Higgs physics at a future Muon Collider

<u>A. Zaza</u>, L. Buonincontri, L. Castelli, G. Da Molin, L. Giambastiani, D. Lucchesi, L. Sestini, R. Venditti on behalf of the **International Muon Collider Collaboration**

Obergurgl, 29/03/2023

OUTLINE

Multi-TeV Muon Collider

3

Negligible synchrotron radiation losses

Ideal facility for Higgs Physics
 ~500k Higgs produced with 1 ab⁻¹ (3 TeV)

Proposed scenarios (5 years data taking)

Beam Induced Background (BIB)

- BIB simulated with MARS15 or FLUKA
- Machine Detector Interface and Detector carefully designed in order to mitigate BIB

Fundamental to determine and reduce the BIB impact on object reconstruction

https://arxiv.org/pdf/2105.09116.pdf

4

Detector structure

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

superconducting solenoid (3.57T)

tracking system

- Vertex Detector:

 double-sensor layers (4 barrel cylinders and 4+4 endcap disks);
 25x25 µm² pixel Si sensors.

 Inner Tracker:

 3 barrel layers and 7+7 endcap disks;
 50 µm x 1 mm macropixel Si sensors.
 - Outer Tracker:
 - 3 barrel layers and 4+4 endcap disks;
 - 50 µm x 10 mm microstrip Si sensors.

shielding nozzles

 Tungsten cones + borated polyethylene cladding. Geometrical acceptance $10^{\circ} < \theta < 170^{\circ}$

- A. Zaza
- https://confluence.infn.it/display/muoncollider/Muon+Collider+Detector

Reconstruction algorithms https://github.com/MuonColliderSoft

Object reconstruction

6

A. Zaza

/abs/2203.07964 arxiv.org nttps:/

Higgs Physics $H \rightarrow b\overline{b}$

INFN

- MC samples generated with WHIZARD + Pythia8
- Two b tagged jets are required (secondary vertex tag). Very small light mistag probability.
- Background in the signal region consists mainly of $Z \rightarrow b\bar{b}/c\bar{c}$
- Signal yield extracted with a fit to the invariant mass distribution

$$\frac{\Delta \sigma_{Hbb}}{\sigma_{Hbb}} = \frac{\sqrt{S+B}}{S} \sim 0.75\%$$

Compatible with results from parametric simulation <u>https://arxiv.org/abs/2203.09425</u>

	Signal	SM background
Sim. process	$\mu^+\mu^- \to H\bigl(\to b\overline{b}\bigr) + X$	$\mu^+\mu^- \to qq + X$
Exp. events	59.5K	65.4K

INFN

UON Collider

Higgs Physics $H \rightarrow WW^*$

- Muon + 2 jets final state considered
- MC samples generated with WHIZARD + Pythia8
- Two types of backgrounds (with and without Higgs decays) reduced with two different BDT discriminators

Event	Expected Events
$\mu^+\mu^- \to H\nu\overline{\nu} \to WW^*\nu\overline{\nu} \to qq\mu\nu\nu\overline{\nu}$	2430 ± 150
$\mu^+\mu^- o qq\mu u \ \mu^+\mu^- o qqll \ \mu^+\mu^- o qq u u$	$\begin{array}{c} 2600 \pm 1300 \\ < 100 \ C.L. = 68\% \\ < 100 \ C.L. = 68\% \end{array}$
$\mu^+\mu^- ightarrow H ightarrow WW^* ightarrow qqqq \ \mu^+\mu^- ightarrow H ightarrow bb \ \mu^+\mu^- ightarrow H ightarrow au au$	$\begin{array}{l} <10 \ C.L.=68\% \\ <150 \ C.L.=68\% \\ <4 \ C.L.=68\% \end{array}$

https://thesis.unipd.it/handle/20.500.12608/28559

UON Collide

Higgs Physics $H \rightarrow \mu^+ \mu^-$

- MC samples generated with WHIZARD + Pythia8
- Two main backgrounds reduced with two different BDT discriminators
- Signal yield extracted with an unbinned maximum likelihood fit to the dimuon invariant mass distribution

Category	Simulated process	Expected events ($105 < m_{\mu\mu} < 145$ GeV)
Signal	$\mu^+\mu^- \to H(\to \mu^+\mu^-)\nu\bar{\nu}$	24.2
Signal	$\mu^+\mu^- \to H(\to \mu^+\mu^-)\mu^+\mu^-$	1.6
	$\mu^+\mu^- \to \mu^+\mu^-\nu\bar{\nu}$	636.5
SM background	$\mu^+\mu^- \to \mu^+\mu^-\mu^+\mu^-$	476.4
	$ \begin{split} \mu^+ \mu^- &\to t \bar{t} \to W^+ W^- b \bar{b}, \\ W^\pm &\to \mu^\pm \nu(\bar{\nu}) \end{split} $	1.1

https://doi.org/10.22323/1.398.0579

 $\frac{\Delta\sigma_{H\mu^+\mu^-}}{2} \sim 38\%$ $\sigma_{H\mu^+\mu^-}$

Higgs Physics Higgs width measurement

- The Higgs width (Γ_H) can be measured by determining the number of on-shell and off-shell $H \rightarrow WW^*$ and $H \rightarrow ZZ^*$ processes
 - The ratio between off-shell and on-shell events is proportional to Γ_H
- Final state considered: (Di)muon+2 jets
- MC signal samples generated with MadGraph5, background with WHIZARD
- On-shell and off-shell signal yields obtained from Higgs mass,
 muon momentum and muon helicity angle simultaneously fitted

Process	Expected events
On-shell $H \to ZZ \to \mu^+\mu^- jj$	38.2
Off-shell $H \to ZZ \to \mu^+ \mu^- jj$	56.0
$\nu \bar{\nu} \mu^+ \mu^- j j$ background	458.3
On-shell $H \to W^+ W^- \to \mu \nu_\mu j j$	1803.4
Off-shell $H \to W^+ W^- \to \mu \nu_{\mu} j j$	411.4
$\nu \bar{\nu} \mu \nu_{\mu} j j$ background	2520.3

Higgs couplings with fermions and bosons

- Previous measurements are simultaneously fitted to obtain the expected relative precision on Higgs couplings
- Results are compared with those quoted by the CLIC collaboration, computed by using several datasets with different energies
- Direct comparison is difficult, since the 3energy-stages CLIC program (<u>link</u>) can be exploited in 25 years, while the Muon Collider can collect 1 ab⁻¹ in 5 years

Eur. Phys. J. C 77, 475 (2017) Full simulation CLIC $1 \text{ ab}^{-1} @ 3 \text{ TeV}$ $0.5 \text{ ab}^{-1} @ 350 \text{ GeV}$ $1.5 \text{ ab}^{-1} @ 1.4 \text{ TeV}$ $2 \text{ ab}^{-1} @ 3 \text{ TeV}$ Γ_H 5.3%3.5%5.6%0.8% g_{HZZ} 1.3%0.9% g_{HWW} 1.7%0.9% q_{Hbb} 19.1%7.8% $g_{H\mu\mu}$

CLIC Higgs Physics:

Higgs Physics HH $\rightarrow b\overline{b}b\overline{b}$

- MC samples generated with WHIZARD + Pythia8
- Two b tagged jets (secondary vertex tag) out of four jets are required
- A boosted decision tree (BDT) is trained to separate the signal from the background
 - Kinematic input variables

 Cross section uncertainty extracted from a fit to the BDT output

http://hdl.handle.net/20.500.12608/22861

Higgs trilinear coupling

- Two BDTs trained to separate signal from 4b and HH trilinear (only trilinear diagrams considered)
- The templates obtained with different coupling hypotheses are compared with pseudoexperiments

Sensitivity on λ₃ determined with a likelihood technique (preliminary result)

CLIC: [-8%,+11%] at 68% CL with 2.5 ab⁻¹ at 1.4 TeV + 5 ab⁻¹ at 3 TeV [Eur. Phys. J. C 80, 1010 (2020)]

Conclusions

- On-going huge effort for MDI design and reconstruction algorithms development
- Simulation studies with detector reconstruction demonstrate that Higgs physics is possible at the Muon Collider

More processes will be studied in future

Thank you for your attention!

A. Zaza

an Alpine Particle Physics Symposium

Backup

A. Zaza

an Alpine Particle Physics Symposium

500 -

200 م م

్ల 100

50

20

5

Muon Collider

10 15 20 25 30 $\sqrt{s_{\mu}}$ [TeV] Equivalence is defined in terms of the pair production cross-section for heavy particles, with mass close to the muon collider kinematical threshold of $\sqrt{s\mu/2}$. The equivalent \sqrt{sp} is the proton collider center of mass energy for which the cross-sections at the two colliders are equal.

https://arxiv.org/pdf/2203.07256.pdf

Equivalent proton collider energy

Figure 2. Interaction region. The passive elements, the nozzles and the pipe around the interaction point are constituted by iron (Fe), borated polyethylene (BCH₂), berillium (Be), tungsten (W) and concrete. The detector outer shape is a 11.28 m long cylinder of 6.3 m radius. The space between the outer shape and the nozzles is considered as a perfect particle absorber ("blackhole"). The bunker is a 26 m-long cylinder with a radius of 9 m.

https://arxiv.org/pdf/2105.09116.pdf

Higgs Physics at future colliders

kappa-0	HL-LHC	LHeC	HE-	-LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/eh/hh
			S 2	S2′	250	500	1000	380	15000	3000		240	365	
κ _W [%]	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
κ _Z [%]	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
к g [%]	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
κγ [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29
$\kappa_{Z\gamma}$ [%]	10.	—	5.7	3.8	99*	86*	85*	120*	15	6.9	8.2	81*	75 *	0.69
κ_c [%]	—	4.1	—	—	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
κ _t [%]	3.3	—	2.8	1.7	-	6.9	1.6	—	—	2.7	—	—	_	1.0
к _b [%]	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
κ_{μ} [%]	4.6	—	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41
κτ [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

arXiv:1905.03764v2

INFN

MInternational UON Collider Collaboration

Higgs Physics at future colliders

collider	(1) di-H excl.	(2.a) di-H glob.	(3) single	(4) single-H glob.	
			with HL-LHC	w/o HL-LHC	
HL-LHC	$^{+60}_{-50}\%$ (50%)	52%	47%	125%	50%
HE-LHC	10-20% (n.a.)	n.a.	40%	90%	50%
ILC250	_	-	29%	126%	49%
ILC350	_	_	28%	37%	46%
ILC ₅₀₀	27% (27%)	27%	27%	32%	38%
ILC ₁₀₀₀	10% (n.a.)	10%	25%	n.a.	36%
CLIC ₃₈₀	_	_	46%	120%	50%
CLIC ₁₅₀₀	36% (36%)	36%	41%	80%	49%
CLIC ₃₀₀₀	$^{+11}_{-7}\%$ (n.a.)	n.a.	35%	65%	49%
FCC-ee ₂₄₀	—	-	19%	21%	49%
FCC-ee ₃₆₅	_	_	19%	21%	33%
FCC-ee ^{4IP} ₃₆₅	—	-	14%	n.a.	24%
FCC-eh	17-24% (n.a.)	n.a.	n.a.	n.a.	n.a.
FCC-ee/eh/hh	5% (5%)	6%	18%	19%	25%
LE-FCC	15% (n.a)	n.a	n.a.	n.a.	n.a.
CEPC	—	—	17%	n.a.	49%

arXiv:1905.03764v2

Higgs Physics at the Muon Collider parametric studies

Table 2: 68% probability sensitivity to modifications on the Higgs coupling from the κ fit, assuming no BSM contributions to the Higgs width.

		HL-LHC	HL-LHC + 125 GeV μ -coll. 5 / 20 fb ⁻¹	HL-LHC + 3 TeV μ -coll. 1 ab ⁻¹	HL-LHC + 10 TeV μ -coll. 10 ab ⁻¹	HL-LHC + 10 TeV μ -coll. + e^+e^- H fact
_	Coupling					(240/365 GeV)
	$\kappa_W \ [\%]$	1.7	1.3 / 0.9	0.4	0.1	0.1
	$\kappa_Z \ [\%]$	1.5	1.3 / 1.0	0.9	0.4	0.1
	$\kappa_g \ [\%]$	2.3	1.7 / 1.4	1.4	0.7	0.6
	$\kappa_\gamma~[\%]$	1.9	1.6 / 1.5	1.3	0.8	0.8
	$\kappa_c~[\%]$	-	12/5.9	7.4	2.3	1.1
	$\kappa_b~[\%]$	3.6	1.6 / 1.0	0.9	0.4	0.4
	$\kappa_{\mu} \ [\%]$	4.6	0.6 / 0.3	4.3	3.4	3.2
	$\kappa_{ au} \ [\%]$	1.9	1.4 / 1.1	1.2	0.6	0.4
		1	1	1		

arXiv:2203.07261v1

Double Higgs production at the Muon Collider

21

Higgs Physics Higgs width measurement

Process	Expected events
On-shell $H \to ZZ \to \mu^+ \mu^- jj$	38.2
Off-shell $H \to ZZ \to \mu^+ \mu^- jj$	56.0
$\nu \bar{\nu} \mu^+ \mu^- j j$ background	458.3
On-shell $H \to W^+ W^- \to \mu \nu_{\mu} j j$	1803.4
Off-shell $H \to W^+ W^- \to \mu \nu_\mu j j$	411.4
$\nu \bar{\nu} \mu \nu_{\mu} j j$ background	2520.3

	$H \rightarrow WW$	$H \rightarrow ZZ$		
BR	2.137E-01	2.619E-02		
	$Z ightarrow \mu \mu$	$W \to \mu \nu$		
BR	~3%	~10%		

$$\sigma^{\rm on-shell} \propto \frac{g_p^2 g_d^2}{\Gamma_{\rm H}} \propto \mu_p \Rightarrow \sigma^{\rm off-shell} \propto g_p^2 g_d^2 \propto \mu_p \, \Gamma_{\rm H},$$

 μ_{ρ} is the on-shell H boson signal strength in the production mode being considered

 $\frac{\Delta\sigma_{\Gamma_H}}{\sigma_{\Gamma_H}} \sim 5.3\%$

cos(θHEL_μ)

Accelerator Proton Driver scheme

https://agenda.infn.it/event/28874/contributions/169177/attachments/94436/129235/ICHEP_2022.pdf

A. Zaza

23