quark states: what is their internal decomposition?
$c q \bar{q} \bar{c}$
- Four-quark BSE: all mix together

Wallbott, GE, Fischer, PRD 100 (2019),
PRD 102 (2020)

$$
\begin{aligned}
c q \bar{q} \bar{c} \rightarrow & \begin{array}{l}
\text { strong meson-meson } \\
\\
\text { component: DD* for }
\end{array}
\end{aligned}
$$

$c c \bar{q} \bar{q} \rightarrow$
diquarks also play role

Minimal bases

- Quark loop for HLbL: Project on transverse (derived) + gauge (conjecture)

GE, Fischer, Heupel, Williams, AIP Conf. Proc. 1701 (2016)

NJL Model: works well

DSE (Ball-Chiu vertex): gauge part likely not yet fully consistent
\Rightarrow still under construction

HLbL - Functional methods

LbL amplitude: model results

Jegerlehner, Nyffeler, Phys. Rept. 477, 1 (2009)

$=$

2

exchange
8... 11
$+$

-1
$+$

2

-2

$$
\left(\times 10^{-10}\right)
$$

How important is the quark loop?

- Constituent quark loop known analytically: 6 ... 8

- ENJL: VM poles by summing up quark bubbles
Bijnens 1995
$\gamma^{\mu}-\frac{1}{Q^{2}+m_{V}^{2}} t_{Q Q}^{\mu \nu} \gamma^{\nu}$
Large reduction: 2

HLbL - Functional methods

LbL amplitude: model results

Jegerlehner, Nyffeler, Phys. Rept. 477, 1 (2009)

$=$

2
$+$

8 ... 11

scalar exchange
-1
$+$

axialvector exchange
2

π, K loop
-2
$\left(\times 10^{-10}\right)$
How important is the quark loop?
"constituent-quark mass": nonperturbative effect

- Quark mass is not a constant:

$$
\frac{p}{\mathrm{O}} \quad S_{0}(p)=\frac{-i \not p+m}{p^{2}+m^{2}} \rightarrow S(p)=\frac{1}{A\left(p^{2}\right)} \frac{-i \not p+M\left(p^{2}\right)}{p^{2}+M^{2}\left(p^{2}\right)}
$$

Dynamical mass generation

through spontaneous chiral symmetry breaking
Cloet, Roberts, Prog. Part. Nucl. Phys. 77 (2014)
GE, Sanchis-Alepuz, Williams, Alkofer, Fischer, Prog. Part. Nucl. Phys. 91 (2016) Cyrol, Mitter, Pawlowski, Strodthoff, PRD 97 (2018)

HLbL - Functional methods

LbL amplitude: model results

Jegerlehner, Nyffeler, Phys. Rept. 477, 1 (2009)

$=$

2
$+$

8 ... 11

scalar exchange
-1
$+$

axialvector exchange
2

π, K loop
-2
$\left(\times 10^{-10}\right)$
How important is the quark loop?

- Quark-photon vertex is not bare:

$$
\Gamma^{\mu}(k, Q)=\left[i \gamma^{\mu} \Sigma_{A}+2 k^{\mu}\left(i k \Delta_{A}+\Delta_{B}\right)\right]+\left[i \sum_{j=1}^{8} f_{j} \tau_{j}^{\mu}(k, Q)\right]
$$

Ball-Chiu vertex, determined by WTI, depends only on quark propagator Ball, Chiu, PRD 22 (1980)

Transverse part, contains dynamics (VM poles, cuts, ...), 8 dressing functions

HLbL - Functional methods

LbL amplitude: model results

Jegerlehner, Nyffeler, Phys. Rept. 477, 1 (2009)

$=$

2

8... 11

-1
$+$

-2
$\left(\times 10^{-10}\right)$

How important is the quark loop?

- DSE result for quark loop:

Goecke, Fischer, Williams, PRD 87 (2013)
$a_{\mu}=10.7 \times 10^{-10}$

- However, incomplete calculation (quark loop only) can induce artifacts from gauge invariance
- Can we calculate full four-point function?

$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	γ^{μ}	Γ_{T}^{μ}	$a_{\mu}\left[10^{-10}\right]$
1	0.2 GeV	1	0	10
1	$M\left(p^{2}\right)$	1	0	10
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	1	0	5
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	0	10
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	$k=0$	4
$A\left(p^{2}\right)$	$M\left(p^{2}\right)$	Σ_{A}	Full	10

Electron vs. muon g-2

Theory error dominated by QED
$a_{\mu}\left[10^{-10}\right]$
$\left.\begin{array}{lrr}\text { Exp: } & 11659206.1 & (4.1) \\ \hline \text { QED: } & 11658471.9 & (0.0) \\ \text { EW: } & 15.4 & (0.1) \\ \text { Hadronic: } & & \\ \text { • VP (LO+HO) } & 684.5 & (4.0) \\ \text { •LBL } & & 9.2\end{array}\right)(1.8)$.

Theory error dominated by QCD

FNAL Run-1: Abi et al., PRL 126, 141801 (2021) WP20: Aoyama et al., Phys. Rept. 887 (2020)
Jegerlehner, Nyffeler, Phys. Rept. 477 (2009)

