

M. Ferrillo, UZH

ALPINE PARTICLE PHYSICS SYMPOSIUM 2023 Obergurgl, Austria

Martina Ferrillo

on behalf of the LHCb Collaboration

Universität Zürich (UZH)

martina.ferrillo@cern.ch

ALPS 2023, 27/03/2023

Lepton Flavour Universality (LFU) := the electroweak coupling of bosons (W^{\pm}, Z^0) to leptons is identical. **Yukawas** y_{ℓ} are the only interactions **distinguishing** among leptons.

•

- Well motivated theoretical interest to **test the assumptions**, regardless of the tantalising experimental scenario
- Need to better **constrain** LFU in the **heavy quark** sector (b, c)

LFU: WHO ORDERED THAT?

LFU is an *accidental* and *approximate symmetry* of the Standard Model (SM), arising in the limit: $\mathscr{L}_{SM} = \mathscr{L}^{[d \leq 4]}, y_{\ell} \to 0.$

LFU IN TREE-LEVEL $b \rightarrow c \ell \nu$

What are the *Flavour anomalies* ?

Test of LFU involving the 3rd generation of quarks and lepto •

Hints for LFU violation in a variety of semileptonic tree-level measurements, deviating $\sim 3 \sigma$ from the SM. Comprehensive discussion on Flavour Anomalies at LHCb @ Patrizia De Simone's [talk]

ons
$$(b \to c\ell\nu)$$
: $R(D^{(*)}) = \frac{BR(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{BR(\bar{B} \to D^{(*)}\mu^-\bar{\nu}_{\mu})} \longrightarrow signal$
normalisation

- **Experimentally advantageous**: large yields and removal of common systematics
- Reduced theoretical uncertainties: most Form Factors (non-• helicity suppressed) cancel out in the ratio

LFU IN TREE-LEVEL $b \rightarrow c \ell \nu$

Hints for LFU violation in a variety of semileptonic tree-level measurements, deviating $\sim 3 \sigma$ from the SM. Comprehensive discussion on Flavour Anomalies at LHCb @ Patrizia De Simone's [talk]

Test of LFU involving the 3rd generation of quarks and lepto •

ons
$$(b \to c\ell\nu)$$
: $R(D^{(*)}) = \frac{BR(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{BR(\bar{B} \to D^{(*)}\mu^-\bar{\nu}_{\mu})} \longrightarrow signal$
normalisation

NEW LHCb MEASUREMENT

<u>Covered in this talk:</u>

Combined measurement of R(D) and $R(D^*)$ with a muonic tau decay

Announced in Dec. 2022: [arXiv:2302.02886], to appear in PRL

$$R(D^{(*)}) = \frac{\mathrm{BR}(\bar{B} \to D^{(*)}\tau^-\bar{\nu}_{\tau})}{\mathrm{BR}(\bar{B} \to D^{(*)}\mu^-\bar{\nu}_{\mu})} \xrightarrow{} signal$$

$$normalisation$$

- Analysis of **Run1 data**, corresponding to 3 fb^{-1}
- **Simultaneous measurement** of R(D) and $R(D^*)$
- Disjoint **signal** samples:

$$\succ \quad \bar{B}^0 \to (D^{*+} \to D^0 \pi^+) \, \tau^- \bar{\nu}_{\tau}$$

- $\blacktriangleright \quad B^- \to (D^0 \to K^- \pi^+) \, \tau^- \bar{\nu}_\tau \text{ , vetoing } D^{*+}$
- Reconstruct the **muonic decay** of the τ •
 - Large yields: BR $(\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau) \sim 17.4 \%$
 - Same final state of the normalisation decay
- Trigger on the reconstructed D^0 part

COMBINED MEASUREMENT OF MUONIC R(D)-R(D*)

[arXiv:2302.02886], submitted to PRL

MEASURING B DECAYS AT LHCb (Run1, Run2)

[LHCb-DP-2014-002]

- Ingredients to measure semi-leptonic B decays •

- Good *momentum resolution*: more than 20m of tracking (μ)

- **Missing particles** in the final state (undetected neutrinos) • $B \rightarrow D^* \mu \nu$, B -
- Short-lived τ , cannot reconstruct its decay vertex in the VEI •
- In *pp* collisions the *BB* centre of mass is not fixed •

Use the large Lorentz boost in the hadronic environment to constrain the decay kinematics

EXPERIMENTAL CHALLENGES

[arXiv:2302.02886], submitted to PRL

In addition to combinatorial and mis-identified backgrounds, a plethora of **partially reconstructed backgrounds**:

$$\rightarrow D^{**}\mu\nu, \quad B \rightarrow D^{*}(D \rightarrow \mu X)X \quad \cdots$$

RECONSTRUCTING THE B KINEMATICS

• Characterise the decay via the **rest frame** quantities:

Martina Ferrillo, UZH

[arXiv:2302.02886], submitted to PRL

- p_{\perp}^{B} : line of flight of the B to deduce the missing momentum
- p_{\parallel}^B : **B frame approximation**: $\gamma \beta_{z, \text{ total}}^B = \gamma \beta_{z, \text{ visible}}^B$
- $\frac{\delta p^B}{p^B} \sim 20\%$

$$- \bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$$
$$- \bar{B}^0 \to D^{*+} \mu^- \bar{\nu}_{\mu}$$

CHARGED ISOLATION

Reject backgrounds with additional charged tracks (feed down)

$$\bar{B} \to (D^{**} \to D^{(*)}\pi^{-}) \ell \nu$$
$$\bar{B} \to (D^{**} \to D^{(*)}\pi^{+}\pi^{-}) \ell \nu$$
$$\bar{B} \to D^{*}(D \to \ell X) K$$

MVA based classification: probability to be associated to the PV

MUONID

- Improved muon ID classification
- Reject backgrounds with a hadron misidentified as muon (data driven):

$$D^{(*)}h, h \in [\pi, K, p, e, \text{fake}]$$

27/03/2023

SELECTION AND VERTEX QUALITY CUTS

> Reject backgrounds with a **fake** B or D^*

Model with **data** samples with the **same sign**

Much care devoted to the understanding of the differences between Data and MC

- Correct for **detector** and **physics effects**
 - $B \rightarrow J/\Psi K$ control sample: B production kinematics, detector occupancy, trigger
 - **Iterative strategy**: removing residual differences by reweighting on the $D^0\mu$ data

- Use control region $m_{\rm miss}^2 < 0.4 \,{\rm GeV}^2$

- Preliminary fit to compare the summed cocktail to the data

[arXiv:2302.02886], submitted to PRL

m²miss

Simultaneous fit to 8 regions •

- **Signal region**: $(D^0\mu)$ and $(D^{*+}\mu)$
- 3 control regions (background enriched)

 D^{**} backgrounds

- One Kaon sample (1 extra K associated to B)

Martina Ferrillo, UZH

[arXiv:2302.02886], submitted to PRL

s,
$$E_{\mu}^{*}$$
, q^{2}

- One pion sample (1 extra π associated to B)

- **Two pion sample** (2 extra π associated to B)

Heavier D^{**} states and non-resonant backgrounds

Backgrounds $B \rightarrow D^0 DX$, semi-leptonic D decay

FORM FACTORS, long distance QCD effects:

- $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}$: BGL parameterisation [JHEP11(2017)061]
- $B^- \to D^0 \ell^- \bar{\nu}_{\ell}$: BCL parameterisation

[Phys. Rev. D 92, 054510]

Theory constraint on helicity-suppressed terms. Other terms floating in the fit.

RESULT

[arXiv:2302.02886], submitted to PRL

First combined measurement of muonic R(D)and $R(D^*)$ at a hadron collider

 $R(D) = 0.441 \pm 0.060 \text{ (stat)} \pm 0.066 \text{ (sys)}$

 $R(D^*) = 0.281 \pm 0.018 (\text{stat}) \pm 0.024 (\text{sys})$

Consistent with the SM at 1.9σ level

- Size of MC simulated samples
- Background modelling

- Discussed the **theoretical** and **experimental motivation** to **test LFU** in $b \rightarrow c\ell\nu$ transitions •
- •

FUTURE PROSPECTS

SUMMARY AND OUTLOOK

Presented the **new 2022 LHCb** combined R(D) and $R(D^*)$ muonic measurement: [arXiv:2302.02886], to appear in PRL

Update the current measurement(s) with **more data**

Reduce statistical uncertainty: **yields Run2 = (4x)Run1**

Over-constrain the problem by measuring more final states

Better synergy with **theory** community

Measure differential distributions to improve predictions on the long distance effects (Form Factors)

ALPS 2023, 27/03/2023

