

Status of flavour anomalies from LHCb

P. de Simone (LNF-INFN), on behalf of the **LHCb collaboration**

ALpine Particle physics Symposium Alps2023

26-31 March, 2023 Obergurgl University Centre, Tyrol, Austria

Status of flavour anomalies from LHCb

- **O** introduction
- **O LHCb in a nutshell**
- \bigcirc FCNC b \rightarrow sll transitions
- \bigcirc tree level semileptonic b \rightarrow ctv transitions

ALpine Particle physics Symposium Alps2023

26-31 March, 2023 Obergurgl University Centre, Tyrol, Austria

anomalies about the Lepton Flavour Universality

X Standard Model (SM) features Lepton Flavour Universality (LFU): charged leptons have universal coupling and differ only by their masses \rightarrow any further deviation is a key signature of physics processes beyond the SM

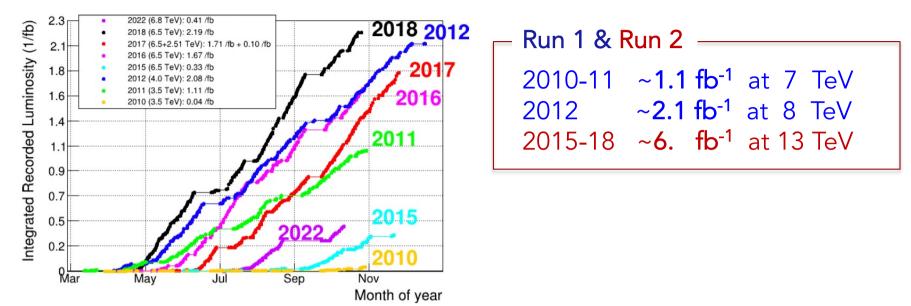
X no evidence of deviation from the SM in the precise (per-mil) tests of LFU in semileptonic K and π decays, purely τ leptonic decays, and in the electroweak precision observables

X in the last decade numerous hints of deviations from SM in semileptonic B decays:

- differential decay rates $\sigma_{th} \sim O(20-30\%)$ \checkmark FCNC b \rightarrow s $\ell\ell$ transitions angular observables $\sigma_{th} \sim \mathcal{O}(1\%)$
 - ratios of decay rates

- \checkmark tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions
- ratios of decay rates $\sigma_{\rm th} \sim \mathcal{O}(1\%)$

X SM theory predictions need to compute hadronic matrix elements affected by local (form-factors) and non-local (cc-loops) contributions **X** possible NP scenarios: leptoquarks, new heavy vector bosons, H^{\pm} , ...



LHCb in a nutshell

detection of B semileptonic decays at LHCb

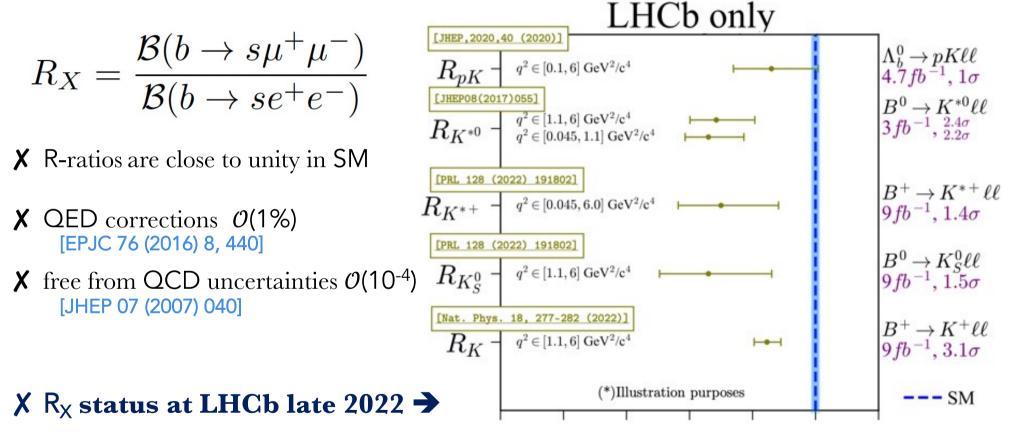
dataset and schedule

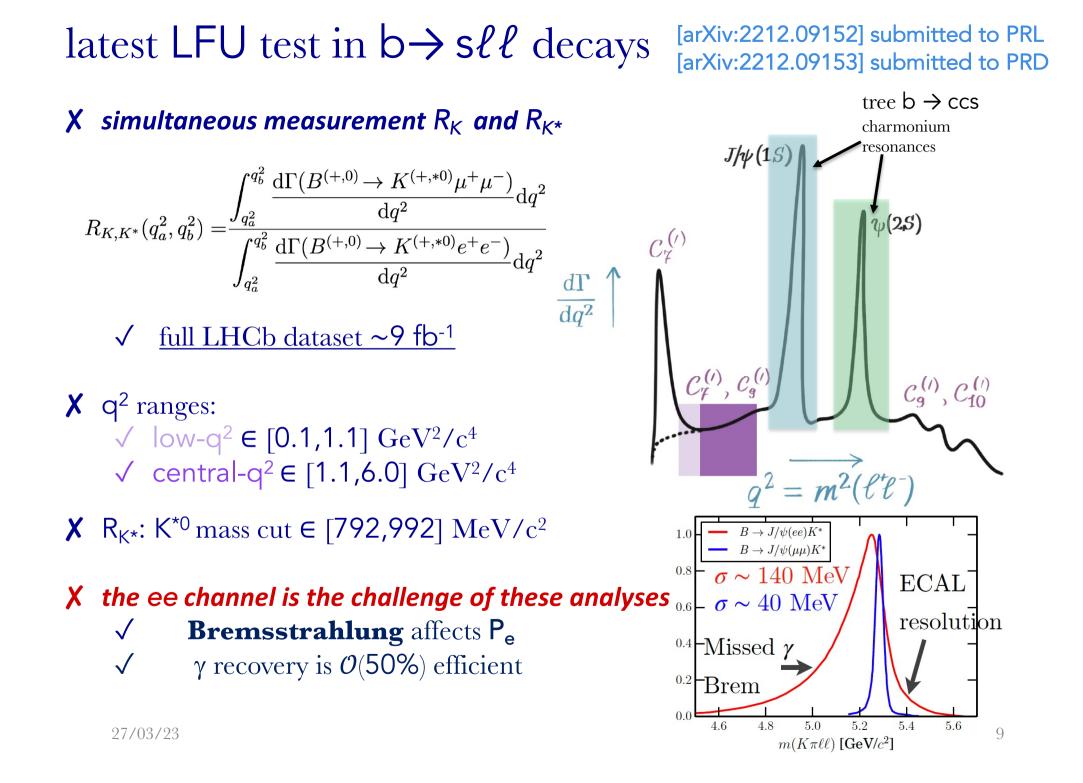
✓ **upgrade 1** is already here with an improved detector: 40MHz readout/software trigger and new tracking

✓ detector upgrade qualified to accumulate 50 fb⁻¹ at the end of Run4, LHCb-TDR{13,14,15,66}

 \checkmark LS3 consolidation of the detector

✓ LS4 to take full advantage of the High Lumi-LHC, \mathcal{L} up to 1-2 ×10³⁴ cm⁻²s⁻¹ → major upgrade of the detector to collect 300 fb⁻¹ at the end of Run5 CERN/LHCC 2021-012, CERN/LHCC 2018-027





FCNC $b \rightarrow s \ell \ell$ transitions

test of LFU in $b \rightarrow s\ell\ell$ decays

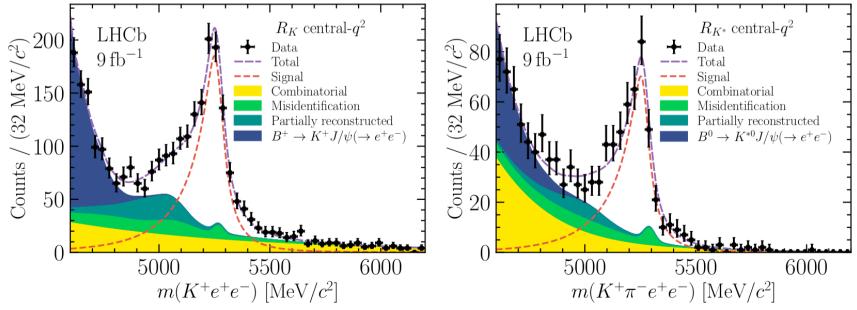
- **X** FCNC transitions occur via loop in the SM \rightarrow expected $\mathcal{B} < 10^{-6}$
- \boldsymbol{X} test LFU using ratios of branching fractions

latest LFU test in $b \rightarrow s\ell\ell$ decays: strategy

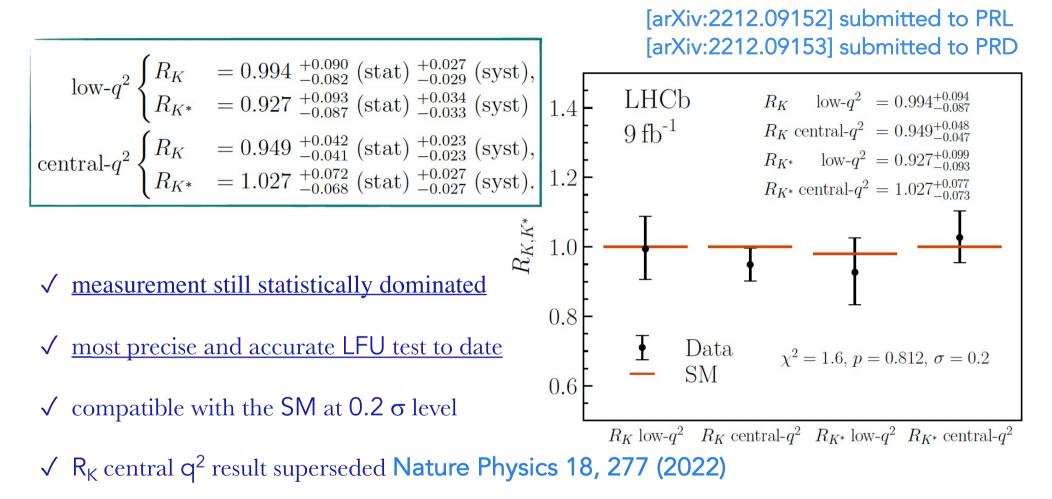
X R_{K,K^*} is measured as a double ratio to cancel most of the ε systematics in e/μ differences

$$R_{(K,K^*)} = \frac{\frac{N}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\frac{N}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}e^+e^-)} \times \frac{\frac{N}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}J/\psi(\mu^+\mu^-))}{\frac{N}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}J/\psi(e^+e^-))}$$

 \sqrt{N} from mass fits, ε evaluated from data-driven corrected simulation \sqrt{V} the resonant J/ ψ sample also used for ε calibration

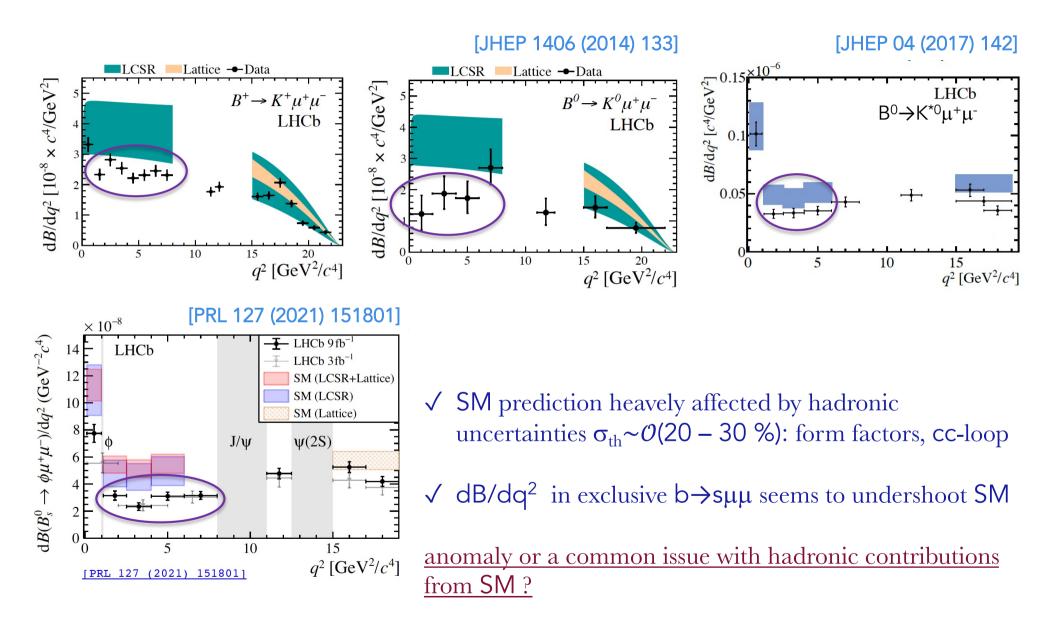

- $\begin{array}{l} \textbf{X} \quad J/\psi \text{ sample used to cross-check the goodness of the $\mathbf{\varepsilon}$ calibration testing the ratio} \\ \frac{\frac{\mathcal{N}}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}J/\psi(\mu^+\mu^-))}{\frac{\mathcal{N}}{\varepsilon}(B^{(+,0)} \to K^{(+,*0)}J/\psi(e^+e^-))} \\ \end{array}$ measured to be 1 [PLB 731 (2014) 227]
- $\begin{array}{l} \bigstar \quad \psi(\text{2S}) \text{ sample used to cress-check the goodness of the strategy testing the double ratio} \\ \frac{\frac{N}{\varepsilon}(B^{(+,0)} \rightarrow K^{(+,*0)}\psi(2S)(\mu^+\mu^-))}{\frac{N}{\varepsilon}(B^{(+,0)} \rightarrow K^{(+,*0)}\psi(2S)(e^+e^-))} \times \frac{\frac{N}{\varepsilon}(B^{(+,0)} \rightarrow K^{(+,*0)}J/\psi(\mu^+\mu^-))}{\frac{N}{\varepsilon}(B^{(+,0)} \rightarrow K^{(+,*0)}J/\psi(e^+e^-))} \\ \text{measured to be 1 [PDG 2022]} \end{array}$

latest LFU test in $b \rightarrow s\ell\ell$ decays: backgrounds


- $\checkmark\,$ combination of kinematic and particle identification criteria
- ✓ $B^{(+,0)} \rightarrow K^{(+,*0)}\mu^+\mu^-$ and $B^{(+,0)} \rightarrow \tilde{K}^{(+,*0)}e^+e^-$: suppress residual combinatorial with multivariate classifier using kinematic and vertex quality information
- ✓ $B^{(+,0)}$ → $K^{(+,*0)}e^+e^-$: dedicated classifier to fight partially reconstructed background exploiting vertex and track isolation
- ✓ specific vetoes under electron misID hypothesis to remove mainly semileptonic decays: B⁺→D⁰(K π _{→e})ev, B⁰→D(K^{*}(K π) π _{→e})ev, B⁰→D^{*}(D⁰(K π) π _{→e})ev, ...

▶ tighter e identification criteria led to uncovering previously understimated peaking backgrounds, e.g. $B \rightarrow K_{\rightarrow e} K_{\rightarrow e} K$ and other single/double mislD

a data sample enriched of background from misID has been used to model this contribution


latest LFU test in $b \rightarrow s\ell\ell$ decays: result

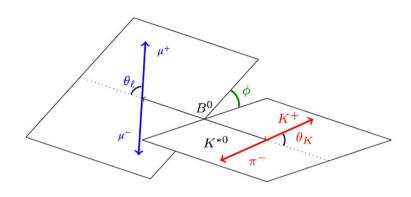
- \checkmark experimental uncertainties still far from the theoretical ones
- $\checkmark\,$ if LFU holds, anomalies should show up also in dB/dq^2 and angular observables for the electronic channel

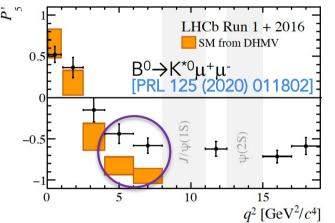
27/03/23

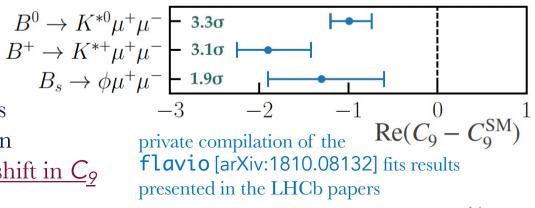
$b \rightarrow s\mu\mu$ differential decay rates

$b \rightarrow s \mu \mu$ angular analysis

X angular decay rates are function of q^2 and 3 angles X SM predictions are challenging, but with uncertainties smaller than dB/dq² → optimised variables where local hadronic uncertainties cancel out at leading order, e.g. P'₅


X recent LHCb angular analysis √ B^0 → $K^{*0}\mu^+\mu^-$ with 6 fb⁻¹ (~4600 evts.) [PRL 125 (2020) 011802]

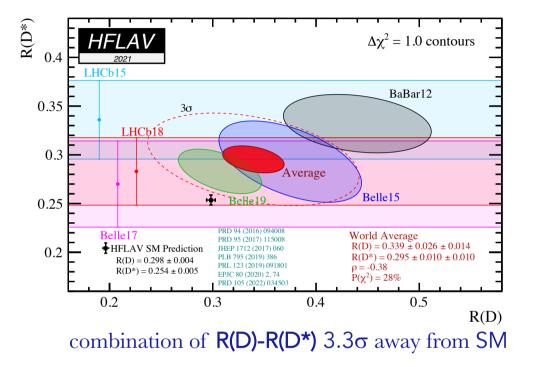

- ✓ B^+ → $K^{*+}\mu^+\mu^-$ with 9 fb⁻¹ (~700 evts.) [PRL 126 (2021) 161802]
- ✓ $B_S \rightarrow \phi \mu^+ \mu^-$ with 9 fb⁻¹ (~1900 evts) [JHEP 11 (2021) 043]

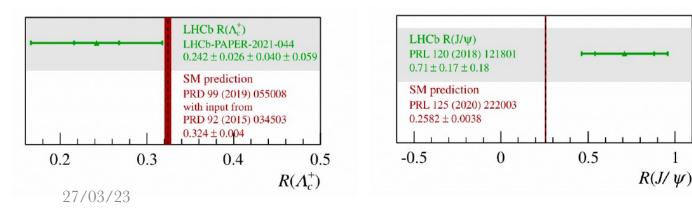

 \pmb{X} fits of vector coupling C_9 reported with LHCb angular analysis give consistent results

X intriguing coherent and consistent pattern

 \checkmark however, <u>cc-loops could mimic the shift in C</u>₉

tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions


test of LFU in tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions


 $R(H_c) = \frac{\mathcal{B}(H_b \to H_c \tau \overline{\nu}_{\tau})}{\mathcal{B}(H_b \to H_c \ell' \overline{\nu}_{\ell'})} \quad \begin{aligned} \tau : \text{signal channel} \\ \mu : \text{normalization channel} \end{aligned}$

LHCb Run 1 data sample 3 fb⁻¹:

X measurements with muonic τ decays $\sqrt{\tau^-} \rightarrow \mu^- \overline{\nu_{\mu}} \nu_{\tau}$ $\sqrt{R(D^*)}$ and $R(J/\psi)$ [PRL 115 (2015) 111803], [PRL 120 (2018) 121801]

X measurements with hadronic τ decays $\sqrt{\tau} \rightarrow \pi^+ \pi^- \pi^- (\pi^0) \nu_{\tau}$ $\sqrt{R(D^*)}$ and $R(\Lambda_c)$ measurements [PRL 120 (2018) 171802], [PRD 97 (2018) 072013] [PRL 128 (2022) 191803]

test of LFU in tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions two very recent LHCb results \rightarrow

1) $R(D^{(*)})$ with $\tau \rightarrow \mu \nu_{\mu} \nu_{\tau}$ [arXiv:2302.02886] submitted to PRL first simultaneous measurement of R(D) and $R(D^*)$ with Run 1 data will be covered this afternoon by the Martina Ferrillo talk

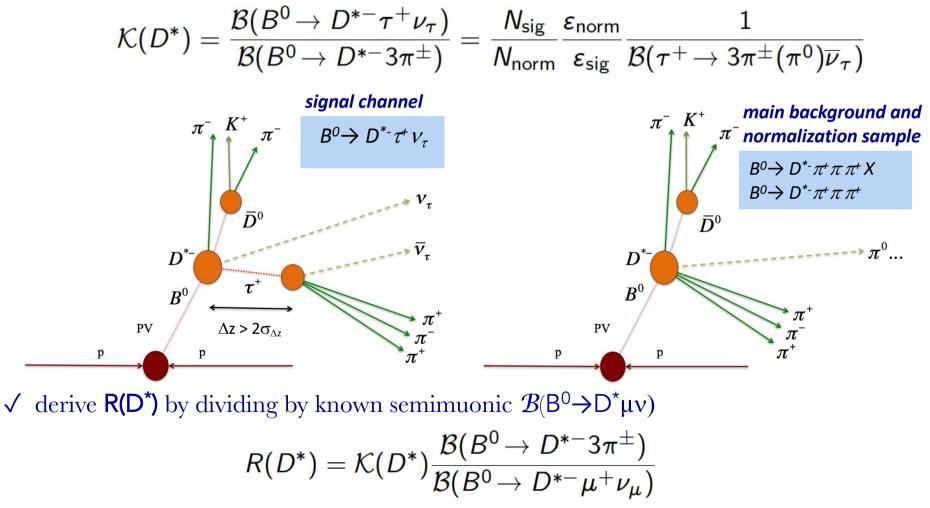
2) R(D^{*}) with $\tau \rightarrow 3\pi^{\pm}(\pi^0)\nu_{\tau}$ will be covered by this talk

[LHCb-PAPER-2023-052] in preparation

advantages

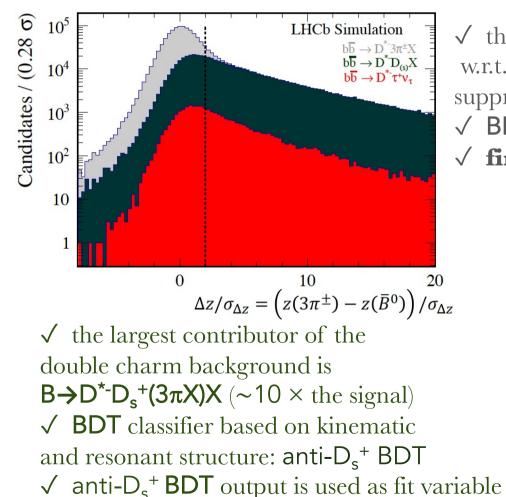
 \checkmark good statistical precision thanks to large ${\mathcal B}$

main challenges

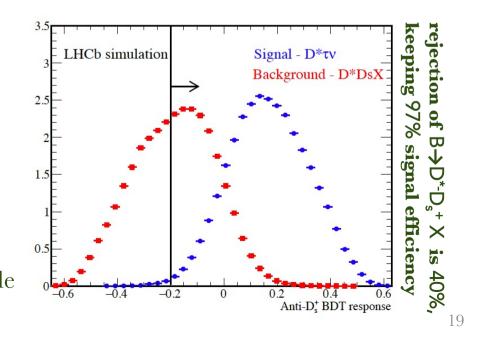

- \checkmark <u>missing neutrinos</u> \rightarrow no narrow peak to fit
- \checkmark large backgrounds from partially reconstructed B decays
- \checkmark large MC samples required for template shapes

$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)v_{\tau}$

[LHCb-PAPER-2023-052] in preparation

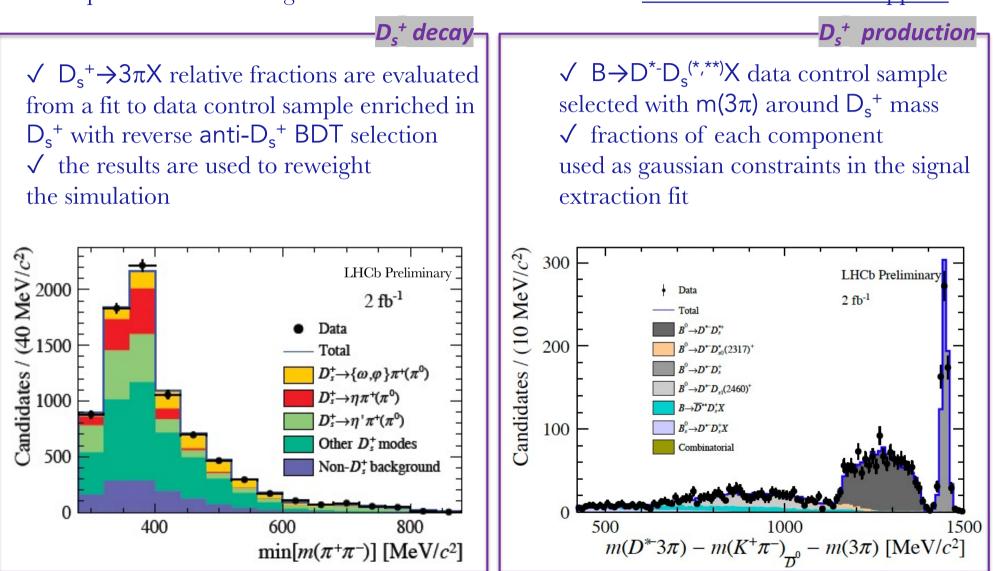

- ✓ update of the LHCb R(D*) analysis [PRL 115 (2015) 111803], [PRL 120 (2018) 121801]
- ✓ partial Run 2 data: 2fb⁻¹ at $\sqrt{s} = 13$ TeV → ~1.5×Run 1 signal sample

✓ experimental systematic uncertainty reduced normalizing to a decay with same visible final state: $B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$

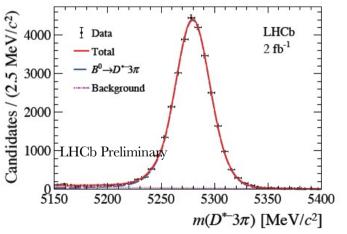


$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)v_{\tau}$: backgrounds

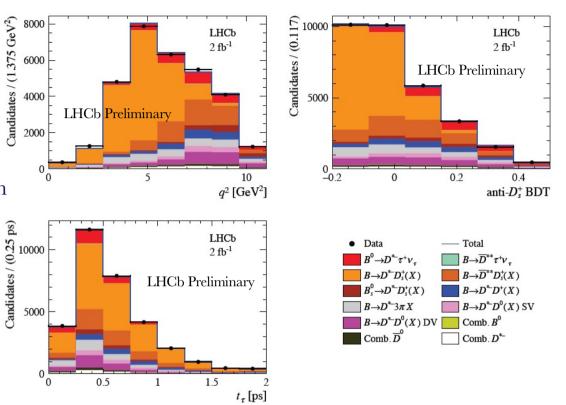
- ✓ signal candidates are built based on the **6 final-state charged tracks** → tracks/vertex quality, particle identification and mass constraints
- $\checkmark\,$ the 3-prong topology enables the precise reconstruction of τ vertex



✓ the requirement of a 3π vertex to be downstream w.r.t. the B vertex along the beam direction suppresses D*-3πX background (~100 × signal) ✓ BDT classifier based on vertex separation variables ✓ final rejection of D*-3πX is > 99%


$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)v_{\tau}$: backgrounds

✓ the dominant background after the full selection is due to $B \rightarrow D^* D_s^+(3\pi X)X$ ✓ templates used in the signal fit derived from simulation \rightarrow corrections need to be applied

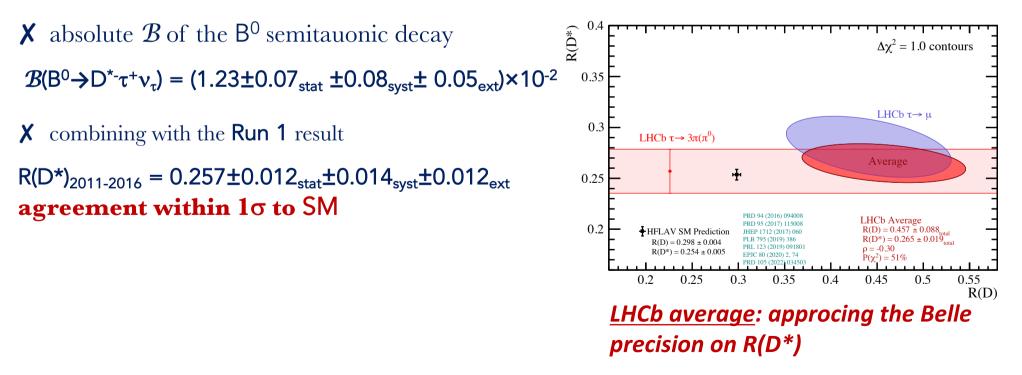


$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)\nu_{\tau}$: fits

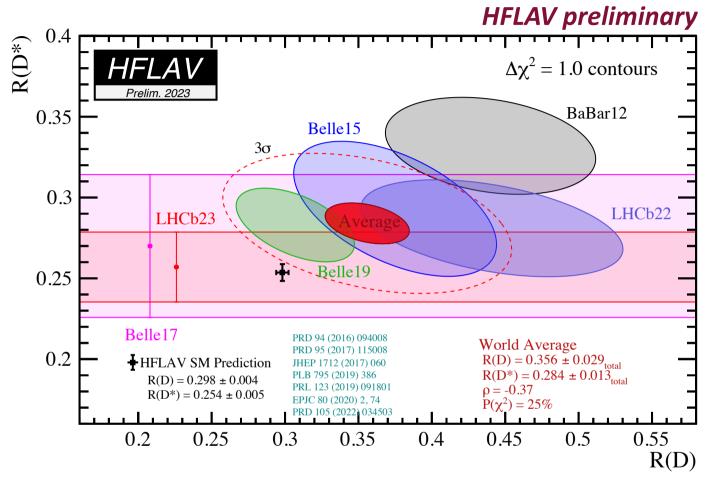
X 3D binned template fit to √ $q^2 \equiv (p_{B0} - p_{D^*})^2$ √ τ^+ decay time √ anti-D_s⁺ BDT output X form factor correction: reweight MC signal sample using CLN parametrization [HFLAV, EPJC 81(2021)226] X efficiencies from MC, validated using data control samples X N(B⁰→D^{*} $\tau^+\nu_{\tau}$) = 2469 ±154

X B⁰→D^{*-}3π normalization yield from a fit to m(D^{*-}3π) → 30540 ± 182

✗ dominant systematic uncertainty from double charm background modelling


X systematic from limited simulation samples reduced to half the Run 1 value thanks to fast simulation technique (ReDecay) → production of larger simulation samples

$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)\nu_{\tau}$: result


$$\mathcal{K}(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})} = 1.700 \pm 1.101(stat) + 0.105_{-0.100}(syst)$$

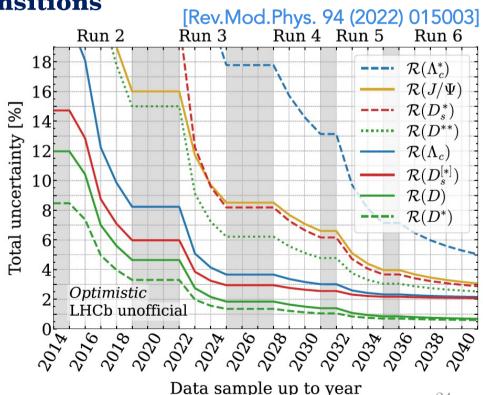
X using the most recent $\mathcal{B}(B^0 \rightarrow D^* 3\pi)$ and $\mathcal{B}(B^0 \rightarrow D^* \mu^+ \nu_{\mu})$ from PDG 2022

$$R(D^*) = \mathcal{K}(D^*) \frac{\mathcal{B}(B^0 \to D^{*-} 3\pi^{\pm})}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})} = 0.247 \pm 0.015(stat) \pm 0.015(syst) \pm 0.012(ext)$$

world average

✓ including $R(D^{(*)})$ with muonic τ decays [arXiv:2302.02886] submitted to PRL and $R(D^*)$ with hadronic τ decays [LHCb-PAPER-2023-052] in preparation the world average becomes $\rightarrow R(D^*) = 0.284 \pm 0.013$; $R(D) = 0.356 \pm 0.029$ ✓ the deviation w.r.t. the SM stays at 3.2 σ level for the combination of R(D)- $R(D^*)$

outlook


X FCNC $b \rightarrow s\ell\ell$ transitions

- \checkmark b \rightarrow see angular analysis
 - o experimental orthogonal way to test the anomalies observed in the muon channel
- \checkmark unbinned $B^0 \rightarrow K^{*0} \mu \mu$ analysis
 - o parametrize hadronic non-local contributions (cc-loops) and fit them to data

X tree level semileptonic $b \rightarrow c\tau v_{\tau}$ transitions

✓ adding full Run 2 dataset ✓ many new measurements underway : simultaneous $R(D^{+(*)})$ muonic, $R(D_s^*)$ muonic, $R(\Lambda_c)$ muonic, ...

✓ the recent BESIII results on inclusive $D \rightarrow 3\pi$ rates for D^0 , D^+ , D^+_S [arXiv:2212.13072][arXiv:2301.03214] will significantly lower the systematic uncertainties in the legacy measurements to come

conclusions

 \boldsymbol{X} new combined measurement of R_K and R_{K^\star} with full Run 1 and Run 2 dataset

- most precise LFU test in $b \rightarrow sII$ transitions
- o the results are compatible with the SM at 0.2σ level
- X angular analysis and differential \mathcal{B} measurements in $b \rightarrow s\mu\mu$
 - a pattern of anomalies is visible

X new simultaneous $R(D^{(*)})$ measurement using the muonic τ decay with the Run 1 dataset will be presented this afternoon

X new R(D*) measurement using the hadronic τ decay $\tau^- \rightarrow \pi^+ \pi^- \pi^- (\pi^0) v_{\tau}$ with partial Run 2 dataset

- compatible with the SM at 1σ level
- X global picture unchanged for R(D)-R(D^{*}) combination
 - o tension with SM at the 3.2σ level

X we have started taking data with first update of LHCb, new and more data will help to disentangle these puzzles exciting times ahead !

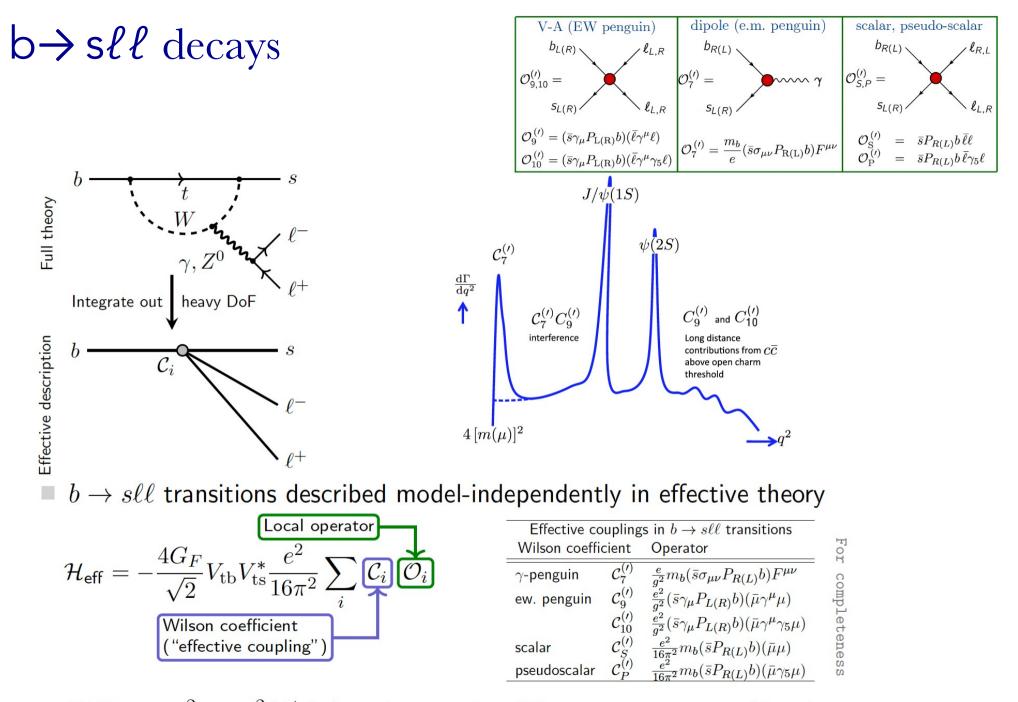
conclusions

 \boldsymbol{X} new combined measurement of R_K and R_{K^\star} with full Run 1 and Run 2 dataset

- most precise LFU test in $b \rightarrow sII$ transitions
- o the results are compatible with the SM at 0.2σ level
- X angular analysis and differential \mathcal{B} measurements in $b \rightarrow s\mu\mu$
 - a pattern of anomalies is visible

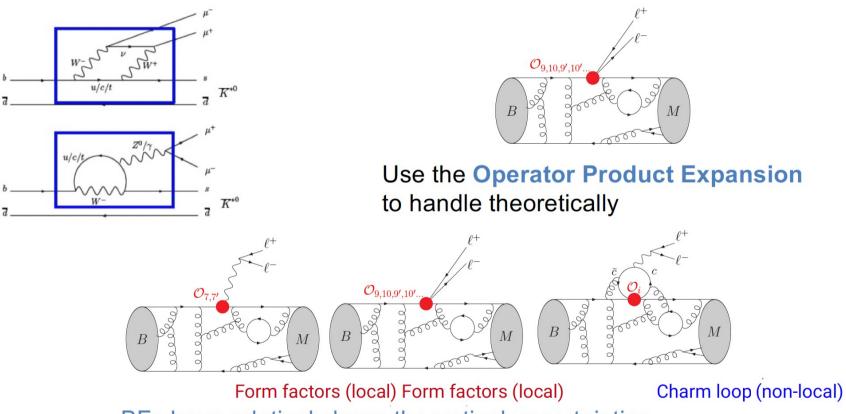
X new simultaneous $R(D^{(*)})$ measurement using the muonic τ decay with the Run 1 dataset will be presented this afternoon

X new R(D*) measurement using the hadronic τ decay $\tau^- \rightarrow \pi^+ \pi^- \pi^- (\pi^0) \nu_{\tau}$ with partial Run 2 dataset

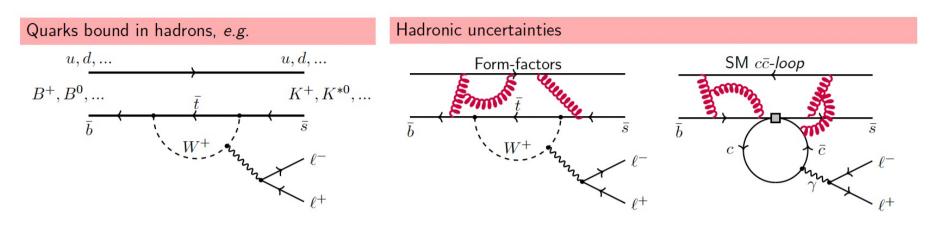

- o compatible with the SM at 1σ level
- X global picture unchanged for R(D)-R(D^{*}) combination
 - o tension with SM at the 3σ level

X we have started taking data with first upgrade of LHCb, new and more data will help to disentangle these puzzles exciting times ahead !

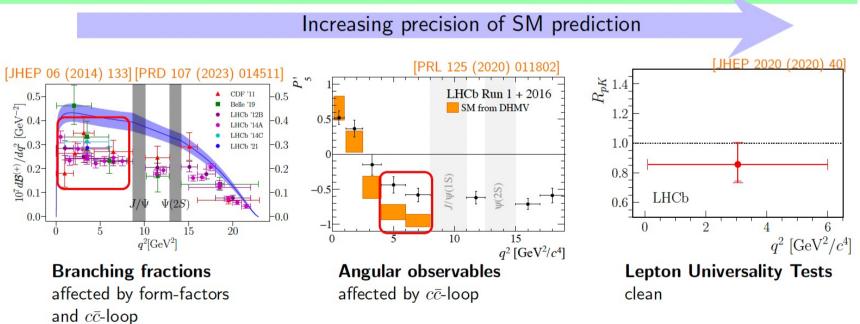
Thank You for your attention !


spares

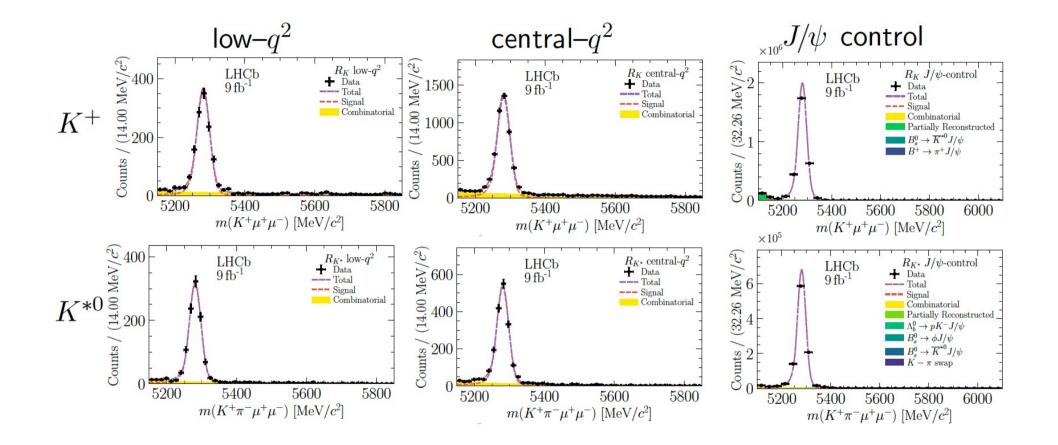
Different $q^2 = m^2(\ell^+\ell^-)$ regions probe different operator combinations


$b \rightarrow s\ell\ell$ decays: hadronic effects

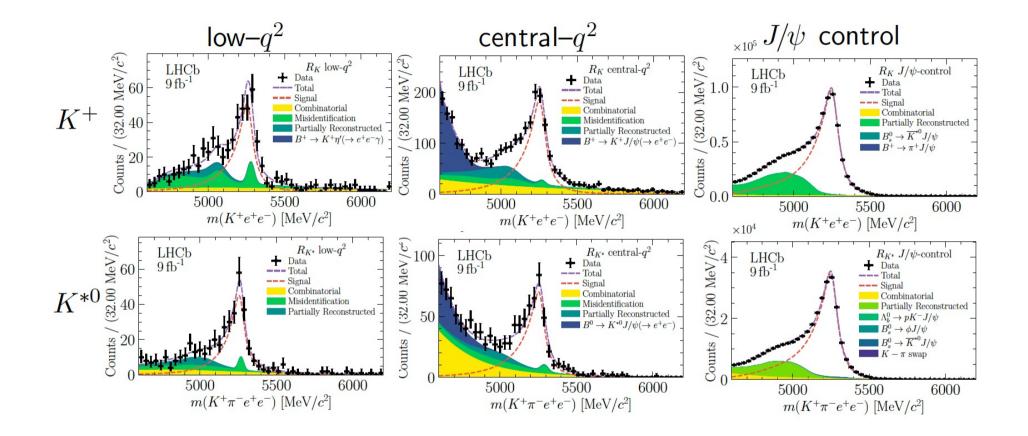
Hadronic effects



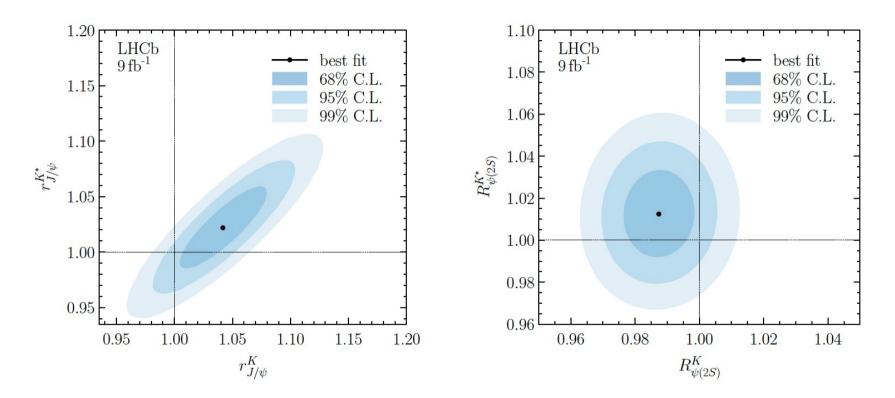
 \rightarrow BFs have relatively large theoretical uncertainties


observables in $b \rightarrow s\ell\ell$ decays and their cleanliness

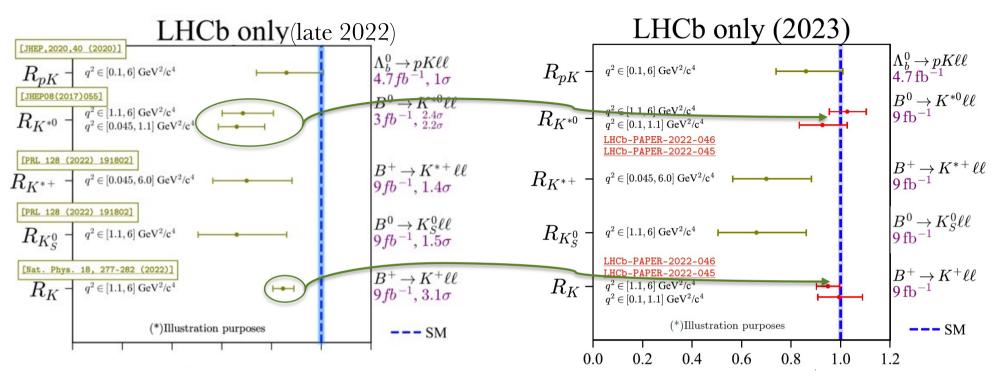
 $b \to s \ell \ell$ Observables



muon modes fits


- Muon mode is very clean!
- Muon branching fraction compatible with published results [JHEP 06 (2014) 133] [JHEP 11 (2016) 047]

electron modes fits

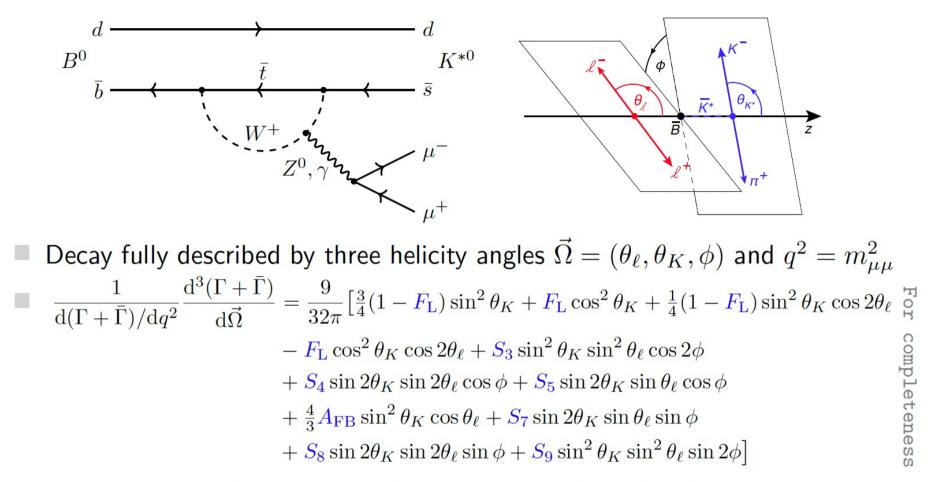

- Good fit quality when including all components
- Brems. tails from J/ψ entering rare modes constrained in sim. fit
- Partially reconstructed bgk. from $K^{*0}e^+e^-$ constrained in $K^+e^+e^-$

crosschecks with J/ψ and $\psi(2S)$ samples

Both $r_{J/\psi}$ and $R_{\psi(2S)}$ compatible with unity at better than 2σ

test of LFU in $b \rightarrow s\ell\ell$ decays

difference R_K central: partly due to tighter ePID criteria and partly due to the modeling of the residual hadronic background

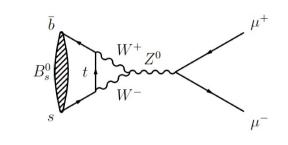

there is also a statistical component because the selected samples are quite different

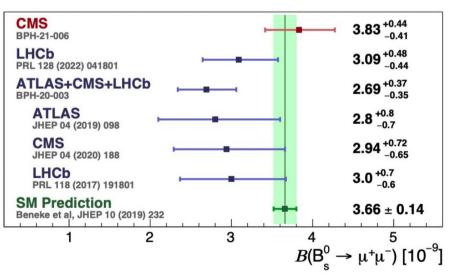
difference R_{K^*} : the statistical component of the difference is dominant, as the previous measurement is based on a much smaller data sample

✓ for R_{KS} R_{K^*+} and R_{pK} the statistical uncertainties are large → effects changing treatment of misidentified background will have small impact

 $\checkmark~$ for R_{pK} there is a full RUN 1-2 update ongoing

$b \rightarrow s\mu\mu$ angular analysis

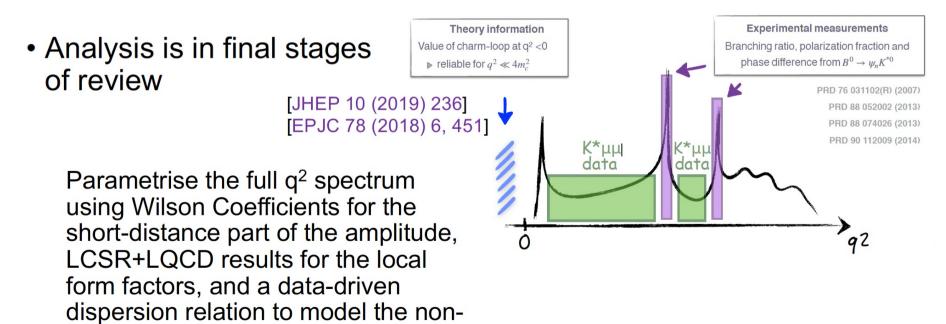



Angular observables $F_{\rm L}, A_{\rm FB}, S_i$ sensitive to NP contributions

Perform ratios of observables where form factors cancel at leading order Example: $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}} \begin{bmatrix} S. Descotes-Genon et al., \\ JHEP, 05 (2013) 137 \end{bmatrix}$

The connection to $BF(B \rightarrow \mu\mu)$

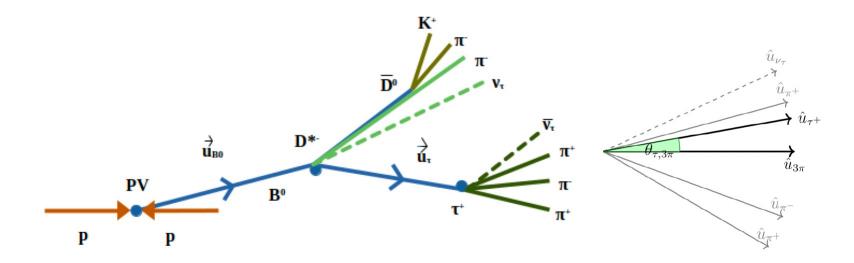
- The low BF for b→sll can be explained by a shift in the vector (C₉) or axial-vector (C₁₀) couplings
 - latter cannot be explained by most pernicious non-local effects
- Connection to $BF(B \rightarrow \mu\mu)$, which is very well predicted
- Dec 2022 CMS update has made a C₁₀ explanation look less likely



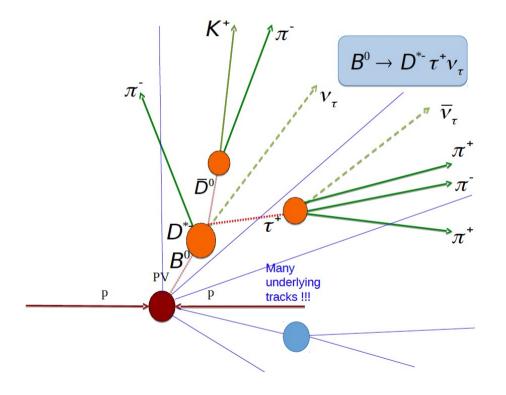
Unbinned $B^0 \rightarrow K^{*0} \mu \mu$ analyses

• Can write $B^0 \rightarrow K^{*0} \mu \mu$ amplitudes,

$$\mathcal{A}_{\lambda}^{L,R} = N_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$


- Wilson coefficients
- Form factors
- Non-local hadronic matrix elements
- Expand $H_{\lambda}(q^2)$ as a polynomial in $z(q^2)$ fitting simultaneously pseudoobservables from J/ ψ and $\Psi(2S)$ and theory points at negative q^2

local contributions


$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)\nu_{\tau}$: kinematics

- Neutrinos not detected; approximation needed for *B* reconstruction
- Well measured B^0 and τ^+ vertices allow reconstruction of flight directions
- Momentum as a function of angle between the systems

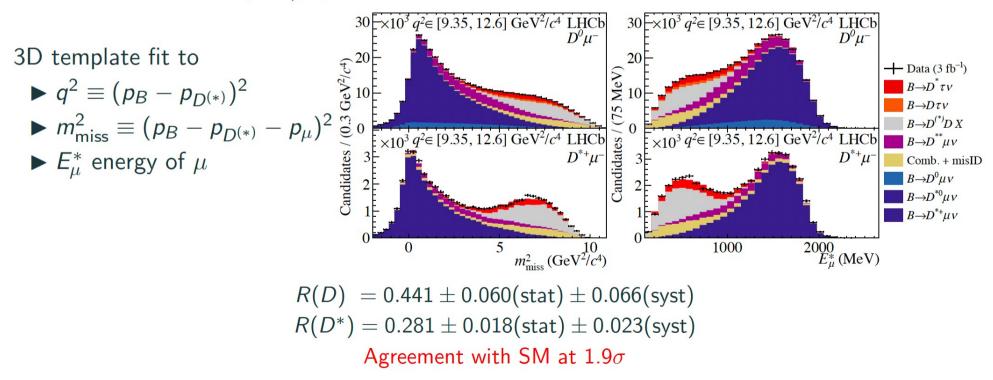
Maximum allowed values for the angles ⇒ unambiguous estimate of momentum

$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)\nu_{\tau}$: ReDecay

[EPJC 78, 1009 (2018)]

- Generate 1 complete event: signal + underlying event
- Re-generate the B decay 100 times and merge each with the underlying event
- **3** Repeat **1** and **2** N times
- ightarrow Factor $\mathcal{O}(10)$ faster simulation

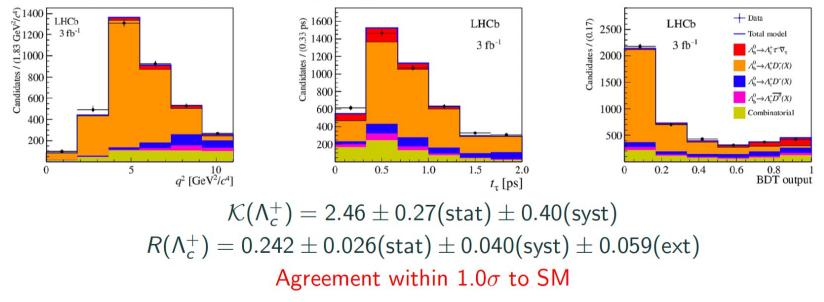
$R(D^*)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)v_{\tau}$: systematics


	Source	Systematic uncertainty on $\mathcal{K}(D^*)$ (%)	
	PDF shapes uncertainty (size of simulation sample)	2.0	
	Fixing $B \to D^{*-}D^+_{s}(X)$ bkg model parameters	1.1	
	Fixing $B ightarrow D^{*-}D^{0}(X)$ bkg model parameters	1.5	
	Fractions of signal $ au^+$ decays	0.3	
	Fixing the $\overline{D}^{stst} au^+ u_ au$ and $D_{oldsymbol{s}}^{stst} au^+ u_ au$ fractions	+1.8 -1.9	
Compared to Run 1	Knowledge of the $D_s^+ o 3\pi X$ decay model	1.0	BESIII results from
analysis, the size is	Specifically the $D_s^+ o a_1 X$ fraction	1.5	$D \rightarrow 3\pi^{\pm}$ should
analysis, the size is	Empty bins in templates	1.3	$D \rightarrow 5\pi^{-}$ should
halved from employing	Signal decay template shape	1.8	help reduce this
1 2 0	Signal decay efficiency	0.9	·
fast simulation	Possible contributions from other $ au^+$ decays	1.0	systematic in future.
techniques [ReDecay].	$B ightarrow D^{st -} D^+(X)$ template shapes	+2.2 -0.8	
teeninques [neb couy].	$B ightarrow D^{st -} D^0(X)$ template shapes	1.2	
	$B ightarrow D^{st -} D^+_s(X)$ template shapes	0.3	
	$B ightarrow {D^*}^- 3\pi X$ template shapes	1.2	
	Combinatorial background normalisation	+0.5 -0.6	
Other dominant	Preselection efficiency	2.0	
	Kinematic reweighting	0.7	
sources include signal	Vertex error correction	0.9	
and background	PID efficiency	0.5	
and background	Signal efficiency (size of simulation sample)	1.1	
modelling	Normalisation mode efficiency (modelling of $m(3\pi)$)	1.0	
8	Normalisation efficiency (size of simulation sample)	1.1	
	Normalisation mode PDF choice	1.0	
	Total systematic uncertainty	+6.2 -5.9	
	Total statistical uncertainty	5.9	

R(D^(*)) with $\tau \rightarrow \mu \overline{\nu}_{\mu} \nu_{\tau}$

 $R(D^{(*)}) \equiv \frac{\mathcal{B}(\bar{B}^0 \to D^{(*)}\tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B}^0 \to D^{(*)}\mu^- \bar{\nu}_{\mu})}$ where D^(*) stands for a D⁰, a D^{*+} or a D^{*0} ✓ select $D^0\mu^-$ and $D^{*+}\mu^-$ candidates with $D^0 \rightarrow K^-\pi^+$, $D^{*+} \rightarrow D^0(K^-\pi^+)\pi^+$

signal and normalization decay chains with identical visible final states, many uncertainties cancel on R(D^(*))


 Simultaneous measurement of R(D) and R(D*) with Run 1 data using muonic τ⁺ → μ⁺ν_μν
¯_τ

$R(\Lambda_c)$ with $\tau \rightarrow 3\pi^{\pm}(\pi^0)\nu_{\tau}$

[PRL 128 (2022) 191803]

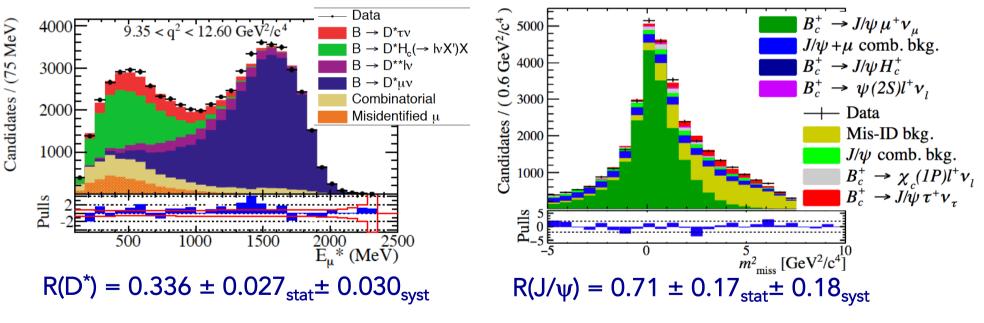
- First LFU test in a baryonic $b \to c \ell \nu_{\ell}$ decay with Run 1 data using hadronic $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_{\tau}$
- 3D template fit to extract signal yield

R(D*) and R(J/ ψ) with $\tau \rightarrow \mu \nu \nu$ at LHCb

LHCb [PRL 115 (2015) 111803]

$$R(D^*) = rac{\mathcal{B}(B^0 o D^{*-} au^+
u_ au)}{\mathcal{B}(B^0 o D^{*-} \mu^+
u_\mu)}$$

using $D^* \rightarrow D^0 (\rightarrow K^+ \pi^-) \pi^$ visible final state $\rightarrow \pi (K\pi) \mu$


large backgrounds from partially reco B decays \rightarrow *MVA techniques based on* μ *isolation*

LHCb [PRL 120 (2018) 121801]

$$R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau\nu)}{\mathcal{B}(B_c^+ \to J/\psi\mu\nu)}$$

using $J/\psi \rightarrow \mu^+\mu^$ visible final state $\rightarrow (\mu\mu)\mu$

shorter B_c decay time helps to discriminate large background from lighter b hadrons

1.9 σ above Standard Model

~ 2. σ above Standard Model

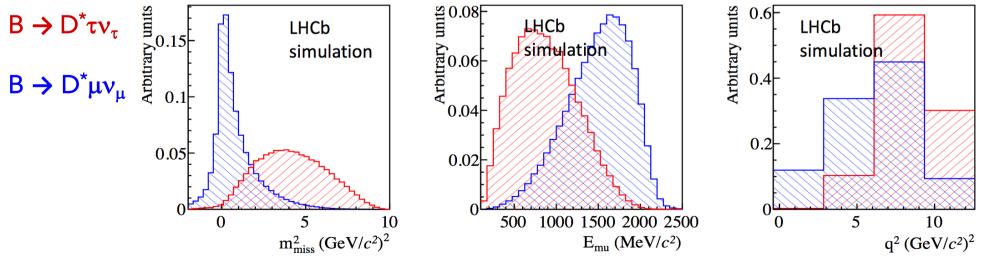
Run 1 data sample, **about 3 fb⁻¹ at** $\sqrt{s} = 7$, 8 TeV

27/03/23

$R(D^*)$ from $\tau \rightarrow \mu \nu_{\mu} \nabla_{\tau}$

 \checkmark statistics from high pp \rightarrow bb cross section at LHC

 \checkmark use B flight direction to measure transverse component of missing momentum

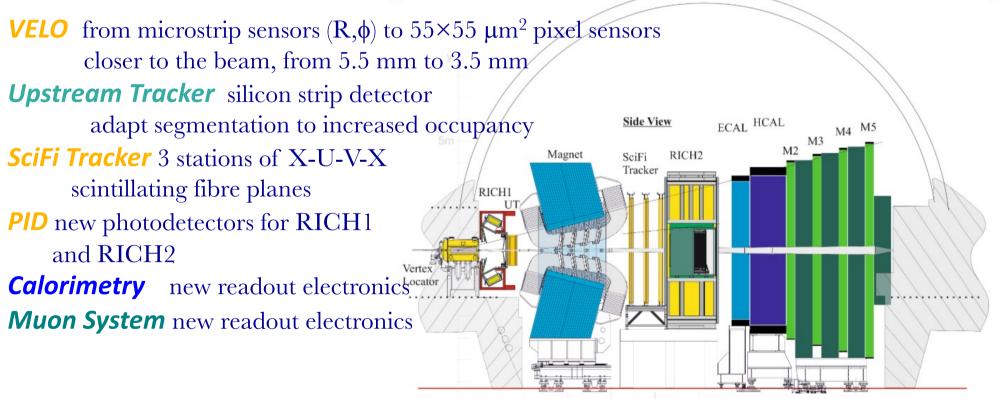

✓ B boost along beam direction approximated with boost of the **visible final state** $(p_B)_z = (m_B/m_{D^*u})(p_{D^*u})_z$

 $(P_B)_z = (m_B/m_{D*\mu})(P_{D*\mu})_z$

 \checkmark can then calculate rest frame quantities:

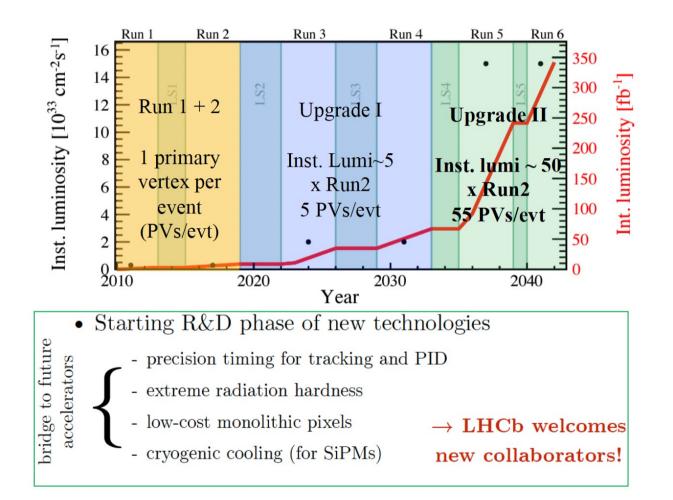
1.
$$m_{miss}^2 = (p_B - p_{D^*} - p_{\mu})^2$$

2. E_{μ}^*
3. $q^2 = (p_B - p_{D^*})^2$


~18% resolution sufficient to retain discriminating power between signal and normalization channel

the LHCb upgrade

@ restart data taking in 2021 at \mathcal{L} up to 2×10³³ cm⁻²s⁻¹ **@** upgrade detector qualified to accumulate 50 fb⁻¹ →


upgrade all sub-detector electronics to 40 MHz readout make all trigger decision in software and some new detectors

Iess than 10% of all channels will be kept
27/03/23

LHCb-TDR-{13,14,15,66}

LHCb Upgrade 2 @ HL-LHC (2035 – 2042)

[CERN-LHCC-2021-012]

