

LFU and semileptonic B decays at Belle

Luka Šantelj,

Jozef Stefan Institute and University of Ljubljana

On behalf of the Belle collaboration

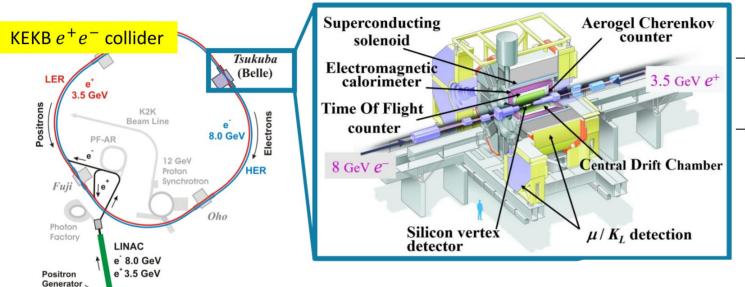
ALPS 2023

Obergurgl, 26-31.3.2023

B

Outline

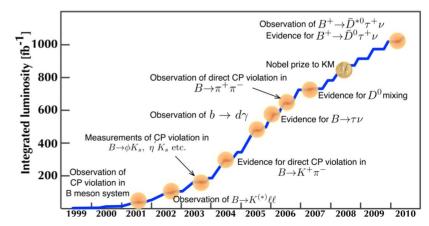
- The Belle experiment
- Summary of R(D^(*)) measurements
- Semileptonic B decays
 - \rightarrow Simultaneous Determination of Inclusive and Exclusive $|V_{ub}|$
 - ightarrow Measurement of Differential Distributions of $B o D^\star\ell\nu_\ell$ and $|{f V_{cb}}|$
- Summary


The Belle experiment

e 3.7 GeV

e 1.7 GeV

Tsukuba


Niigata

- → operated at the KEKB collider (from 1999-2010)
- \rightarrow mostly at the energy of $\Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\bar{B}$

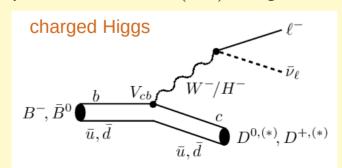
Process	No. of pairs
$e^+e^- \rightarrow \Upsilon(4S)$	$772\times 10^6~B\bar{B}$
$e^+e^- \rightarrow \Upsilon(5S)$	$7.1 \times 10^6 B_s \overline{B}_s$

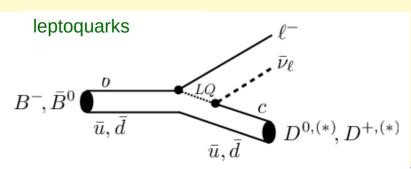
- $\rightarrow 4\pi$ coverage
- \rightarrow clean e^+e^- environment with known initial state (BB pair)
- → good charged track reconstruction efficiency, particle identification, gamma reconstruction
- → excellent vertexing capabilities

LFU tests in semi-tauonic B decays

Lepton flavor universality tests:
$$\mathcal{R}(H_c) = \frac{\mathcal{B}(B \to H_c \ \tau \bar{\nu}_{\tau})}{\mathcal{B}(B \to H_c \ \ell \bar{\nu}_{\ell})}$$

$$H_C = D^{(*)}, J/\psi$$
$$(\ell = e, \mu)$$

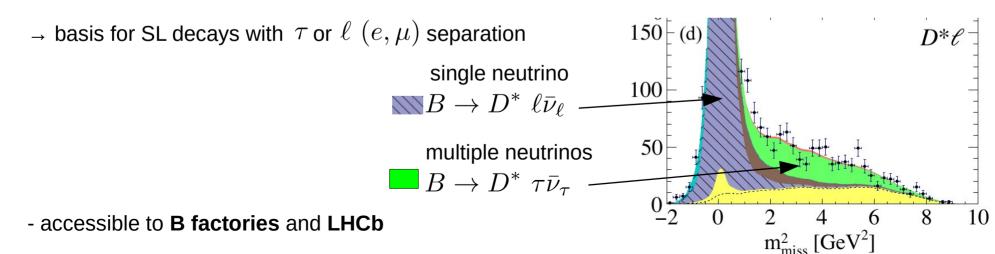

→ experimentally and theoretically convenient due to cancellation of several uncertainties in the ratio


Kinematic variables: e.g. $q^2 = (p_B - p_{D^*})^2$ distributions

Polarization fractions: τ polarization, D^{*-} longitudinal polarization

Uncertainties of the SM predictions for $\mathcal{R}(H_c)$ range from 1% to 3%

→ sensitivity to NP contributions

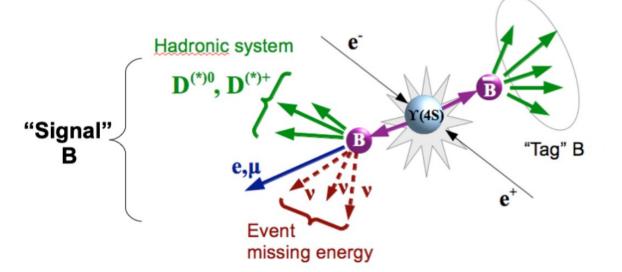

Decay reconstruction basics

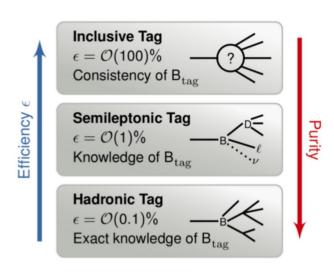
- relatively large branching fractions
- but multiple neutrinos (not detected!) in the final state → challenging decay reconstruction
 - → determination of initial B momentum allows for evaluation of

$$q^2 = (p_B - p_{D^*})^2$$
 momentum transfer to leptons

$$\begin{bmatrix} m_{\mathrm{miss}}^2 = (p_B - p_{D^{(*)}} - p_\ell)^2 \\ \text{missing mass} \end{bmatrix} \begin{bmatrix} E_l^* = (p_\ell \cdot p_B)/m_B \\ \text{charged lepton energy in B frame} \end{bmatrix}$$

charged lepton energy in B frame





Decay reconstruction basics – Belle (B-factories)

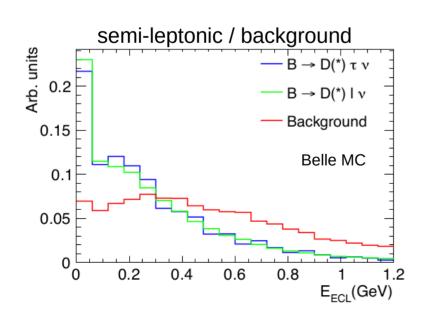
$$e^+e^- \to \Upsilon(4S) \to B\bar{B}$$

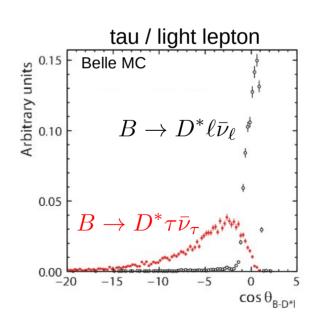
- fully known initial state + hermetic detector (4π) \rightarrow tagging techniques

 \rightarrow in SL decays with correct $B_{\rm tag}$ all particles in an event assigned (to $B_{\rm sig}$ or $B_{\rm tag}$)!

background events: larger
$$E_{
m ECL}$$

$$\tau$$
 vs. ℓ (e, μ) : $m_{\text{miss}}^2 + \text{kinematics}$


extra energy in the EM calorimeter



Latest and most precise $\mathcal{R}(D^{(*)})$ from Belle – semi-leptonic tag

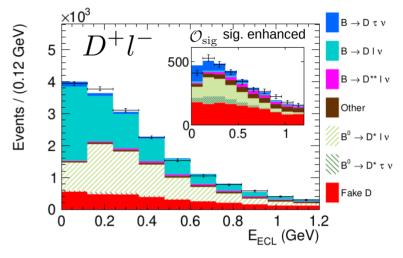
Phys. Rev. Lett. 124, 161803, arXiv:1910.05864

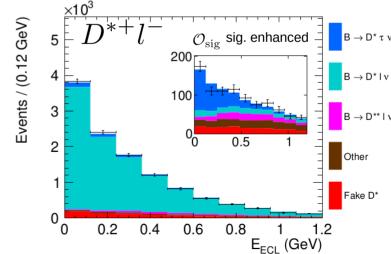
- using FEI (full event interpretation) for the tag-side $B \to D^{(*)} l \bar{\nu}_l$ reconstruction
- reconstructed signal modes: $D^+\ell^-, D^0\ell^-, D^{*+}\ell^-, D^{*0}\ell^ (\ell=e,\mu)$
- combine kinematic variables using BDT: $(\cos\theta_{B,D^{(*)}l},\ m_{\mathrm{miss}}^2,\ E_{\mathrm{vis}}) o \mathcal{O}_{\mathrm{sig}}$

$$\equiv \frac{2 E_{\mathrm{beam}} E_{D^{(*)}\ell} - m_B^2 - m_{D^{(*)}\ell}^2}{2 |\pmb{p}_B| |\pmb{p}_{D^{(*)}\ell}|}$$

Latest and most precise $\mathcal{R}(D^{(*)})$ from Belle – semi-leptonic tag

Phys. Rev. Lett. 124, 161803, arXiv:1910.05864


- $E_{\rm ECL}-{\cal O}_{\rm sig}$ distributions of all samples are fit simultaneously, constraining ${\cal R}(D^{(*)0})={\cal R}(D^{(*)+})$
- free parameters: signal yields (τ, ℓ) , $B \to D^{**}l\nu$ yield feed-down D^* yield


$$\mathcal{R}(D) = 0.307 \pm 0.037 \,(\text{stat}) \pm 0.016 \,(\text{syst})$$

 $\mathcal{R}(D^*) = 0.283 \pm 0.018 \,(\text{stat}) \pm 0.014 \,(\text{syst})$

Most precise values to date!

Main systematic uncertainties

Source	$\Delta \mathcal{R}(D)$ (%)	$\Delta \mathcal{R}(D^*)$ (%)	
D^{**} composition	0.76	1.41	
PDF shapes	4.39	2.25	
Feed-down factors	1.69	0.44	
Efficiency factors	1.93	4.12	

Summary of existing B factory measurements

Hadronic tag with $au o \ell
u ar{
u}$

BaBar: Phys. Rev. Lett. 109, 101802, arXiv:1205.5442

Belle: Phys. Rev. D 92, 072014, arXiv:1507.03233

Result	BABAR	Belle
$\mathcal{R}(D)$ ($0.440 \pm 0.058 \pm 0.042$	$0.375 \pm 0.064 \pm 0.026$
$\mathcal{R}(D^*)$ ($0.332 \pm 0.024 \pm 0.018$	$0.293 \pm 0.038 \pm 0.015$

Semi-leptonic tag with $au o \ell
u ar{
u}$

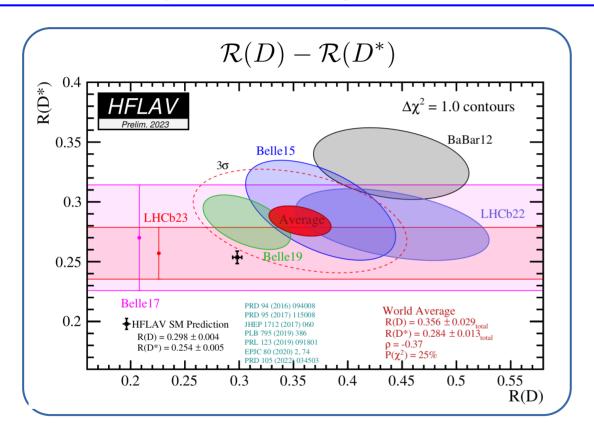
Belle: Phys. Rev. Lett. 124, 161803, arXiv:1910.05864

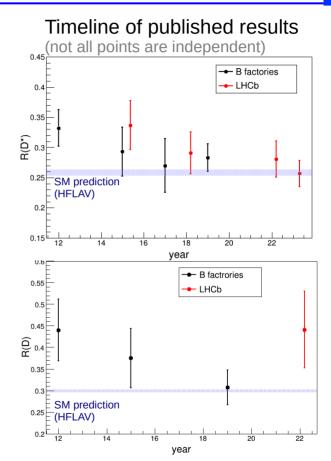
 $\mathcal{R}(D) = 0.307 \pm 0.037 \,(\text{stat}) \pm 0.016 \,(\text{syst})$

 $\mathcal{R}(D^*) = 0.283 \pm 0.018 \,(\text{stat}) \pm 0.014 \,(\text{syst})$

Hadronic tag with $\tau \to \pi \nu, \tau \to \rho \nu$ Belle τ polarization measurement

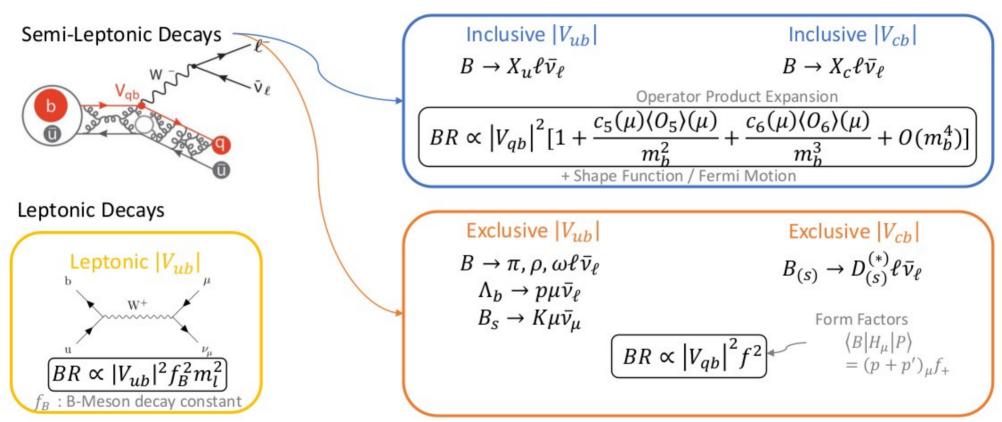
Phys. Rev. D 97 (1), 012004, arXiv:1709.00129

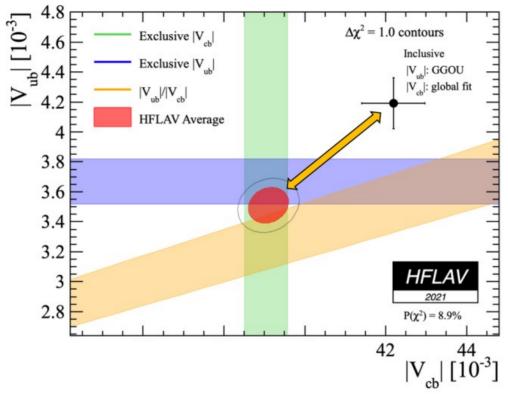

 $R(D^*) = 0.270 \pm 0.035(\text{stat})^{+0.028}_{-0.025}(\text{syst})$


 $P_{\tau}(D^*) = -0.38 \pm 0.51(\text{stat})^{+0.21}_{-0.16}(\text{syst})$

Inclusive tag with $\tau \to \pi \nu, \tau \to \ell \nu \bar{\nu}$ Belle D^{*-} polarization measurement arXiv:1903.03102

$$F_{L,\tau}(D^*) = 0.60 \pm 0.08(\text{stat}) \pm 0.04(\text{sys})$$


Consistency with the SM predictions

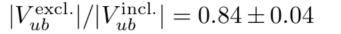

 \rightarrow present world average of $\mathcal{R}(D) - \mathcal{R}(D^*)$ deviates from the SM with significance of $\sim 3.16~\sigma$.

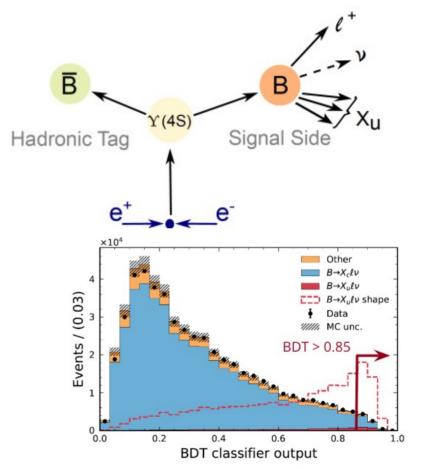
$|\mathbf{V_{ub}}|$ and $|\mathbf{V_{cb}}|$ from semileptonic B decays

*from M.Prim @ DISCRETE22

Experimental status

- $_{\rightarrow}$ longstanding significant discrepancy between $|V_{ub}|$ and $|V_{cb}|$ as determined from inclusive or exclusive measurements
- \rightarrow several new results on $|V_{xb}|$ by Belle and Belle II recently


First Simultaneous Determination of Inclusive and Exclusive $|{f V_{ub}}|$


Preliminary

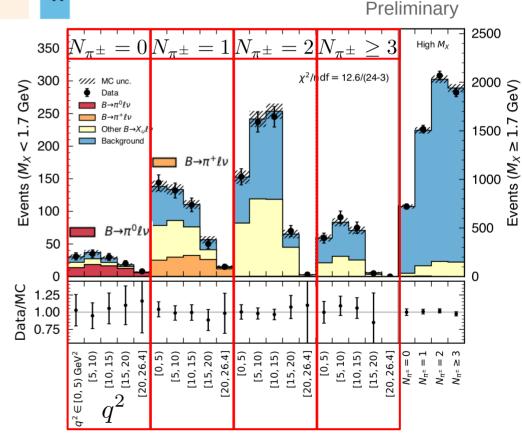
- full Belle dataset (711 fb⁻¹)
- hadronic reconstruction of B_{tag}
 - \rightarrow allows for reconstruction of $B \rightarrow X_u \ell \nu$

$$q^2 = (p_B - p_{X_u})^2 \text{ and } N_{\pi^\pm} \text{ in } X_u$$

$$B^+ \to \pi^0 \ell^+ \nu$$

$$B^0 \to \pi^- \ell^+ \nu$$
 other
$$B \to X_u \ell \nu$$

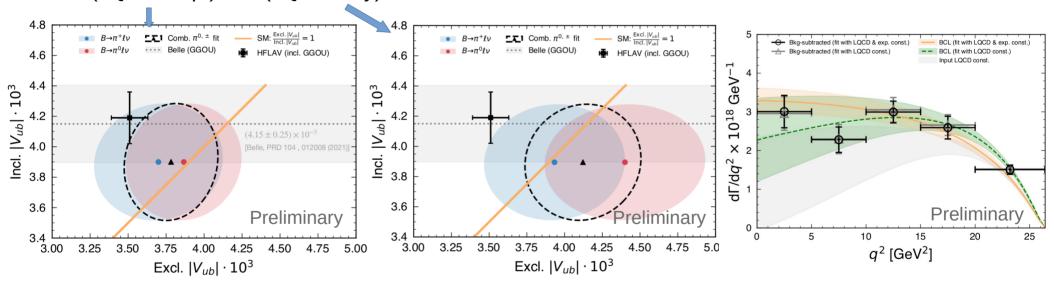
- electron or muon with $E_{\ell}^B = |\mathbf{p}_{\ell}^B| > 1\,\mathrm{GeV}$
- BDT with 11 training features to suppress $\,B \to X_c \ell \nu$ $\,M_{miss}^2,\chi_{vtx}^2,\#K$
- X_u thrust in the CMS to increase $B o \pi \ell \nu$ significance


First Simultaneous Determination of Inclusive and Exclusive

- Likelihood fit with binned templates' normalisations and $B o \pi \ell \nu$ form factor parameters free

$$-2\log\mathcal{L} = -2\log\prod_{i} \text{Poisson}\left(\eta_{\text{obs}}, \eta_{\text{pred}} \cdot (1 + \epsilon \cdot \theta)\right) + \theta \rho_{\theta}^{-1} \theta^{T} + \chi_{\text{FF}}^{2}$$

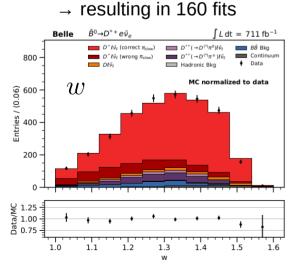
- BCL modeling of FF is used with parameters constrained to the LQCD or LQCD+exp. fits.
- all systematics (additive and multiplicative) are added as nuisance parameters for each template.
- dominant systematics are: $B \to X_u \ell \nu$ modeling, $u \to X_u$ fragmentation and rescontruction efficiencies (tagging, etc.)
- finally $|V_{ub}|$ is extracted via:

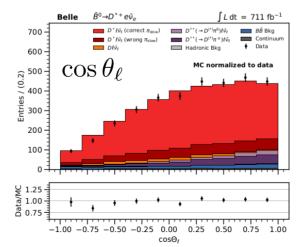

$$\begin{split} \mathcal{B}(B \to X_u \ell \nu) = & \underline{\mathcal{B}(B \to \pi^0 \ell \nu)} + \underline{\mathcal{B}(B \to \pi^+ \ell \nu)} + \underline{\mathcal{B}(B \to X_u^{\text{other}} \ell \nu)} \\ \Delta \mathcal{B}(B \to X_u \ell \nu) = & \underline{\mathcal{B}(B \to X_u \ell \nu)} \cdot \epsilon_{\Delta \text{PS:E}_{\ell}^{\text{B}} > 1 \text{GeV}} \\ |V_{ub}| = & \sqrt{\frac{\mathcal{B}}{\tau_B \cdot \Gamma}} \end{split}$$

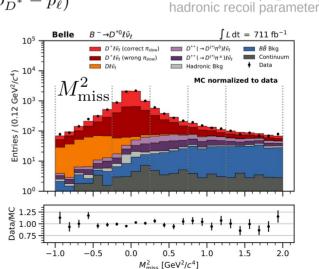
First Simultaneous Determination of Inclusive and Exclusive

Various fit scenarios considered:

- \rightarrow separate $B^+ \rightarrow \pi^0 \ell^+ \nu$ and $B^0 \rightarrow \pi^- \ell^+ \nu$ and combined.
- \rightarrow (LQCD+exp.) and (LQCD only) constraints for $B \rightarrow \pi \ell \nu$ form factors.

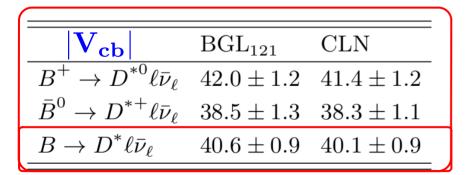

$$\begin{split} \left|V_{ub}^{\rm excl.}\right| &= (3.78 \pm 0.23 \pm 0.16 \pm 0.14) \times 10^{-3} \\ \left|V_{ub}^{\rm incl.}\right| &= (3.90 \pm 0.20 \pm 0.32 \pm 0.09) \times 10^{-3} \\ \end{split}$$
 for (LQCD+exp.) combined fit


Weighted average of excl. & incl. CKM global fit (w/o |Vub|): $(3.64 \pm 0.07) \times 10^{-3}$, $(3.85 \pm 0.26) \times 10^{-3}$ compatible within 0.8 σ $V_{\rm c}^{\rm excl.} \ |\ /\ |V_{\rm c}^{\rm incl.}| = 0.97 \pm 0.12$ \rightarrow compatible via the compatible via


→ compatible with the W.A. and with the SM

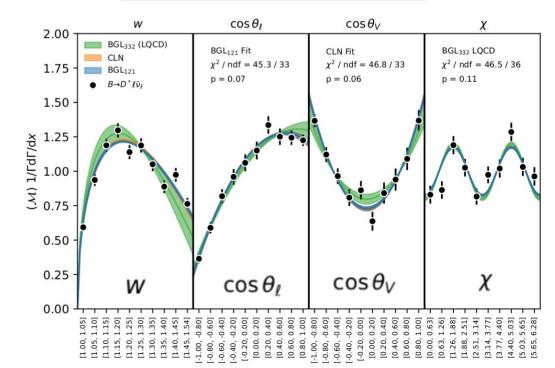
Measurement of Differential Distributions of $B o D^\star \ell \nu_\ell$ and $|{f V_{cb}}|$

- full Belle dataset (711 fb⁻¹), 4 separate decay modes: $B^{\pm,0}$, $\ell=e$, μ
- hadronic reconstruction of B_{tag} using Belle II tools (Full Event Interpretation)
- fit the form factor parametrisation to the measured differential shapes in $w, \cos \theta_\ell, \cos \theta_V, \chi$ and use W.A. branching fraction to determine $|V_{cb}|$
- for each decay in each bin background is subtracted via fitting of model independent variable: $M_{\mathrm{miss}}^2 = p_{\mathrm{miss}}^2 = \left(p_{e^+e^-} p_{\mathrm{tag}} p_{D^*} p_{\ell}\right)^2$



arXiv:2301.07529

 $w = v \cdot v' = (m_B^2 + m_{D^*}^2 - q^2)/(2m_B m_{D^*})$


Measurement of Differential Distributions of $B \to D^\star \ell \nu_\ell$ and $|\mathbf{V_{cb}}|$

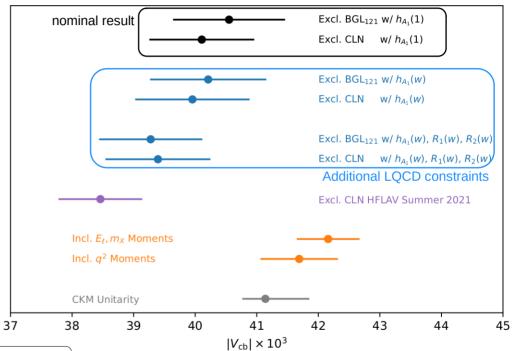
- shapes are corrected for resolution and acceptance effects
- averaged shapes are used to fit BGL and CLN parametrization to the data
- External constraints on branching fraction (HFLAV) and $h_X = h_{A_1}(1) = 0.906 \pm 0.013$ FF at zero-recoil (FNAL/MILC)

arXiv:2301.07529

$$\chi^{2} = \left(\frac{\Delta\vec{\Gamma}^{\text{m}}}{\Gamma^{\text{m}}} - \frac{\Delta\vec{\Gamma}^{\text{p}}(\vec{x})}{\Gamma^{\text{p}}(\vec{x})}\right) C_{\text{exp}}^{-1} \left(\frac{\Delta\vec{\Gamma}^{\text{m}}}{\Gamma^{\text{m}}} - \frac{\Delta\vec{\Gamma}^{\text{p}}(\vec{x})}{\Gamma^{\text{p}}(\vec{x})}\right)^{T} + (\Gamma^{\text{ext}} - \Gamma^{\text{p}}(\vec{x}))^{2} / \sigma(\Gamma^{\text{ext}})^{2} + (h_{X} - h_{X}^{\text{LQCD}}) C_{\text{LQCD}}^{-1} (h_{X} - h_{X}^{\text{LQCD}})$$

Measurement of Differential Distributions of $B o D^\star \ell u_\ell$ and $|\mathbf{V_{cb}}|$

arXiv:2301.07529

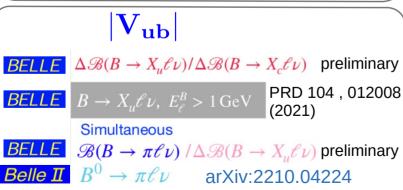

- additional fit scenarios are tested: using recent lattice constraints on B → D* FF beyond zero recoil
- D* longitudinal polarization fraction

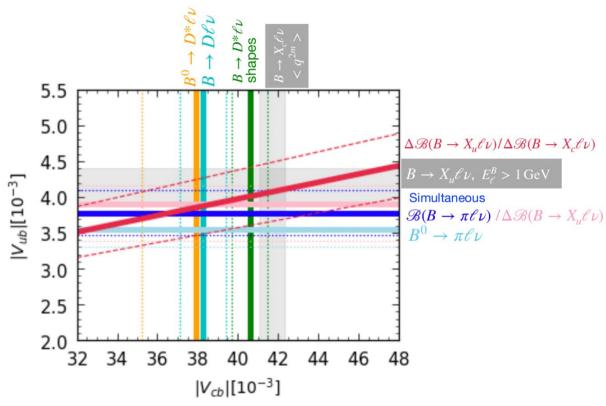
$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta_V} = \frac{3}{2} \left(F_L \cos^2\theta_V + \frac{1 - F_L}{2} \sin^2\theta_V \right)$$
$$F_L^{D*}$$
$$B \to D^* \ell \bar{\nu}_\ell \qquad 0.501 \pm 0.012 \pm 0.003$$

Forward-Backward asymmetry

$$\Delta A_{FB} = A_{FB}^{\mu} - A_{FB}^{e}$$


$$B \to D^{*} \ell \bar{\nu}_{\ell} \qquad 0.022 \pm 0.026 \pm 0.007$$




• LFU ratio
$$R_{e\mu} = \frac{\mathcal{B}(B \to D^* e \bar{\nu}_e)}{\mathcal{B}(B \to D^* \mu \bar{\nu}_\mu)} = 0.990 \pm 0.021 \pm 0.023$$

All consistent with no LFU violation.

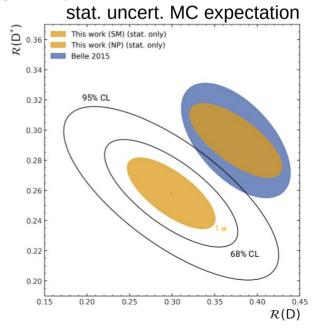
Overview of recent Belle and Belle II results

- → more results are yet to come, which will help to resolve the inclusive/exclusive puzzle
- → continuous effort from exp. and theory side still needed

Hadronic tag Untagged

Summary

 even 10+ years after the stop of its operation Belle keeps producing important physics results

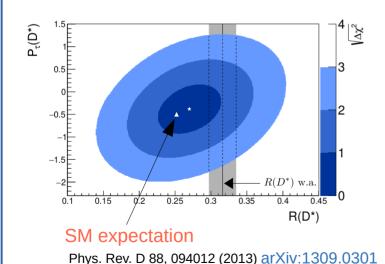

- "legacy" $\mathcal{R}(D^{(*)})$ measurement (had. tagging with leptonic tau dacays) based on the Belle II tools (FEI \rightarrow increased efficiency, improved MC modeling, etc.)

and many other measurements in the pipeline

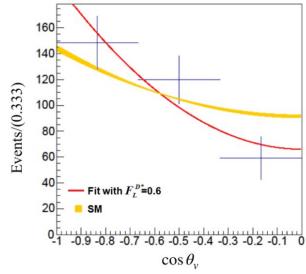
- Belle II has up to now collected ~1/2 of Belle data set size and gradual boost is expected in the next year

 \rightarrow due to detector and data analyses improvements already producing competitive/leading results (stay tuned for the new $\mathcal{R}(D^*)$ and more coming soon)

Thank you!



Related observables in semi-tauonic decays


Belle τ polarization measurement

Phys. Rev. D 97 (1), 012004, arXiv:1709.00129

$$P_{\tau}(D^{(*)}) = \frac{\Gamma^{+} - \Gamma^{-}}{\Gamma^{+} + \Gamma^{-}} \Gamma^{\pm} - \tau \text{ helicity}$$

Belle D^{*-} longitudinal polarization fraction

Phys. Rev. D 98, 095018 (2018) arXiv:1808.03565 consistent with the SM at 1.6σ